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Abstract
Protoform reconstruction is the task of infer-
ring how morphemes or words sounded in
ancestral languages of a set of daughter lan-
guages. Meloni et al. (2021) achieved the state-
of-the-art on Latin protoform reconstruction
with an RNN-based encoder-decoder with at-
tention model. We update their model with
the state-of-the-art seq2seq model—the Trans-
former. Our model outperforms their model
on a suite of different metrics on two differ-
ent datasets: Meloni et al.’s Romance data of
8,000+ cognates (spanning 5 languages) and a
Chinese dataset (Hóu, 2004) of 800+ cognates
(spanning 39 varieties). We also probe our
model for potential phylogenetic signal con-
tained in the model. Our code is publicly avail-
able 1.

1 Introduction

Languages change over time and sometimes di-
verge into multiple daughter languages. The com-
mon ancestor of a set of genetically related lan-
guages is their proto-language. While there are
proto-languages such as Latin that are attested,
they are the exception2. Reconstructed words and
morphemes in proto-languages are called proto-
forms. The task of reconstructing unattested proto-
languages is called protoform reconstruction.
Historical linguists reconstruct proto-languages

by identifying systematic sound changes that can
be inferred from correspondences between attested
daughter languages (see Table 1). They com-
pare the sounds between a set of cognates, or
words with a common ancestor, to develop hy-
potheses about the types and chronologies of sound
changes.

∗Equal contribution
1https://github.com/cmu-llab/acl-2023
2In fact, the proto-language from which Romance lan-

guages like Spanish and Italian are descended is not identical
to Classical Latin but is, rather, a closely related and sparsely
attested language sometimes called Proto-Romance or Vulgar
Latin.

‘tooth’ ‘two’ ‘ten’
English tooth two ten t
Dutch tand twee tien t
German Zahn zwei zehn z
PWG *tanþ *twai- *tehun *t

Table 1: Sound correspondences inWest Germanic Lan-
guages and Proto-West-Germanic (PWG).

This task is inherently data-constrained, espe-
cially for under-documented languages. Such data
scarcity makes it a particularly difficult task for
contemporary neural network architectures such as
the Transformer (Vaswani et al., 2017), which are
data hungry.
The contributions of this paper are as follows:

• Application of the Transformer architecture
to the protoform reconstruction task, achiev-
ing state of the art performance, contrary to
expectation.

• Expansion of prior digital versions of Hóu
(2004)’s Chinese dataset to include a total of
804 cognate sets across 39 modern varieties
and Middle Chinese.

2 Related Work

Applying machine learning to protoform recon-
struction is not new. Bouchard-Côté et al. (2013)
learn an unsupervised protoform reconstruction
model for the large Oceanic language family using
Monte Carlo Expectation Maximization (Demp-
ster et al., 1977; Bouchard-Côté et al., 2008), super-
vising the model with a gold phylogeny and using
a probabilistic, generative model of sound change.
He et al. (2022) modernize an earlier version of
Bouchard-Côté et al. (2013)’s model with RNNs
for a 4 language subset of Romance, but they rely
on a bigram language model of Latin, making their
model technically not unsupervised.
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List et al. (2022) apply an SVM classifier to
supervised reconstruction by treating sound corre-
spondences as training examples. Note that there
were no word boundaries in the input matrix; that
is, all sound correspondences across the training
set are flattened into one matrix. Furthermore,
each language has an independent phonemic inven-
tory. To learn contextual information, the authors
experiment with adding features encoding the po-
sition of phonemes, among others.
Ciobanu and Dinu (2018) learn a conditional

random field (Lafferty et al., 2001) using n-gram
features for supervised reconstruction and ensem-
ble 5 daughter-to-protoform models. They use a
dataset of 3,218 complete cognate sets spanning
Latin (the proto-language) and 5 Romance lan-
guages: Romanian, French, Italian, Spanish, Por-
tuguese.
Meloni et al. (2021) employ a GRU-based

seq2seq approach (Cho et al., 2014) to Latin
protoform reconstruction and achieve state-of-the-
art character edit distances. They extend Dinu
and Ciobanu (2014)’s Romance data using data
fromWiktionary—for a total of 8,799 cognate sets
across 5 Romance languages plus Latin—in both
orthographic and phonetic (IPA) representations.
In their model, all entries comprising the cognate
set are concatenated together in a fixed order to
form a training example. Chang et al. (2022) ap-
plied Meloni et al. (2021)’s architecture to the re-
construction of Middle Chinese on a dataset of
5000+ cognate sets spanning 8 languages they
compiled from Wiktionary. 3
Fourrier (2022) compares statistical machine

