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Abstract
Answer Sentence Selection (AS2) is a core
component for building an accurate Question
Answering pipeline. AS2 models rank a set of
candidate sentences based on how likely they
answer a given question. The state of the art in
AS2 exploits pre-trained transformers by trans-
ferring them on large annotated datasets, while
using local contextual information around the
candidate sentence. In this paper, we propose
three pre-training objectives designed to mimic
the downstream fine-tuning task of contextual
AS2. This allows for specializing LMs when
fine-tuning for contextual AS2. Our experi-
ments on three public and two large-scale in-
dustrial datasets show that our pre-training ap-
proaches (applied to RoBERTa and ELECTRA)
can improve baseline contextual AS2 accuracy
by up to 8% on some datasets.

1 Introduction
Answer Sentence Selection (AS2) is a fundamen-
tal task in QA, which consists of re-ranking a set
of answer sentence candidates according to how
correctly they answer a given question. From a
practical standpoint, AS2-based QA systems can
operate under much lower latency constraints than
corresponding Machine Reading (MR) based QA
systems. Nowadays, latency is of particular im-
portance because sources of information such as
Knowledge Bases or Web Indexes may contain mil-
lion or billion of documents. In AS2, latency can
be minimized because systems process several sen-
tences/documents in parallel, while MR systems
parse the entire document/passage in a sliding win-
dow fashion before finding the answer span (Garg
and Moschitti, 2021; Gabburo et al., 2022).

Modern AS2 systems (Garg et al., 2020; Laskar
et al., 2020) use transformers to cross-encode ques-
tion and answer candidates together. Recently, Lau-
riola and Moschitti (2021) proved that performing
answer ranking using only the candidate sentence
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is sub-optimal, for e.g., the answer sentence may
contain unresolved coreference with entities, or the
sentence may lack specific context for answering
the question. Several works (Ghosh et al., 2016;
Tan et al., 2018; Han et al., 2021) have explored
performing AS2 using context around answer can-
didates (for example, adjacent sentences) towards
improving performance. Local contextual infor-
mation, i.e., the previous and next sentences of
the answer candidates, can help coreference dis-
ambiguation, and provide additional knowledge to
the model. This helps to rank the best answer at
the top, with minimal increase in compute require-
ments and latency.

Previous research works (Lauriola and Moschitti,
2021; Han et al., 2021) have directly used exist-
ing pre-trained transformer encoders for contex-
tual AS2, by fine-tuning them on an input com-
prising of multiple sentences with different roles,
i.e., the question, answer candidate, and context
(previous and following sentences around the can-
didate). This structured input creates practical chal-
lenges during fine-tuning, as standard pre-training
approaches do not align well with the downstream
contextual AS2 task, e.g., the language model
does not know the role of each of these multi-
ple sentences in the input. In other words, the
extended sentence-level embeddings have to be
learnt directly during fine-tuning, causing under-
performance empirically. This effect is amplified
when the downstream data for fine-tuning is small,
indicating models struggling to exploit the context.

In this paper, we tackle the aforementioned is-
sues by designing three pre-training objectives that
structurally align with the final contextual AS2 task,
and can help improve the performance of language
models when fine-tuned for AS2. Our pre-training
objectives exploit information in the structure of
paragraphs and documents to pre-train the context
slots in the transformer text input. We evaluate our
strategies on two popular pre-trained transform-
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ers over five datasets. The results show that our
approaches using structural pre-training can effec-
tively adapt transformers to process contextualized
input, improving accuracy by up to 8% when com-
pared to the baselines on some datasets.

2 Related Work

Answer Sentence Selection TANDA (Garg et al.,
2020) established the SOTA for AS2 using a large
dataset (ASNQ) for transfer learning. Other ap-
proaches for AS2 include: separate encoders for
question and answers (Bonadiman and Moschitti,
2020), and compare-aggregate and clustering to im-
prove answer relevance ranking (Yoon et al., 2019).

Contextual AS2 Ghosh et al. (2016) use LSTMs
for answers and topics, improving accuracy for next
sentence selection. Tan et al. (2018) use GRUs to
model answers and local context, improving per-
formance on two AS2 datasets. Lauriola and Mos-
chitti (2021) propose a transformer encoder that
uses context to better disambiguate between answer
candidates. Han et al. (2021) use unsupervised
similarity matching techniques to extract relevant
context for answer candidates from documents.

