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Abstract

Electronic phenotyping entails using electronic
health records (EHRs) to identify patients with
specific health outcomes and determine when
those outcomes occurred. Unstructured clinical
notes, which contain a vast amount of informa-
tion, are a valuable resource for electronic phe-
notyping. However, traditional methods, such
as rule-based labeling functions or neural net-
works, require significant manual effort to tune
and may not generalize well to multiple indica-
tions. To address these challenges, we propose
HyDE (hybrid diagnosis extractor). HyDE is a
simple framework for electronic phenotyping
that integrates labeling functions and a disease-
agnostic neural network to assign diagnoses
to patients. By training HyDE’s model to cor-
rect predictions made by labeling functions,
we are able to disambiguate hypertension true
positives and false positives with a supervised
area under the precision-recall curve (AUPRC)
of 0.85. We extend this hypertension-trained
model to zero-shot evaluation of four other dis-
eases, generating AUPRC values ranging from
0.82 - 0.95 and outperforming a labeling func-
tion baseline by 44 points in F1 score and a
Word2Vec baseline by 24 points in F1 score
on average. Furthermore, we demonstrate a
speedup of > 4× by pruning the length of in-
puts into our language model to ∼ 2.3% of the
full clinical notes, with negligible impact to the
AUPRC. HyDE has the potential to improve
the efficiency and efficacy of interpreting large-
scale unstructured clinical notes for accurate
EHR phenotyping.

1 Introduction

The widespread adoption of electronic health
records (EHRs) by health systems has created vast
clinical datastores. One of the essential steps in
utilizing these data is identifying patients with spe-
cific clinical outcomes and the timing of these out-
comes, through a process called electronic pheno-
typing (Banda et al., 2018). Electronic phenotyping

is critical for using EHR data to support clinical
care (Kaelber et al., 2012; LePendu et al., 2012),
inform public health decision-making (Dubberke
et al., 2012), and train predictive models (Chaves
et al., 2021; Blankemeier et al., 2022; Steinberg
et al., 2021, 2023; Lee et al., 2022).

Electronic phenotyping is a complex task that
involves combining structured data (e.g. lab results
and codes) with unstructured data (e.g. clinical
notes). Rule-based heuristics can be applied to
structured data. However, the unstructured nature
of information rich (Kern et al., 2006; Wei et al.,
2012; Martin-Sanchez and Verspoor, 2014) clini-
cal notes makes phenotyping based on these notes
particularly challenging.

Several solutions exist for electronic phenotyp-
ing using unstructured clinical notes (Peng et al.,
2018; Fries et al., 2021; Zhang et al., 2021a,b), but
lack convenience for generalizing to new condi-
tions. For example, labeling functions that con-
sist of rules authored by domain experts are inter-
pretable and readily shared without compromising
data privacy, but can be laborious to create. Neural
networks (NNs) that are trained to identify specific
diseases can eliminate the need for handcrafted la-
beling functions and often provide more accurate
results. However, NNs require extensive manual la-
beling time and often generalize poorly to diseases
not seen during training.

To address this, we introduce HyDE (hybrid di-
agnosis extractor). HyDE is a simple approach to
electronic phenotyping that combines the strengths
of labeling functions and neural networks and al-
lows for generalization to new diseases with mini-
mal overhead.

Our key contributions are as follows:

1. We demonstrate that our model effectively dis-
criminates between true cases of hypertension
and false positives generated by labeling func-
tions, as demonstrated by a supervised area
under the precision recall curve (AUPRC) of
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0.85. This same model achieves AUPRCs of
0.90, 0.82, 0.84, and 0.95 in zero-shot evalua-
tions for diabetes, osteoporosis, chronic kid-
ney disease, and ischemic heart disease, re-
spectively. HyDE outperforms a labeling func-
tion baseline by 44 points in F1 score and a
Word2Vec baseline (Mikolov et al., 2013b,a)
by 24 points in F1 score on average across
seen and unseen diseases.