translation, RNN, and Transformer architectures
for protoform reconstruction, but they evaluate
their results using BLEU scores (Papineni et al.,
2002) instead of edit distance. They find that their
Transformer model did not outperform the RNN
models on protoform reconstruction. In addition,
their multilingual NMT (neural machine transla-
tion) model predicts many languages instead of
one target language and is trained on bilingual
pairs for protoform reconstruction (e.g. Italian-
Latin and Spanish-Latin), unlike comparative re-
construction. In contrast, we encode the entire cog-
nate set consisting of multiple daughter languages
(5 for the Romance dataset; 39 for Chinese) and
predict the corresponding protoform.

3The original dataset contains 21,000 cognate sets, but
only 5000+ had at least 3 daughter entries and were used as
input to the model.

3 Datasets

We train and test our model on Romance and
Sinitic (Chinese) language datasets. For Romance
languages, we use Meloni et al. (2021)’s dataset
which consists of 8,799 cognate sets of Romanian,
French, Italian, Spanish, Portuguese words and
the corresponding Latin form (approximately, a
protoform). There are two versions of this dataset:
phonetic and orthographic. The phonetic dataset
(Rom-phon) represents words with IPA symbols
whereas the orthographic dataset (Rom-orth) rep-
resents words in the orthographic form of each
language. We preserved all diacritics, except for
vowel length. This dataset is an extension of Dinu
and Ciobanu (2014)’s original dataset of 3,218 cog-
nate sets, which is not publicly available. Refer to
Table 2 for more information.

3.1 Expanding digital versions of Hóu (2004)

For Sinitic languages, we created a dataset of Mid-
dle Chinese and its modern daughter languages.
Middle Chinese is an unattested language, and we
thus have to rely on Baxter and Sagart (2014)’s
reconstructions of forms corresponding to 4,967
Chinese characters. We scraped Wiktionary to ob-
tain Hóu (2004)’s phonetic representations of their
modern reflexes.4 The resulting dataset contains
804 cognate sets of 39 modern Sinitic languages
and the corresponding reconstructed Middle Chi-
nese word. List (2021)’s version previously had
894 cognate sets across 15 varieties.

4 Model

We propose a Transformer-based encoder-decoder
architecture (Vaswani et al., 2017) because such
models have produced state-of-the-art results on
many sequence processing tasks. Transformers are
by reputation data hungry, though, which poses a
challenge to our problem setting, where the num-
ber of available training examples is often very
small.

4https://en.wiktionary.org/wiki/Module:
zh/data/dial-pron/documentation originally had
1,023 characters, but only 804 had reconstructions from
Baxter and Sagart (2014).
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Figure 1: Diagram of our encoder-decoder architecture.
Additive positional encoding and language embedding
are applied to each daughter sequence before all daugh-
ter sequences are concatenated into a single sequence.

We modify the standard encoder-decoder ar-
chitecture to accommodate the structure of our
datasets, where multiple daughter sequences corre-
spond to a single protoform sequence. LikeMeloni
et al. (2021), the daughter sequences are concate-
nated into a single sequence before being fed into
the encoder. Because we only care about the rela-
tive position between tokens within each daughter
sequence but not across daughter sequences, posi-
tional encoding is applied to each individual daugh-
ter sequence before concatenation. Along with po-
sitional encoding, an additive language embedding
is applied to the token embeddings to differenti-
ate between input tokens of different daughter lan-
guages.

5 Experiments

5.1 Baselines

We compare our Transformer model to a variety
of baselines. For Meloni et al. (2021), we use
Chang et al. (2022)’s PyTorch re-implementation
and reran a Bayesian hyperparameter search us-
ing WandB (Biewald, 2020) to ensure a more fair
comparison (since our model is tuned with WandB
as well). We also include the random daughter
(randomly designate a daughter form as the proto-
form and assume no sound change) and the major-
ity constituent baselines (predict the most common
phoneme in each syllable constituent) from Chang
et al. (2022). For the SVM and CoRPaR classi-
fiers (List et al., 2022), we experiment with dif-
ferent contextual features, such as Pos (position),
Str (prosodic structure), and Ini (whether or not the
phoneme appears word-initially or word-finally).