Pre-training Objectives Pre-training sentence-
level objectives such as NSP (Devlin et al., 2019)
and SOP (Lan et al., 2020) have been widely ex-
plored for transformers to improve accuracy for
downstream classification tasks. However, the ma-
jority of these objectives are agnostic of the final
tasks. End task-aware pre-training has been studied
for summarization (Rothe et al., 2021), dialogue
(Li et al., 2020), passage retrieval (Gao and Callan,
2021), MR (Ram et al., 2021) and multi-task learn-
ing (Dery et al., 2021). Lee et al. (2019), Chang
et al. (2020) and Sachan et al. (2021) use the In-
verse Cloze task to improve retrieval performance
for bi-encoders, by exploiting paragraph structure
via self-supervised objectives. For AS2, recently
Di Liello et al. (2022a) proposed paragraph-aware
pre-training for joint classification of multiple can-
didates. Di Liello et al. (2022b) propose a sentence-
level pre-training paradigm for AS2 by exploiting
document and paragraph structure. However, these
works do not consider the structure of the down-
stream task (specifically contextual AS2). To the
best of our knowledge, ours is the first work to
study transformer pre-training strategies for AS2
augmented with context using cross-encoders.

3 Contextual AS2

AS2 Given a question q and a set of answer can-
didates S = {s1, . . . , sn}, the goal is to find the
best sk that answers q. This is typically done by
learning a binary classifier C of answer correct-
ness by independently feeding the pairs (q, si), i ∈
{1, . . ., n} as input to C, and making C predict
whether si correctly answers q or not. At inference
time, we find the best answer for q by selecting
the answer candidate sk which scores the highest
probability of correctness k = argmaxiC(q, si).

Contextual AS2 Contextual models for AS2 ex-
ploit additional context to improve the final accu-
racy. This has been shown to be effective (Lauri-
ola and Moschitti, 2021) in terms of overcoming
coreference disambiguation and lack of enough
information to rank the best answer at the top. Dif-
ferent from the above case, contextual AS2 models
receive as input a tuple (q, si, ci) where ci is the
additional context. ci is usually the sentences im-
mediately before and after the answer candidate.

4 Context-aware Pre-training Objectives

We design a transformer pre-training task that
aligns well with fine-tuning contextual AS2 mod-
els, both structurally and semantically. We exploit
the division of large corpora in documents and the
subdivision of documents in paragraphs as a source
of supervision. We provide triplets of text spans
(a, b, c) as model inputs when pre-training, which
emulates the structure of (q, si, ci) for contextual
AS2 models, where a, b and c play the analogous
role of the question, the candidate sentence (that
needs to be classified), and the context (which helps
in predicting (a, b) correctness), respectively. For-
mally, given a document D from the pre-training
corpus, the task is to infer if a and b are two sen-
tences extracted from the same paragraph P ∈ D.
Following Di Liello et al. (2022b), we term this
task: “Sentences in Same Paragraph (SSP)”.
Intuition for SSP Consider an example of a
Wikipedia paragraph composed of three sentences:
s1: Lovato was brought up in Dallas, Texas; she
began playing the piano at age seven and guitar at
ten, when she began dancing and acting classes.
s2: In 2002, Lovato began her acting career on
the children’s television series Barney & Friends,
portraying the role of Angela.
s3: She appeared on Prison Break in 2006 and on
Just Jordan the following year.
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Given a question of the type "What are the act-
ing roles of X", a standard LM can easily reason
to select answers of the type "X acted/played in
Y", by matching the subject argument of the ques-
tion with the object argument of the answer, for the
same predicate acting/playing. However, the same
LM would have a harder time selecting answers of
the type "X appeared in Y " because this requires
learning the relation between the entire predicate
argument structure of acting vs. the one of appear-
ing. A LM pre-trained using the SSP task can learn
these implications, as it reasons about concepts
from s3, e.g., "appearing in Prison Break and Just
Jordan" (which are TV series), being related to con-
cepts from s2, e.g., "having an acting career" as the
sentences belong to the same paragraph.

