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Abstract

In recent years, word embeddings have been
widely used to measure biases in texts. Even
if they have proven to be effective in detect-
ing a wide variety of biases, metrics based on
word embeddings lack transparency and inter-
pretability. We analyze an alternative PMI-
based metric to quantify biases in texts. It can
be expressed as a function of conditional prob-
abilities, which provides a simple interpreta-
tion in terms of word co-occurrences. We also
prove that it can be approximated by an odds
ratio, which allows estimating confidence inter-
vals and statistical significance of textual biases.
This approach produces similar results to met-
rics based on word embeddings when capturing
gender gaps of the real world embedded in large
corpora.1

1 Introduction

Word embedding-based approaches have been used
for detecting and quantifying gender, ethnic, racial,
and other stereotypes present in corpora. While
some research has focused on investigating bi-
ases by training embeddings on a specific corpus
of interest (Garg et al., 2018; Kozlowski et al.,
2019; Lewis and Lupyan, 2020; Charlesworth et al.,
2021), others have employed pretrained word em-
beddings to assess potential biases inherent in the
training corpus (Caliskan et al., 2017; Garg et al.,
2018; DeFranza et al., 2020; Jones et al., 2020).

Though not as popular, Pointwise Mutual Infor-
mation (PMI) is a measure of word similarity which
has also been used to study biases (Gálvez et al.,
2019; Bordia and Bowman, 2019; Aka et al., 2021).

1Code for the paper is available at https://github.
com/ftvalentini/BiasPMI

However, the statistical properties and advantages
of this measure as compared to the widely used
word embeddings have not been studied yet.

In this article we study a PMI-based metric to
measure bias in corpora and explain its statistical
and interpretability benefits, which have been over-
looked until now. Our contributions are as follows:
(1) We show the PMI-based bias metric can be
approximated by an odds ratio, which makes com-
putationally inexpensive and meaningful statistical
inference possible. (2) We provide evidence that
methods based on GloVe, skip-gram with negative
sampling (SGNS) and PMI produce comparable
results when the biases measured in large corpora
are compared to empirical information about the
world. (3) We contend that the PMI-based bias
metric is substantially more transparent and inter-
pretable than the embedding-based metrics.

Scope: The detection and mitigation of bias in
models is a research topic that is beyond the scope
of this paper. Our paper’s contribution focuses
on the measurement of bias in raw corpora (not
models), which is a relevant task in Computational
Social Science.

2 Background

Consider two sets of context words A and B, and a
set of target words C. Textual bias measures quan-
tify how much more the words of C are associated
with the words of A than with those of B. Most
metrics can be expressed as a difference between
the similarities between A and C, on the one hand,
and B and C, on the other:

Bias = sim(A,C)− sim(B,C) (1)
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For instance, to estimate the female vs. male gen-
der bias of occupations, context words are often
gendered pronouns or nouns, e.g., A = {she, her,
woman,..} and B = {he, him, man,...}; whereas C is
usually considered one word at a time, estimating
for each specific job (nurse, doctor, engineer, etc.)
the relative association to A and B.

One particularly popular metric which uses word
embeddings (WE) is that of Caliskan et al. (2017):

BiasWE =
mean
a∈A

cos(va, vc)−mean
b∈B

cos(vb, vc)

std_dev
x∈A∪B

cos(vx, vc)

(2)
where vi stands for the word embedding of word
i and cos(vi, vj) is the cosine similarity between
vectors.

Permutations tests that shuffle context words
have been used to calculate the statistical sig-
nificance of BiasWE (Caliskan et al., 2017;
Charlesworth et al., 2021). These tests permute
the words from A and B repeatedly and compute
the bias metric in each iteration to simulate a null
distribution of bias. The two-tailed p-value is calcu-
lated as the fraction of times the absolute value of
bias from the null distribution is equal to or greater
than the one observed (North et al., 2002).

With a similar re-sampling approach, bootstrap
can also be performed (Garg et al., 2018). The
bootstrap distribution is obtained by calculating the
bias metric over many bootstrap samples from A
and B, sampled separately for each group. The
standard error of bias is then estimated as the sam-
ple standard deviation of the bootstrap distribution,
and the quantiles of the distribution are used to ob-
tain percentile confidence intervals (Davison and
Hinkley, 1997).

3 Bias measurement with PMI

Here we introduce a bias metric that follows equa-
tion 1 but uses Pointwise Mutual Information (PMI)
(Church and Hanks, 1990) as a measure of word
similarity:

BiasPMI = PMI(A,C)− PMI(B,C) (3)

PMI measures the first-order association be-
tween two lists of words X and Y :

PMI(X,Y ) = log
P (X,Y )

P (X)P (Y )
= log

P (Y |X)

P (Y )
,

(4)
where P (X,Y ) is the probability of co-occurrence
between any word in X with any one in Y in a

window of words, and P (X) and P (Y ) are the
probability of occurrence of any word in X and any
word in Y , respectively. Equation 4 shows PMI can
be expressed as the ratio between the probability of
words in Y co-occurring with words in X , and the
probability of words in Y appearing in any context.