We publish results on Meloni et al. (2021)’s
full set of 8,799 cognates but cannot redistribute
this set due to Dinu and Ciobanu (2014)’s restric-
tions. For reproducibility, we include results on
Meloni et al. (2021)’s public subset of 5,419 cog-
nates in the Appendix (Table 7), both of which in-
clude vowel length. Observe that these results are
worse than those obtained on the full set, suggest-
ing that the RNN and Transformer are dependent
on a wealth of training data.

5.2 Preprocessing
In all our datasets, we merge diacritics to their base
segments to form a multi-character token. For in-
stance, the sequence [t, ʰ] is concatenated to [tʰ].
This ensures that phonemes are treated as one to-
ken. For Chinese, tone contours (a sequence of
tones) are treated as one token. Whenmultiple pro-
nunciation variants are listed for a single Chinese
character, we arbitrarily pick the first one.

6 Results and Discussion

6.1 Evaluation criteria
We evaluate the predicted protoforms using edit
distance (Levenshtein et al., 1966), normalized
edit distance (edit distance normalized by the
length of the target) and accuracy (the percent-
age of protoforms that are reconstructed without
any mistakes). Like Chang et al. (2022), we also
use feature error rate calculated using articulatory
feature vectors from PanPhon (Mortensen et al.,
2016) because it reflects the phonetic similarity be-
tween the prediction and the gold protoform. For
datasets with phonetic transcriptions (Romance-
phonetic and Chinese), we use phoneme edit dis-
tance and normalized phoneme edit distance. As
List (2019) suggests, we use B-Cubed F Scores
(Amigó et al., 2009) to capture the structural sim-
ilarity between the gold and predicted protoforms
(0: structurally dissimilar, 1: similar). With the
exception of character and phoneme edit distance,
the metrics enable fair comparison across different
language families, which will differ in the average
word length.

6.2 Results
Table 3 shows that our model consistently has the
best performance on all datasets with regards to
most metrics. The results were averaged across 5
runs. Out of all datasets, our model performs best
on the Rom-orth dataset, where we achieve a 7.0%
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Language Family Source # varieties Cognate sets Proto-language
Rom-phon Dinu and Ciobanu (2014), 5 8,799 Latin

Meloni et al. (2021)
Rom-orth Dinu and Ciobanu (2014), 5 8,799 Latin

Meloni et al. (2021)
Sinitic (Chinese) Hóu (2004) 39 804 Middle Chinese

Table 2: Statistics on both datasets used in our experiments. # varieties refers to the number of daughter varieties.

Figure 2: A gold phylogeny of Romance (left) compared with those derived by probing the RNN model (middle)
and the Transformer model (right) on Rom-phon.

decrease in phoneme edit distance and a 1.43p.p
improvement in accuracy relative to the RNN base-
line. We observe the most dramatic performance
difference with the RNN baseline on the Sinitic
dataset: a 10.48% decrease in phoneme edit dis-
tance and a 5.47p.p increase in accuracy. For re-
producibility, results on the publicly available por-
tion of the Rom-phon and Rom-orth datasets are
provided in Table 7 in the Appendix.

6.3 Analysis
We observe that the BCFS is relatively high for the
Romance non-neural baselines compared to those
of the Chinese ones. This suggests that the sound
changes in the Romance datasets are more regular
than that of Chinese, which corroborates List et al.
(2014)’s results that more than half of the Chinese
characters in their dataset could not be explained
by a tree model.
We examine the errors made by the Transformer

model on the Rom-phon datasest. Substitutions
constitute around 61% of the errors made by the
Transformer; deletions, 21%, and insertions, 18%.
The highest number of substitution errors occur be-
tween [i, ɪ], [e, ɛ], [o, ɔ] and [u, ʊ]—vowel pairs
that contrast only in tenseness. This is consistent
with the analysis of Meloni et al. (2021), where
substitutions between tense-lax vowel pairs take
up the largest portion of errors.
We observe that other common substitution er-

rors also happen between phonemes that share ma-
jor phonetic features. This demonstrates that al-

though no explicit phonetic information is fed di-
rectly into the model, the model makes mistakes
motivated by phonetic similarity, like Meloni et al.
(2021).

We do not observe notable differences in the
error statistics between the Transformer and the
RNN.