The semantics learned by connecting sentences
in the same paragraph transfer well downstream, as
the model can re-use previously learned relations
between entities and concepts, and apply them be-
tween question and answer candidates. Relations
in one sentence may be used to formulate ques-
tions that can be answered in the other sentence,
which is most likely to happen for sentences in the
same paragraph since every paragraph describes
the same general topic from a different perspective.

We design three ways of choosing the appropri-
ate contextual information c for SSP. We present
details on how we sample spans a, b and c from the
pre-training documents below.

Static Document-level Context (SDC) Here, we
choose the context c to be the first paragraph P0

of D = {P0, .., Pn} from which b is extracted.
This is based on the intuition that the first para-
graph acts as a summary of a document’s content
(Chang et al., 2020): this strong context can help
the model at identifying if b is extracted from the
same paragraph as a. We call this static document-
level context since the contextual information c is
constant for any b extracted from the same docu-
ment D. Specifically, the positive examples are
created by sampling a and b from a single ran-
dom paragraph Pi ∈ D, i > 0. For the previously
chosen a, we create hard negatives by randomly
sampling a sentence b from different paragraphs
Pj ∈ D, j ̸= i ∧ j > 0. We set c = P0 for this
negative example as well since b still belongs to
D. We create easy negatives for a chosen a by
sampling b from a random paragraph P ′

i in another
document D′ ̸= D. In this case, c is chosen as the
first paragraph P ′

0 of D′ since the context in the

downstream AS2 task is associated with the answer
candidate, and not with the question.

Dynamic Paragraph-level Context (DPC) We
dynamically select the context c to be the para-
graph from which the sentence b is extracted. We
create positive examples by sampling a and b from
a single random paragraph Pi ∈ D, and we set
the context as the remaining sentences in Pi, i.e.,
c = Pi \ {a, b}. Note that leaving a and b in Pi

would make the task trivial. For the previously cho-
sen a, we create hard negatives by sampling b from
another random paragraph Pj ∈ D, j ̸= i, and set-
ting c = Pj \ {b}. We create easy negatives for a
chosen a by sampling b from a random P ′

i in an-
other document D′ ̸= D, and setting c = P ′

i \ {b}.

Dynamic Sentence-level Local Context (DSLC)
We choose c to be the local context around the sen-
tence b, i.e, the concatenation of the previous and
next sentence around b in P ∈ D. To deal with
corner cases, we require at least one of the previ-
ous or next sentences of b to exist (e.g., the next
sentence may not exist if b is the last sentence of
the paragraph P ). We term this DSLC as the con-
textual information c is specified at sentence-level
and changes correspondingly to every sentence b
extracted from D. We create positive pairs similar
to SDC and DPC by sampling a and b from the
same paragraph Pi ∈ D, with c being the local
context around b in Pi (and a /∈ c). We automati-
cally discard paragraphs that are not long enough
to ensure the creation of a positive example. We
generate hard negatives by sampling b from another
Pj ∈ D, j ̸= i, while for easy negatives, we sam-
ple b from a P ′

i ∈ D′, D′ ̸= D (in both cases c is
set as the local context around b).

5 Datasets
Pre-Training To perform a fair comparison and
avoid any improvement stemming from additional
pre-training data, we use the same corpora as
RoBERTa (Liu et al., 2019). This includes the
English Wikipedia, the BookCorpus (Zhu et al.,
2015), OpenWebText (Gokaslan and Cohen, 2019)
and CC-News 1. We pre-process each dataset by
filtering away: (i) sentences shorter than 20 char-
acters, (ii) paragraphs shorter than 60 characters
and (iii) documents shorter than 200 characters.
We split paragraphs into sequences of sentences
using the NLTK tokenizer (Loper and Bird, 2002)

1STORIES is no longer publicly available, hence omitted
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Model Context
ASNQ WikiQA NewsAS2 IQAD Bench 1 IQAD Bench 2

MAP P@1 MAP P@1 MAP P@1 MAP P@1 MAP P@1

ELECTRA-Base ✗ 69.3 (0.0) 65.0 (0.2) 85.7 (0.9) 78.5 (1.6) 81.3 (0.2) 75.6 (0.2) Baseline Baseline
ELECTRA-Base ♣ ✓ 72.3 (0.6) 68.1 (0.8) 83.1 (1.3) 73.8 (2.1) 82.0 (0.4) 76.0 (0.5) -0.6% -1.0% -0.4% -0.9%