2. HyDE requires minimal setup. The labeling
functions used in HyDE can be simple, reduc-
ing the manual effort often required to design
labeling functions with high precision and re-
call.

3. HyDE is computationally efficient, as only
small portions of a subset of clinical notes
need to be passed through the neural network
for processing, thus minimizing the compu-
tational resources required to run HyDE on
large datasets. We show that pruning the
length of the inputs by 4× to just 2.3% of
the full clinical notes impacts performance
by an average of only 0.017 AUPRC while
providing a speedup of > 4×.

2 Methods

Our proposed method, HyDE (hybrid diagnosis
extractor), aims to accurately identify the earliest
occurrence of specific diseases in clinical patient
encounter notes. We accomplish this by using a
combination of labeling functions and a fine-tuned
biomedical language model. The labeling functions
are designed to be simple and identify as many
mentions of the disease as possible, including false
positives. The neural network is then used to dif-
ferentiate between the true positives and false pos-
itives by analyzing small segments of the clinical
notes around the location identified by the labeling
functions. This approach allows for identifying po-
tential mentions of the disease, while also utilizing
the neural network to improve precision. It is worth
noting that the components of HyDE are modular,
allowing for the substitution of other methods for
identifying disease-specific mentions beyond the
labeling functions used in this paper. For example,
Trove (Fries et al., 2021), offers ontology-based la-
beling functions that eliminate the need for coding
task-specific labeling rules.

Our method (Fig. 1), involves the following
steps: The user first develops a simple labeling

Figure 1: The workflow of HyDE. (a) a clinician devel-
ops a simple labeling function; (b) the labeling function
is applied to the clinical note; (c) masked contextual
mentions are extracted, including masked peripheral
terms and contexts; (d) the masked contextual mentions
are passed through the fine-tuned language model to
identify false positives.

function for the disease of interest. In the case
of diabetes, this could be the regular expression
diabetes | diabetic. This labeling func-

tion is then applied to the clinical notes to iden-
tify mentions of the disease. Additionally, the
user identifies peripheral terms that frequently ap-
pear before or after mentions of the disease, such
as insulin-dependent or mellitus in the case
of diabetes. The text matching the labeling func-
tion and peripheral terms are then replaced with
[MASK], and a context around the resulting mask
is extracted, resulting in a masked contextual men-
tion (MCM). These MCMs are used to fine-tune a
biomedical language model to determine whether
the context suggests that the patient actually has
the condition in question. We hypothesize that this
approach allows the language model to generalize
to various conditions without additional training.
Thus, for a zero-shot transfer to other diseases, only
a simple disease-specific labeling function and pe-
ripheral terms are required. We adopt the term
zero-shot in this context as each disease comes
with distinct comorbidities, symptoms, and inter-
ventions.
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2.1 Dataset

After obtaining approval from the institutional re-
view board, we obtained ∼8.8 million clinical notes
from 23,467 adult patients who had an encounter
at our tertiary care center between 2012 and 2018.

2.2 Disease Phenotypes

We apply our electronic phenotyping method to
five chronic diseases: hypertension (HTN), dia-
betes mellitus (DM), osteoporosis (OST), chronic
kidney disease (CKD), and ischemic heart disease
(IHD). These diseases were selected due to their
high prevalence (HTN, 2021; DM, 2022; CKD,
2021; IHD, 2022; Clynes et al., 2020), the costs
they incur to the healthcare system, and the poten-
tial for positive intervention (Blankemeier et al.,
2022). For initial model training, we used hyper-
tension as it is the most prevalent of these diseases
(affecting 116 million in the US) (HTN, 2021) and
we hypothesize that it generates the most diverse
MCMs. Table 6 shows the labeling functions that
we used to extract these mentions for each disease.