6.4 Language relatedness
Inspired by Fourrier (2022), we probe our model
for diachronic information on how genetically re-
lated each Romance language is to each other. We
create a distance matrix between every pair of lan-
guages in a dataset by taking the cosine similar-
ity between a pair’s language embeddings. We
then use sklearn (Pedregosa et al., 2011)’s imple-
mentation of theWard variance minimization algo-
rithm (Ward Jr, 1963) to perform hierarchical clus-
tering on the distance matrix. We take a consen-
sus of the dendrograms from 5 different runs us-
ing the consense program from PHYLIP (Felsen-
stein, 2013).
As we see in Figure 2, the Transformer captures

more of the phylogenetic relationships among the
languages correctly for the Rom-phon dataset. In-
deed, the Generalized Quartet Distance (GQD)
(Sand et al., 2013; Pompei et al., 2011; Rama et al.,
2018) between the gold and predicted tree, calcu-
lated using quartetDist from the tqDist library
(Sand et al., 2014), is 0.4 for the Transformer but
0.8 for the RNN. See Figure 5 in the Appendix for
the results of the orthographic dataset.

27



Dataset Model PED ↓ NPED ↓ Acc % ↑ FER ↓ BCFS ↑
Sinitic Random daughter (Chang et al.,

2022)
3.7702 0.8405 0% 0.2893 0.2748

Majority constituent (Chang et al.,
2022)

3.5031 0.7806 0% 0.2013 0.3695

CorPaR (List et al., 2022) 3.2795 0.7278 0% 0.3972 0.3332
SVM + PosStr (List et al., 2022) 1.6894 0.3692 15.52% 0.1669 0.5418
RNN (Meloni et al., 2021) 1.0671 0.2421 35.65% 0.0899 0.6781
Transformer (present work) 0.9553 0.2150 41.12% 0.0842 0.7033

Rom-phon Random daughter (Chang et al.,
2022)

6.1534 0.6914 0.06% 0.6264 0.4016

CorPaR + PosIni (List et al., 2022) 1.6847 0.1978 22.18% 0.0728 0.7403
SVM+ PosStrIni (List et al., 2022) 1.5787 0.1861 24.69% 0.0713 0.7610
RNN (Meloni et al., 2021) 0.9655 0.1224 52.31% 0.0384 0.8296
Transformer (present work) 0.8926 0.1137 53.75% 0.0373 0.8435

Rom-orth Random daughter (Chang et al.,
2022)

4.2567 0.4854 2.97% - 0.5147

CorPaR + Ini (List et al., 2022) 0.9531 0.1160 47.23% - 0.8400
SVM + PosStr (List et al., 2022) 0.8988 0.1105 50.43% - 0.8501
RNN (Meloni et al., 2021) 0.5941 0.0770 69.80% - 0.8916
Transformer (present work) 0.5525 0.0720 71.23% - 0.9002

Table 3: Evaluation of models and baselines using various metrics, averaged across 5 runs (same hyperparameters,
different seeds). Because Rom-orth is not in IPA, character edit distance is used instead of PED, and we cannot
accurately calculate FER. See Section 6.1 for an explanation of each evaluation metric. See Table 4 for the standard
deviation values.

Since the Romance dataset only includes 5
daughter languages, our results are insufficient
to corroborate or contradict Cathcart and Wandl
(2020)’s findings: the more accurate the proto-
forms, the less accurate the phylogeny will be. It
is not clear if the model’s language embeddings
are learning information that reflects shared inno-
vations (sound changes that if shared among a set
of daughter languages, would be acceptable justi-
fication for grouping them)—the only acceptable
criterion for phylogenetic inference in historical
linguistics (Campbell, 2013)—or if the model is
learning superficial phonetic similarity.

7 Conclusion

By showing that Transformers can outperform pre-
vious architectures in protoform reconstruction de-
spite the inherent data scarcity of the task, our work
motivates future research in this area to take full
advantage of the recent advancements in the Trans-
former space.
Accurate supervised reconstruction can help pre-

dict protoforms for cognate sets where linguists
have not reconstructed one yet. Future work could
reconstruct proto-languages whose linguist recon-
structions are not available, by transferring knowl-
edge learned from languages with already recon-
structed protoforms. Furthermore, future work can
leverage the abundance of work in unsupervised
NMT to adapt our Transformer model for the un-
supervised setting, a more realistic scenario for the
historical linguist.