(Ours) ELECTRA-Base + SSP (SDC) ✓ 74.7 (0.5) 69.6 (0.3) 88.7 (0.1) 82.9 (0.2) 82.7 (0.2) 77.0 (0.4) +1.2% +0.6% +0.9% +1.4%
(Ours) ELECTRA-Base + SSP (DPC) ✓ 74.4 (0.2) 70.5 (0.2) 88.0 (0.6) 81.3 (0.6) 82.7 (0.5) 77.3 (0.7) +0.4% -0.6% +0.4% +0.1%
(Ours) ELECTRA-Base + SSP (DSLC) ✓ 74.3 (0.3) 70.0 (0.8) 87.0 (0.9) 79.7 (1.4) 82.8 (0.4) 77.3 (0.5) +1.0% +0.6% +0.2% 0.0%
(Ours) ELECTRA-Base + SSP (All) ✓ 73.8 (0.4) 68.8 (0.4) 87.5 (0.5) 81.5 (0.7) 82.7 (0.2) 77.2 (0.3) +0.1% -0.4% +0.1% -0.1%

RoBERTa-Base ✗ 68.2 (0.5) 63.5 (0.5) 85.1 (1.9) 77.2 (3.1) 81.7 (0.1) 76.2 (0.2) +0.6% +0.1% +0.7% +1.3%
RoBERTa-Base ♣ ✓ 71.6 (0.6) 67.6 (0.6) 84.4 (1.5) 77.0 (2.1) 82.4 (0.2) 76.6 (0.7) +0.4% 0.0% +1.1% +1.7%

(Ours) RoBERTa-Base + SSP (SDC) ✓ 73.1 (0.5) 68.7 (0.8) 87.8 (0.6) 81.8 (0.9) 82.8 (0.1) 76.9 (0.2) +1.7% +3.0% +1.0% +1.7%
(Ours) RoBERTa-Base + SSP (DPC) ✓ 73.2 (0.4) 69.2 (0.5) 89.9 (0.2) 85.2 (0.4) 82.3 (0.1) 76.0 (0.1) +0.4% +1.2% +1.2% +2.7%
(Ours) RoBERTa-Base + SSP (DSLC) ✓ 72.9 (0.4) 69.0 (0.3) 87.8 (0.9) 81.6 (1.3) 82.6 (0.2) 77.0 (0.2) +0.6% +1.5% +1.0% +1.4%
(Ours) RoBERTa-Base + SSP (All) ✓ 72.9 (0.6) 68.2 (0.8) 88.2 (0.9) 82.4 (1.7) 83.0 (0.2) 77.3 (0.5) +1.2% +2.4% +1.4% +2.2%

Table 1: Results (std. dev. in parenthesis) on AS2. Models with ♣ are from (Lauriola and Moschitti, 2021). ✓
and ✗ denote whether local contextual information was used in fine-tuning. SDC, DPC and DSLC indicate the
pre-training variants of the SSP task that we propose. Best results are in bold while we underline statistically
significant improvements over the two contextual baselines (♣) using a Student t-test with 95% of confidence level.

and create the SSP pre-training datasets following
Section 4. Refer Appendix A.1 for more details.

Contextual AS2 We evaluate our pre-trained
models on three public and two industrial datasets
for contextual AS2. For all datasets, we use the
standard “clean” setting, by removing questions in
the dev. and test sets which have only positive or
only negative answer candidates, following stan-
dard practice in AS2 (Garg et al., 2020). We mea-
sure performance using Precision-at-1 (P@1) and
Mean Average Precision (MAP) metrics.
• ASNQ is a large scale AS2 dataset (Garg et al.,
2020) derived from NQ (Kwiatkowski et al., 2019).
The questions are user queries from Google search,
and answers are extracted from Wikipedia.
• WikiQA is a small dataset (Yang et al., 2015)
for AS2 with questions extracted from Bing search
engine and answer candidates retrieved from the
first paragraph of Wikipedia articles.
• IQAD is a large scale industrial dataset contain-
ing de-identified questions asked by users to Alexa
virtual assistant. IQAD contains ∼220k questions
where answers are retrieved from a large web in-
dex (∼1B web pages) using Elasticsearch. We use
two different evaluation benchmarks for IQAD: (i)
IQAD Bench 1, which contains 2.2k questions with
∼15 answer candidates annotated for correctness
by crowd workers and (ii) IQAD Bench 2, which
contains 2k questions with ∼15 answer candidates
annotated with explicit fact verification guidelines
for correctness by crowd workers. (Our manual
analysis indicates a higher annotation quality for
QA pairs in Bench 2 than Bench 1). Results on
IQAD are presented relative to a baseline due to
the data being internal.
• NewsAS2 is a large AS2 dataset created from
NewsQA (Trischler et al., 2017), a MR dataset, fol-