2.3 Data Labeling

Mask Contextual Mention Categories: We man-
ually identified 6 categories of MCMs - (0) true
positive; (1) false positive (otherwise unspecified);
(2) referring to someone other than the patient; (3)
referring to the patient but negated; (4) providing
information / instructions / conditional statements
(i.e. instructions for how to take a medication); (5)
uncertain (i.e. differential diagnosis). Thus, cate-
gory 0 is the true positive category and categories 1
- 5 are false positive categories. We formulate this
problem as a binary classification where categories
1 - 5 are merged into class 1.

Amplifying False Positive Examples: The preva-
lence of false positives from our labeling functions
were relatively low (Table 3). We thus sought to
increase the number of category 2 false positive ex-
amples in our training dataset beyond the baseline
prevalence of the 250 random MCM samples that
were initially labeled (RS in Table 1). We applied
a family labeling function to randomly sampled
MCMs. This labeling function is positive if an
MCM contains any term listed in A.1 relating to fa-
milial mentions. We generated 200 such category 2
amplified examples for subsequent labeling. Based
on the annotations, we found that only 1.5% of the
examples selected by this labeling function were
actually true positives examples.

To increase the number of category 3 false
positive examples, we applied the Negex algo-
rithm (Chapman et al., 2001) to a separate set of
randomly sampled masked contextual mentions.
For further details see A.2. Based on manual an-
notation of 200 such examples, we found that 22%
of the examples selected by this labeling function
were actually true positive examples.

Filtering Masked Contextual Mentions: Apply-
ing the disease-specific labeling functions gener-
ated 827k, 555k, 87k, 199k, and 80k notes for
HTN, DM, OST, CKD, and IHD respectively from
roughly 8.1 million clinical notes (Table 4). Since
clinical notes often contain duplicate information
from multiple patient visits, we deduplicate the
MCMs by comparing the 20 characters on either
side of the masked mentions associated with a par-
ticular patient. If these characters are the same
across multiple MCMs, we keep the MCM that
was authored first and discard the others. Dedupli-
cation allows us to reduce the number of masked
contextual mentions by 3.3×, 3.6×, 4.2×, 3.7×,
and 3.3× for HTN, DM, OST, CKD, and IHD re-
spectively (Table 4). This method can be applied at
inference to increase the computational efficiency
of HyDE. Additionally, the length and number of
MCMs per clinical note represents an average of
9% of the full notes for a context length of 64
words, which can improve the efficiency of infer-
ence on large datasets.

Active Learning: To further improve the per-
formance of HyDE, we implement a human-in-
the-loop uncertainty-based active learning strategy.
This involves multiple iterations of training where
after each iteration, 100 examples with correspond-
ing probabilities closest to 0.5 are manually labeled
and added to the training dataset for the next train-
ing iteration. Table 1 shows performance across
the active learning iterations (A1-A4).

2.4 Model Training

We select PubMedBERT (Gu et al., 2021) (100 mil-
lion parameters) as the model that we fine-tune due
to its simple architecture and widespread validation.
We use a train batch size of 8, an Adam optimizer
with β1 = 0.9 and β2 = 0.999, and a learning
rate of 3e-5. We train for 25 epochs and choose
the model checkpoint with the best validation set
performance. 1,150 HTN examples are used for
training and 250 HTN examples are used for valida-
tion. For disease specific fine-tuning experiments,
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between 90 and 100 disease-specific examples are
used for both validation and training. There was
no overlap between the patients used for the hyper-
tension training and validation sets and the patients
used for test sets as well as disease-specific vali-
dation sets. Our test sets consisted of 442 - 500
labeled cases for each disease.

2.5 Evaluation

While labeling functions can be evaluated at a note
level, we evaluate at a MCM-level since a sin-
gle clinical note can consist of multiple MCMs.
Furthermore, disease assignment based on clini-
cal notes can be combined with assignment based
on structured EHR, increasing the number of pa-
tients that are identified. Thus, we want to ensure
high precision in identifying patients using clinical
notes. For each MCM, we measure the fine-tuned
language model’s ability to correctly classify it as
either true positive or false positive using area un-
der the precision recall curve (AUPRC) and F1.