Limitations

One limitation of ourwork is that the RNN (Meloni
et al., 2021) actually outperforms our Transformer
on the Chinese dataset in Chang et al. (2022). In ad-
dition, as with other neural approaches, our model
requires significant amounts of data, which is of-
ten not available to historical linguists research-
ing less well-studied language families based on
field reports. Romance and Chinese have rela-
tively many cognate sets because the protoforms
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are documented5, but a low resource setup with
200 cognate sets would not fare well on our data-
hungrier Transformer model. Furthermore, con-
catenating the entire cognate set may not work
on language families with hundreds of languages
such as Oceanic because the input sequence would
be too long compared to the output protoform se-
quence.
Finally, we obtain our Chinese gold protoforms

from Baxter and Sagart (2014)’s Middle Chinese
reconstruction, which was actually a transcription
of the Qieyun, a rhyme dictionary. Norman and
Coblin (1995) disagree with relying on such a
philological source and prefer comparative recon-
structions that begin from daughter data. However,
there is no available comparative reconstruction
of Middle Chinese with protoforms corresponding
to thousands of characters to use as a gold stan-
dard. Be that as it may, it seems clear that Mid-
dle Chinese as recorded in theQieyun is not identi-
cal to the most recent ancestor of the Chinese lan-
guages. Its preface concedes that it is a compro-
mise between Tang Dynasty dialects. The situa-
tion with Romance is, in some ways, comparable.
Classical Latin—the variety on which we train—
is not the direct ancestor of modern Romance lan-
guages. Instead, they are descended from Vulgar
Latin or Proto-Romance, which is not well-attested
and is primarily through graffiti and other informal
inscriptions. Proto-Romance reconstructions are
also not exhaustive. As a result, it is difficult to
find a dataset like Meloni et al. (2021) with thou-
sands of such ancestor forms. We are also limited
to the faithfulness of espeak-ng’s Latin G2P, from
which Meloni et al. (2021) obtain their phonetic
Romance dataset.
For most language families, protoforms are not

attested. In fact, as the term is often used, proto-
form refers to a form that is inferred only through
linguists’ comparative method. We adopt the other
usage for simplicity. In practice, our approach
would require reconstructions made by a linguist
to serve as training labels for cognate sets.
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A Training

We split 70%, 10%, and 20% of our dataset into
train, validation, and test sets, respectively. We
conduct hyperparameter searches using WandB
(Biewald, 2020) and use early stopping, picking
the epoch with lowest edit distance on validation
data. All experiments are performed on a Ubuntu
server with 4 GPUs and 20 CPUs. For both the
RNN and the Transformer, Meloni et al. (2021)’s
dataset takes less than 7 GPU hours to run, while
Hóu (2004) takes less than 1 GPU hour. For
the large Romance orthographic dataset, the RNN
model has around 480,000 parameters, while the
Transformer has around 800,000 parameters.

B Hyper-parameters

Refer to Table 5 and Table 6 for the best hyperpa-
rameters we found during hyperparameter search
via WandB.

C Supplementary Results

In order to compare our model to earlier work, we
used the Rom-phon and Rom-orth datasets from
Meloni et al. (2021). However, this set includes a
subset from Ciobanu and Dinu (2018) which is not
freely redistributable. So that our results can be re-
produced, we also computed them on the publicly
available subset of Meloni et al. (2021)’s dataset,
which is presented in Table 7.

Phylogenetic trees for Chinese were also ex-
tracted from the RNN and Transformer models.
These are shown in Figures 3 and 4.

We also plot the dendrograms derived from the
Rom-orto dataset in Figure 5.

31



Figure 3: Consensus tree of the dendrograms from the 5 runs of the Transformer for the Chinese dataset

Figure 4: Consensus tree of the dendrograms from the 5 runs of the RNN for the Chinese dataset
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Figure 5: A gold phylogeny of Romance (left) compared with those derived by probing the RNN model (middle)
and the Transformer model (right) on Rom-orto. GQD is 0.4 for both models.
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Dataset Model PED ↓ NPED ↓ Acc % ↑ FER ↓ BCFS ↑
Sinitic Random

daughter
3.7702 0.8405 0% 0.2893 0.2748

Majority
constituent

3.5031 0.7806 0% 0.2013 0.3695

CorPaR 3.2795 0.7278 0% 0.3972 0.3332
SVM
+PosStr

1.6894 0.3692 15.52% 0.1669 0.5418

RNN 1.0671 ±
0.0619

0.2421 ±
0.0140

35.65% ±
1.60%

0.0899 ±
0.0048

0.6781 ±
0.0174

Transformer
(present
work)