lowing the procedure of Garg et al. for ASNQ.
The dataset contains ∼70K human generated ques-
tions with answers extracted from CNN/Daily Mail.
More details about the procedure to create NewsQA
are given in Appendix A.2.

6 Experiments
Continuous Pre-Training We use RoBERTa-
Base and ELECTRA-Base public checkpoints (pre-
training from scratch would have required large
amounts of computational resources), and perform
continuous pre-training using our objectives for
∼10% of the compute used by the original models.
Complete details are given in Appendix C. We ex-
periment with each of our pre-training objectives
independently, as well as combining all of them.

Fine-Tuning We fine-tune each continuously pre-
trained model on all the AS2 datasets. As baselines,
we consider (i) standard pairwise-finetuned AS2
models, using only the question and the answer
candidate, and (ii) contextual fine-tuned AS2 mod-
els from (Lauriola and Moschitti, 2021), which use
the question, answer candidate and local context.

7 Results
Table 1 summarizes the results of our experiments
averaged across 5 runs to show also standard devia-
tion and statistically significant improvements over
baselines.

Public datasets On ASNQ, our pre-trained mod-
els get 3.8 - 5.5% improvement in P@1 over the
baseline using only the question and answer. Our
models also outperform the stronger contextual
AS2 baselines (1.6% with RoBERTa and 2.4%
with ELECTRA), indicating that our task-aware
pre-training can help improve the downstream fine-
tuning performance. On NewsAS2, we observe a
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similar trend, where all our models (except one)
outperform both the standard and contextual base-
lines. On WikiQA, a smaller dataset, the contex-
tual baselines under-performs the non-contextual
baselines, highlighting that with few samples the
model struggles to adapt and reason over three text
spans. For this reason, our pre-training approaches
provide the maximum accuracy improvement on
WikiQA (up to 8 - 9.1% over the non-contextual
and contextual baselines).

Industrial datasets On IQAD, we observe that
the contextual baseline performs on par or lower
than the non-contextual baseline, indicating that
off-the-shelf transformers cannot effectively ex-
ploit the context available for this dataset. The
answer candidates and context for IQAD are ex-
tracted from millions of web documents. Thus,
learning from the context in IQAD is a harder task
than learning from it on ASNQ, where the con-
text belongs to a single Wikipedia document. Our
pre-trained models help to process the diverse and
possibly noisy context of IQAD, and produce a sig-
nificant improvement in P@1 over the contextual
baseline.

Combining the 3 SSP objectives We observe
that combining all the objectives together does not
always outperform the individual objectives, which
is probably due to the misalignment between the
different approaches for sampling context in our
pre-training strategies. Notice that we used a single
classification head for all the three tasks, indirectly
asking the model also to recognize the task to be
solved among SDC, DPC or DSLC. Experiments
with separate classification heads (one for each
task) led to worse results in early experiments.

Choosing the optimal SSP objective Our fine-
tuning datasets have significantly different struc-
tures: ASNQ, NewsAS2 and WikiQA have an-
swer candidates sourced from a single document
(Wikipedia for ASNQ and WikiQA and CNN Daily
Mail articles for NewsQA), while IQAD has an-
swer candidates extracted from multiple documents.
This also results in the context for the former being
more homogeneous (context for all candidates for
a question is extracted from the same document),
while for the latter the context is more heteroge-
neous (extracted from multiple documents for dif-
ferent answer candidates).