For our labeling function baseline (LF in Ta-
ble 2), we use both the family labeling function
described previously and Negex (Chapman et al.,
2001). Although additional terms could be added to
this labeling function, those same terms could also
be added to HyDE, making this a fair comparison.

We also include a Word2Vec baseline in our
comparison (Mikolov et al., 2013b,a). This tech-
nique leverages a pre-trained model which has been
trained on a corpus of around 100 billion words
from Google News. For each MCM, we aggregate
word embeddings by calculating their mean and
then train an XGBoost model (Chen and Guestrin,
2016) over the computed averages of the HTN train-
ing dataset MCM embeddings. To optimize the per-
formance of our XGBoost model, we fine-tune its
hyperparameters by conducting a grid search using
our HTN validation dataset. It’s worth mention-
ing that this strategy does not retain the sequential
order of words.

To demonstrate the generalizability of our
method on external data, we apply it to the assertion
classification task from the 2010 i2b2/VA Work-
shop on Natural Language Processing (Uzuner
et al., 2011). This dataset consists of 871 progress
reports annotated with medical problems that are
further classified as present, absent, possible, con-
ditional, hypothetical, or not associated with the
patient. We mapped the present category to class
0 and collated all other categories under class 1.

Table 1: Test set AUPRC comparison of the Word2Vec
(W2V) baseline and fine-tuned PubMedBERT models
(all rows except the first) using various training dataset
compositions. Notation: RS - random MCM samples
with baseline prevalence of false positive examples. C -
additional category 2 amplified and category 3 amplified
MCMs. A1, A2, A3, and A4 - additional MCMs labeled
during four active learning iterations. SL - supervised
learning. The test set sizes are 500, 455, 466, 442,
458 respectively for HTN, DM, OST, CKD, and IHD. *
indicates that the W2V baseline was trained using the
full RS+C+A4 training dataset.

Method SL Zero-Shot

HTN DM OST CKD IHD
W2V* 0.52 0.70 0.53 0.59 0.83
RS 0.60 0.73 0.59 0.71 0.82
RS+C 0.77 0.85 0.65 0.75 0.92
RS+C+A1 0.75 0.86 0.72 0.81 0.95
RS+C+A2 0.82 0.88 0.76 0.84 0.96
RS+C+A3 0.83 0.89 0.77 0.86 0.96
RS+C+A4 0.85 0.90 0.82 0.84 0.95

We used regular expressions to extract mentions
of HTN, DM, OST, CKD, and IHD. We filtering
out diseases with less than 30 mentions. Conse-
quently, our external validation was conducted on
HTN, DM, and CKD.

3 Results

Supervised and Zero-Shot Model Performance:
Table 1 depicts AUPRC performance of our
Word2Vec (W2V) baseline compared to fine-tuned
PubMedBERT models trained with various training
dataset compositions (all rows except the first). We
demonstrate supervised performance on HTN, as
well as zero-shot generalization to DM, OST, CKD,
and IHD. The performance of HyDE surpasses that
of our labeling function baseline by 44 points in F1
score and our Word2Vec baseline by 24 points in F1
score on average (Table 2). We find that fine-tuning
the best PubMedBERT model (RS+C+A4 training
dataset) on ∼100 additional disease-specific exam-
ples does not significantly improve performance,
with scores of 0.91, 0.84, 0.81, and 0.95 on DM,
OST, CKD, and IHD, respectively. This supports
the conclusion that our model generalizes well to
other diseases, without requiring disease-specific
fine-tuning. On the external i2b2/VA dataset we
achieve the following AUPRC scores without any
additional finetuning - 0.79 for HTN (336 patients),
0.99 for DM (213 patients), and 0.95 for CKD (45
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Table 2: F1 score comparison of the labeling function
baseline (LF), the Word2Vec (W2V) baseline, and the
RS+C+A4 fine-tuned PubMedBERT model. * indi-
cates that the W2V baseline was trained using the full
RS+C+A4 dataset.