0.9553 ±
0.0392

0.2150 ±
0.0075

41.12% ±
2.3%

0.0842 ±
0.0070

0.7033 ±
0.0087

Rom-phon Random
daughter

6.1534 0.6914 0.06% 0.6264 0.4016

CorPaR
+PosIni

1.6847 0.1978 22.18% 0.0728 0.7403

SVM
+PosStrIni

1.5787 0.1861 24.69% 0.0713 0.7610

RNN 0.9655 ±
0.0189

0.1224 ±
0.0022

52.31% ±
0.63%

0.0384 ±
0.0011

0.8296 ±
0.0029

Transformer
(present
work)

0.8926 ±
0.0166

0.1137 ±
0.0017

53.75% ±
0.40%

0.0373 ±
0.0009

0.8435 ±
0.0026

Rom-orth Random
daughter

4.2567 0.4854 2.97% - 0.5147

CorPaR
+Ini

0.9531 0.1160 47.23% - 0.8400

SVM
+PosStr

0.8988 0.1105 50.43% - 0.8501

RNN 0.5941 ±
0.0100

0.0770 ±
0.0015

69.80%
±0.22%

- 0.8916 ±
0.0019

Transformer
(present
work)

0.5525 ±
0.0104

0.0720 ±
0.0017

71.23% ±
0.52%

- 0.9002 ±
0.0017

Table 4: Evaluation of models and baselines using various metrics, averaged across 5 runs (same hyperparameters,
different seeds), with standard deviations. Because Rom-orth is not in IPA, character edit distance is used instead
of PED, and we cannot accurately calculate FER. See Section 6.1 for an explanation of each evaluation metric.
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Romance (phon & orth) Sinitic
learning rate 0.00013 0.0007487

num_encoder_layers 3 2
num_decoder_layers 3 5

embedding size 128 128
n_head 8 8

dim_feedforward 128 647
dropout 0.202 0.1708861

training epochs 200 200
warmup epochs 50 32
weight decay 0 0.0000001

batch size 1 32

Table 5: Hyper-parameters used in training the Trans-
former

Romance-phon Romance-orth Sinitic
learning rate 0.00055739 0.000964 0.000864

num_encoder_layers 1 1 1
num_decoder_layers 1 1 1

embedding size 107 51 78
hidden size 185 130 73

dim_feedforward 147 111 136
dropout 0.1808 0.323794 0.321639

training epochs 181 193 237
warmup epochs 15 15 15

batch size 8 8 4

Table 6: Hyper-parameters used in training the RNN
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Dataset Model PED ↓ NPED ↓ Acc % ↑ FER ↓ BCFS ↑
Rom-phon Random daughter (Chang et al.,

2022)
7.1880 0.8201 0% 1.1396 0.3406

CorPaR + Ini (List et al., 2022) 2.0885 0.2491 14.29% 0.0874 0.6799
SVM+ PosStrIni (List et al., 2022) 1.9005 0.2276 17.05% 0.0883 0.7039
RNN (Meloni et al., 2021) 1.4581 0.1815 36.68 % 0.0592 0.7435
Transformer (present work) 1.2516 0.1573 41.38% 0.0550 0.7790

Rom-orth Random daughter (Chang et al.,
2022)

6.3272 0.6542 0.55% - 0.4023

CorPaR + PosStrIni (List et al.,
2022)

1.8313 0.2001 18.89% - 0.7227

SVM + PosStr (List et al., 2022) 1.6995 0.1867 21.66% - 0.7454
RNN (Meloni et al., 2021) 1.3189 0.1505 38.89% - 0.7742
Transformer (present work) 1.1622 0.1343 45.53% - 0.7989

Table 7: Evaluation of models and baselines with various metrics onMeloni et al. (2021)’s Romance datasets, where
all entries from Dinu and Ciobanu (2014) are removed, for 1 run (using the hyperparameters of the best run on the
full dataset)

Latin Romanian French Italian Spanish Portuguese
[kɔlleːktɪoːnɛm] [kolektsie] [kɔlɛksjɔ]̃ [kolletsione] [kolekθjon] [kulɨsɐʊ̃̃]

Table 8: One cognate set, with Latin as the protoform and all columns to its right as the daughter cognates
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