Our DPC and DSLC pre-training approaches are
well aligned in terms of the context that is used

to help the SSP predictions. The former uses the
remainder of the paragraph P as context (after re-
moving a and b), while the latter uses the sentence
previous and next to b in P . We observe empiri-
cally that the contexts for DPC and DSLC often
overlap partially, and are sometimes even identi-
cal (considering average length of paragraphs in
the pre-training corpora is 4 sentences). This ex-
plains why models pre-trained using both these
approaches perform comparably in Table 1 (with
only a very small gap in P@1 performance).

On IQAD, we observe that the SDC approach
of providing context for SSP outperforms DPC
and DSLC. In SDC, the context c can potentially
be very different from a and b (as it corresponds
to the first paragraph of the document), and this
can aid exploiting information and effectively rank-
ing answer candidates from multiple documents
(possibly from different domains) like for IQAD.
For these reasons, we recommend using DPC and
DSLC when answer candidates are extracted from
the same document, and SDC when candidates are
extracted from multiple sources.

8 Conclusion and Future Work

In this paper, we have proposed three pre-training
strategies for transformers, which (i) are aware of
the downstream task of contextual AS2, and (ii) use
the document and paragraph structure information
to define effective objectives. Our experiments
on three public and two industrial datasets using
two transformer models show that our pre-training
strategies can provide significant improvement over
the contextual AS2 models.

In addition to local context around answer candi-
dates (the previous and successive sentences), other
contextual signals can also be incorporated to im-
prove the relevance ranking of answer candidates.
Meta-information like document title, abstract/first-
paragraph, domain name, etc. corresponding to
the document containing the answer candidates can
help answer ranking. These signals differ from the
previously mentioned local answer context as they
provide “global” contextual information pertaining
to the documents for AS2. Our SDC objective,
which uses the first paragraph of the document for
the context input slot, captures global information
pertaining to the document, and we hypothesise
that this may improve downstream performance
using other global contextual signals in addition to
local answer context.
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Limitations

Our proposed pre-training approaches require ac-
cess to large GPU resources (pre-training is per-
formed on 350M training samples for large lan-
guage models containing 100’s of millions of pa-
rameters). Even using 10% of the original pre-
training compute, the additional pre-training takes
a long time duration to finish (several days even on
8 NVIDIA A100 GPUs). This highlights that this
procedure cannot easily be re-done with newer data
being made available in an online setting. How-
ever the benefit of our approach is that once the
pre-training is complete, our released model check-
points can be directly fine-tuned (even on smaller
target datasets) for the downstream contextual AS2
task. For the experiments in this paper, we only
consider datasets from the English language, how-
ever we conjecture that our techniques should work
similarly for other languages with limited morphol-
ogy. Finally, we believe that the three proposed
objectives could be better combined in a multi-task
training scenario where the model has to jointly
predict the task and the label. At the moment, we
only tried using different classification heads for
this but the results were worse.
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Appendix

A Additional Dataset Details

A.1 Pre-Training Datasets
For each SSP objective, we randomly sample up
to 2 hard negatives, and additionally sample easier
negatives until the total number of negatives is 4.
Instead of reasoning in terms of sentences, we de-
sign our SSP objectives to create a and b as small
spans composed of 1 or more contiguous sentences.
For a, we keep the length equal to 1 sentence be-
cause it emulates the question, which typically is
just a single sentence. For b, we randomly assign a
length between 1 and 3 sentences. The length of the
context c cannot be decided a-priori because it de-
pends on the specific pre-training objective and the
length of the paragraph. After the pre-processing,
all the resulting continuous pre-training datasets
contain around 350M training examples each.

A.2 NewsQA dataset
We created NewsAS2 by splitting each document in
NewsQA into individual sentences with the NLTK
tokenizer (Loper and Bird, 2002). Then, for each
sentence, we assign a positive label if it contains
at least one of the annotated answers for that doc-
ument, and assign a negative label otherwise. The
resulting dataset has 1.69% positives sentences per
query in the training set, 1.66% in the dev set and
1.68% in the test set.