Method SL Zero-Shot

HTN DM OST CKD IHD
LF 0.39 0.41 0.18 0.28 0.48
W2V* 0.41 0.61 0.48 0.54 0.68
RS+C+A4 0.74 0.81 0.75 0.74 0.89

Figure 2: AUPRC of models using the RS+C+A4 data
versus context length (words). Here context length is
the number of words in the left context plus the number
of words in the right context.

patients).

Context Length Ablation: Fig. 2 shows that
RS+C+A4 (RS: 250 random MCM samples; C:
400 category 2 and 3 amplified MCMs; A4: 400
samples from active learning) trained models satu-
rate with increasing context lengths. Table 5 shows
that reducing the context length from 64 words to
16 words speeds up the model by 4.5x while only
lowering average AUPRC by 0.017. From Table 4
we observe that this represents an average of 2.3%
of the full clinical notes among notes that contain
at least one MCM.

4 Conclusion

With its minimal setup, computational efficiency,
and generalization capability, HyDE offers a
promising tool for electronic phenotyping from un-
structured clinical notes. By improving the ability
to extract patient health status, we hope that HyDE
will enable more informative large scale studies
using EHR data, ultimately leading to public health
insights and improved patient care.

5 Limitations

HyDE has yet to be tested in a large-scale and multi-
site setting, which may offer more generalization
challenges. Furthermore, an evaluation of note-
level classification performance was not conducted.
Although we expect that HyDE would perform
well under such an evaluation, this would require
heuristics to aggregate multiple MCMs per note.

6 Ethics Statement

The authors have carefully considered the implica-
tions of their work, including potential positive and
negative impacts. A potential risk associated with
this approach would be the leakage of protected
health information (PHI) following a release of the
model. To mitigate this risk, we will conduct a
thorough review of the training data and consult
with experts before deciding to release the model.
Additionally, the authors have reviewed the ACM
Code of Ethics and Professional Conduct document
and attest that this work adheres to the principles
outlined in that document.
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A Appendix

A.1 Family Labeling Function
The family labeling function is positive if any of
the following terms match within a masked con-

490

https://doi.org/10.1093/bmb/ldaa005
https://doi.org/10.1093/bmb/ldaa005
https://doi.org/10.18653/v1/2021.emnlp-main.690
https://doi.org/10.18653/v1/2021.emnlp-main.690
https://doi.org/10.18653/v1/2021.emnlp-main.690


Table 3: Distribution of the different categories within
500 randomly sampled masked contextual mentions in
percent. Cat denotes category. The categories are de-
fined as follows. 0 - true positive; 1 - false positive
(otherwise unspecified); 2 - referring to someone other
than the patient; 3 - referring to the patient but negated;
4 - providing information / instructions / conditional
statements (i.e. instructions for how to take a medica-
tion; "if you feel this way, do this"); 5 - uncertain (i.e.
differential diagnosis; "likely"; "workup for").

Cat Type HTN DM OST CKD IHD
0 + 87.6 74.0 79.2 77.6 46.2
1 - 0.6 0.6 1.8 0.6 0.4
2 - 4.4 11.6 4.4 3.0 17.6
3 - 2.8 4.8 1.8 4.4 14.8
4 - 0.8 5.6 6.8 6.4 15.4
5 - 3.8 3.4 6.0 8.0 5.4

textual mention: relative, relatives, family,
father, mother, grandmother, grandfather,
sister, brother, sibling, aunt, uncle, nephew,
niece, son, daughter, cousin, parents.

A.2 Negex Algorithm

In order to increase the recall of the Negex (Chap-
man et al., 2001) algorithm for manual labeling in
order to amplify false positives for HyDE training,
we modified it slightly to allow negative terms to
match within 7 words of the mention, rather than 5.
However, for the labeling function baseline we used
Negex with a conventional window of 5 words, as
opposed to the 7 word window used during HyDE
training.