B Frameworks & Infrastructure

Our framework is based on (i) HuggingFace Trans-
formers (Wolf et al., 2020) for model architecture,
(ii) HuggingFace Datasets (Lhoest et al., 2021)
for data processing, (iii) PyTorch-Lightning for
distributed training (Falcon et al., 2019) and (iv)
TorchMetrics for AS2 evaluation metrics (Detlef-
sen et al., 2022). We performed our pre-training
experiments for every model on 8 NVIDIA A100
GPUs with 40GB of memory each, using fp16 for
tensor core acceleration.

C Details of Continuous Pre-Training

We experiment with RoBERTa-Base and
ELECTRA-Base public checkpoints. RoBERTa-
Base contains 124M parameters while ELECTRA-
Base contains 33M parameters in the generator
and 108M in the discriminator.

We do continuous pre-training starting from the
aforementioned models for 400K steps with a batch

Dataset Train Dev Test

#Q #QA #Q #QA #Q #QA

ASNQ 57242 20377568 1336 463914 1336 466148

WikiQA 2118 20360 122 1126 237 2341

IQAD 221334 3894129 2434 43369 2252 38587
2088 33498

NewsAS2 71561 1840533 2102 51844 2083 51472

Table 2: Number or unique questions and question-
answer pairs in the fine-tuning datasets. IQAD Bench 1
and Bench 2 sizes are mentioned in the Test set column
corresponding to IQAD.

size of 4096 examples and a triangular learning rate
with a peak value of 10−4 and 10K steps of warm-
up. In order to save resources, we found it bene-
ficial to reduce the maximum sequence length to
128 tokens. In this setting, our models see ∼210B
additional tokens each, which is 10% of what is
used in the original RoBERTa pre-training. Our
objectives are more efficient because the attention
computational complexity grows quadratically with
the sequence length, which in our case is 4 times
smaller than the original RoBERTa model.

We use cross-entropy as the loss function for
all our pre-training and fine-tuning experiments.
Specifically, for RoBERTa pre-training we add the
MLM loss to our proposed binary classification
losses using equal weights (1.0) for both the loss
terms. For ELECTRA pre-training, we sum three
loss terms: MLM loss with a weight of 1.0, the
Token Detection loss with a weight of 50.0, and
our proposed binary classification losses with a
weight of 1.0.

During continuous pre-training, we feed the
text tuples (a, b, c) (as described in Section 4)
as input to the model in the following format:
‘[CLS]a[SEP]b[SEP]c[SEP]’. To provide indepen-
dent sentence/segment ids to each of the inputs a,
b and c, we initialize the sentence embeddings lay-
ers of RoBERTa and ELECTRA from scratch, and
extend them to an input size of 3.

The pre-training of every model obtained by
combining ELECTRA and RoBERTa architectures
with our contextual pre-training objectives took
around 3.5 days each on the machine configuration
described in Appendix B. The dataset preparation
required 10 hours over 64 CPU cores.

D Details of Fine-Tuning

The most common paradigm for AS2 fine-tuning
is to consider publicly available pre-trained trans-
former checkpoints (pre-trained on large amounts
of raw data) and fine-tune them on the AS2 datasets.
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Model Hyper-parameter ASNQ WikiQA NewsAS2 IQAD

RoBERTa

Batch size 2048 32 256 256
Peak LR 1e-05 5e-06 5e-06 1e-05
Warmup steps 10K 1K 5K 5K
Epochs 6 30 8 10

ELECTRA

Batch size 1024 128 128 256
Peak LR 1e-05 2e-05 1e-05 2e-05
Warmup steps 10K 1K 5K 5K
Epochs 6 30 8 10

Table 3: Hyper-parameters used to fine-tune RoBERTa
and ELECTRA on the AS2 datasets. The best hyper-
parameters have been chosen based on the MAP results
on the validation set.

Using our proposed pre-training objectives, we are
proposing stronger model checkpoints which can
improve over the standard public checkpoints, and
can be used as the initialization for downstream
fine-tuning for contextual AS2.

To fine-tune our models on the downstream AS2
datasets, we found it is beneficial to use a very
large batch size for ASNQ and a smaller one for
IQAD, NewsAS2 and WikiQA. Moreover, for ev-
ery experiment we used a triangular learning rate
scheduler and we did early stopping on the de-
velopment set if the MAP did not improve for 5
times in a row. We fixed the maximum sequence
length to 256 tokens in every run, and we repeated
each experiment 5 times with different initial ran-
dom seeds. We did not use weight decay but
we clipped gradients larger than 1.0 in absolute
value. More specifically, for the learning rate we
tried all values in {5 ∗ 10−6, 10−5, 2 ∗ 10−5} for
RoBERTa and in {10−5, 2 ∗ 10−5, 5 ∗ 10−5} for
ELECTRA. Regarding the batch size, we tried
all values in {512, 1024, 2048, 4096} for ASNQ,
in {64, 128, 256, 512} for IQAD and NewsAS2
and in {16, 32, 64, 128} for WikiQA. More details
about the final setting are given in Table 3.

For the pair-wise models, we format in-
puts as ‘[CLS]q[SEP]si[SEP]’, while for con-
textual models we build inputs of the form
‘[CLS]q[SEP]si[SEP]ci[SEP]’. We do not use ex-
tended sentence/segment ids for the non-contextual
baselines and retain the original model design: (i)
disabled segment ids for RoBERTa and (ii) only us-
ing 2 different sentence/segment ids for ELECTRA.
For the fine-tuning of our continuously pre-trained
models as well as the contextual baseline, we use
three different sentence ids corresponding to q, s
and c for both RoBERTa and ELECTRA. Finally,
differently from pre-training, in fine-tuning we al-
ways provide the previous and the next sentence as
context for a given candidate.

The contextual fine-tuning of every models on

ASNQ required 6 hours per run on the machine
configuration described in Appendix B. For other
fine-tuning datasets, we used a single GPU for ev-
ery experiment, and runs took less than 2 hours.

E Qualitative Examples

In Table 4 we show a comparison of the ranking
produced by our models and that by the contex-
tual baselines on some questions selected from the
ASNQ test set.

ELECTRA

Q how many games does a team have to win for the world series
A1 Seven games were played, with the Astros victorious after game

seven, played in Los Angeles.
A2 In 1985, the format changed to best-of-seven.
A3 Since then, the 2011, 2014, and 2016 World Series have gone the

full seven games.
A4 The winner of the World Series championship is determined

through a best-of-seven playoff, and the winning team is awarded
the Commissioner’s Trophy.

A5 The Houston Astros won the 2017 World Series in 7 games against
the Los Angeles Dodgers on November 1st, 2017, winning their
first World Series since their creation in 1962.

RoBERTa

Q where are trigger points located in the body
A1 Myofascial pain is associated with muscle tenderness that arises

from trigger points, focal points of tenderness, a few millimeters
in diameter, found at multiple sites in a muscle and the fascia of
muscle tissue.

A2 Myofascial trigger points, also known as trigger points, are de-
scribed as hyperirritable spots in the fascia surrounding skeletal
muscle.

A3 Trigger points form only in muscles.
A4 These in turn can pull on tendons and ligaments associated with

the muscle and can cause pain deep within a joint where there are
no muscles.

A5 They form as a local contraction in a small number of muscle fibers
in a larger muscle or muscle bundle.

Table 4: Some qualitative examples from ASNQ test
set where our ELECTRA and RoBERTa models with
DSLC contextual continuous pre-training were able to
rank the correct candidate in the top position while the
contextual baselines failed. The answer candidates are
shown ranked by the ordering produced by the contex-
tual baselines. Other positive candidates answers are
colored in light green.

466



ACL 2023 Responsible NLP Checklist

A For every submission:
� A1. Did you describe the limitations of your work?

Left blank.

� A2. Did you discuss any potential risks of your work?
Left blank.

� A3. Do the abstract and introduction summarize the paper’s main claims?
Left blank.

� A4. Have you used AI writing assistants when working on this paper?
Left blank.

B � Did you use or create scientific artifacts?
Left blank.

� B1. Did you cite the creators of artifacts you used?
Left blank.

� B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
Left blank.

� B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
Left blank.

� B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
Left blank.

� B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
Left blank.

� B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
Left blank.

C � Did you run computational experiments?
Left blank.

� C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
Left blank.

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

467

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/


� C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
Left blank.

� C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
Left blank.

� C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
Left blank.

D � Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
Left blank.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
Left blank.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
Left blank.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
Left blank.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
Left blank.

468