We modify the Negex keywords slightly
based on manual examination of the MCMs.
The original keywords were extracted from the
negspaCy en_clinical termset. This function
is positive if any of the following terms ap-
pear within the specified number of words be-
fore the disease mention: declined, denied,
denies, denying, no sign of, no signs of,
not, not demonstrate, symptoms atypical,
doubt, negative for, no, versus, without,
doesn't, doesnt, don't, dont, didn't, didnt,
wasn't, wasnt, weren't, werent, isn't, isnt',
aren't, arent, cannot, can't, cant, couldn't,
couldnt', never, none, resolved, absence of
or if any of the following terms appear within the
specified number of words after the disease men-
tion: declined, unlikely, was not, were not,
wasn't, wasnt, weren't, werent, not, no, none.

A.3 Qualitative Evaluation of Active Learning
Examples

Qualitatively, the examples surfaced during active
learning appear to be challenging cases. For ex-
ample, some were examples that would have been
counted as false positives by Negex but shouldn’t
be. One such example is "Insulin dependent di-
abetes mellitus ¬ø [MASK] No past medical his-
tory pertinent negatives". Here, ¬ø denotes a de-
identified date. Another challenging example is
"4. Screening for [MASK]". Often when items
are enumerated, they indicate a positive diagnosis.
However, in this case, the patient was only screened
for the condition.
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Table 4: HyDE neural network computational efficiency. For reference, the average length of the 8.8 million
clinical notes in the dataset is 375 words. We filter these 8.8 million notes down to 8.1 million notes by note type.
We include the most common note types in our dataset: "Progress Note", "Inpatient", "ED Note", "Consultation
Note", "Letter", "Other Note", "Nursing Sign Out Note", "History and Physical", "Outpatient", "IP Consult", and
"Discharge/Transfer Summary". The number of MCMs generated after deduplication based on local context of 20
characters is shown below. These numbers vary depending on the exact form of the labeling functions used.

Metric HTN DM OST CKD IHD
Before deduplication

Number of notes with MCMs 827k 555k 87k 199k 80k
Number of MCMs 1,616k 1,264k 127k 449k 125k
MCMs per note 2.0 2.3 1.5 2.3 1.6
Average size of notes with MCMs (words) 1,256 1,247 1,508 1,374 1,473
% notes represented by MCMs (64 word context) 10% 12% 6% 11% 7%

Number of MCMs after deduplication 495k 353k 30k 120k 38k
MCM reduction through deduplication 3.3x 3.6x 4.2x 3.7x 3.3x

Table 5: Inference time versus context length. All experiments are performed on a single 12GB Titan Xp GPU.
Analysis is done using 15,000 MCMs and the times reported are the total time spent for each task while processing
the 15,000 MCMs. Batchsizes are increased in increments of 100 until they no longer fit on the GPU.

Context length (words) 16 32 64
Batch size (MCMs) 3800 2000 1000
Total inference time (s) 17.47 43.33 79.07

Data transfer CPU to GPU time (s) 14.92 39.23 72.08
Tokenization time (s) 0.81 1.10 1.63
Model run time (s) 0.44 1.58 4.09

MCMs / second 859 346 190

Table 6: Labeling functions used to extract masked contextual mentions. HTN, DM, OST, CKD, and IHD stand for
hypertension, diabetes, osteoporosis, chronic kidney disease, and ischemic heart disease respectively.

Disease Labeling Function
HTN (\s+hypertension)|(\s+HTN)
DM (\s+diabetes)|(\s+DM2)|(\s+DM\s+)|(\s+T2DM)
OST (\s+osteoporosis\s+)|(\s+osteoporotic\s+)
CKD (\s+kidney failure)|(\s+nephropathy)|(\s+CKD\s+)|(\s+kidney disease)|

(\s+chronic kidney disease)|(\s+renal disease)|(\s+ESRD\s+)
IHD (\s+NSTEMI\s+)|(\s+myocardial ischemia)|(\s+ischemic heart disease)|

(\s+cardiac ischemia)|(\s+myocardial infarction)|(\s+myocardial necrosis)|
(\s+coronary heart disease)|(\s+coronary artery disease)|(\s+heart attack)
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