3.1 Approximation of the PMI-based bias by
log odds ratio

Combining equations 3 and 4, the PMI-based bias
can be written as a ratio of conditional probabilities,
which can be estimated via maximum likelihood
using the co-occurrence counts from the corpus:

BiasPMI = log
P (C|A)
P (C|B)

= log

fA,C

fA,C+fA,nC

fB,C

fB,C+fB,nC

,

(5)
where fA,C and fB,C represent the number of times
words in C appear in the context of words in A and
B, respectively, and fA,nC and fB,nC represent
how many times words not in C appear in the con-
text of A and B, respectively. See contingency
table in Appendix A for reference.

BiasPMI is not computable if fA,C = 0 or
fB,C = 0. We address this by adding a small value
ϵ to all co-occurrences in the corpus (Jurafsky and
Martin, 2009).

For most practical applications, co-occurrences
between words not in a group (most of the vocabu-
lary) and a group of specific words are larger than
the co-occurrences between two groups of specific
words. More precisely:

fB,nC ≫ fB,C , fA,nC ≫ fA,C . (6)

Thus:

BiasPMI ≈ log

fA,C

fA,nC

fB,C

fB,nC

≈ log OR, (7)

where OR is the odds ratio. Therefore, parametric
confidence intervals and hypothesis testing can be
conducted for BiasPMI (details in Appendix B).

4 Experiments

To compare BiasPMI with BiasWE we replicate
three experiments that compare the gender biases
measured in texts with the ones from other datasets:

1. Occupations-gender (Caliskan et al., 2017):
gender bias in text is compared to the percent-
age of women employed in a list of occupations
in the U.S. Bureau of Labor Statistics in 2015.
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2. Names-gender (Caliskan et al., 2017): for a list
of androgynous names, gender bias in text is
compared to the percentage of people with each
name who are women in the 1990 U.S. census.

3. Norms-gender (Lewis and Lupyan, 2020): tex-
tual gender bias is compared to the Glasgow
Norms, a set of ratings for 5,500 English words
which summarize the answers of participants
who were asked to rate the gender association
of each word (Scott et al., 2019).

Details about these datasets are in Appendix C.
We train GloVe, SGNS and PMI on two cor-

pora: the 2014 English Wikipedia and English sub-
titles from OpenSubtitles (Lison and Tiedemann,
2016). We pre-process both corpora by converting
all text to lowercase, removing non alpha-numeric
symbols and applying sentence splitting, so that
one sentence equates to one document. After pre-
processing, the Wikipedia corpus is made up of 1.2
billion tokens and 53.9 million documents, whereas
the OpenSubtitles corpus contains 2.4 billion to-
kens and 447.9 million documents. Refer to Ap-
pendix D for additional details about each corpus
and to Appendix E for implementation details.

For each of the three settings, we assess the cor-
relation between the dataset’s female metric and
the female bias as measured by PMI (equation 5),
and SGNS and GloVe (equation 2). Female bias
refers to the bias metrics where A and B repre-
sent lists of female and male words, respectively.2

Positive values imply that the target word is more
associated with female terms than with male ones.

We measure correlation with Pearson’s r. We
also compute a weighted Pearson’s r, which takes
into account the standard error of each bias esti-
mate and reduces the influence of noisy estimates
on the correlation. Finally, for each word in each
experiment we compute confidence intervals and
p-values for the null hypothesis of absence of bias.3

The aim of these experiments is not to find which
method produces greater correlations in each task;
it is rather to check whether BiasPMI produces sim-
ilar results to the widely used BiasWE. If it does,
it means our metric can extract trends from large
corpora that correlate with gender stereotypes at
least as well as embedding-based metrics can.

2A={female, woman, girl, sister, she, her, hers, daughter}
and B={male, man, boy, brother, he, him, his, son} (Caliskan
et al., 2017; Lewis and Lupyan, 2020).

3In the case of BiasWE, we apply bootstrap with 2,000 itera-
tions and permutations with the all the possible combinations.

5 Results

Table 1 shows Pearson’s r weighted and un-
weighted coefficients for each of the eighteen ex-
periments (three association tests in two corpora
with three bias measures each). The scatter plots
associated with the Wikipedia’s coefficients are
available in Appendix F.1.

All in all, BiasPMI and BiasWE yield compara-
ble results in these settings. There is no single
method which consistently has the largest or lowest
correlations.

Weights tend to either increase the correlation
considerably or to make it slightly weaker. This
implies that in these experiments, noisy textual
bias estimates usually agree less with the gender
bias in the validation datasets. However, this does
not mean that for each individual bias estimate
the standard errors of each method are mutually
interchangeable or equally useful (see section 6.2).

Figure 1: permutation p-values of BiasWE with SGNS vs.
the value of BiasWE with SGNS (top panel), and logOR
test p-values of BiasPMI vs. the value of BiasPMI (bot-
tom panel) of androgynous names in Wikipedia.

In Figure 1 we compare the p-values of the per-
mutation test of BiasWE with SGNS, with the p-
values of the log odds ratio test of BiasPMI for
the Names-gender test conducted in Wikipedia. A
Benjamini-Hochberg correction was applied to the
p-values obtained by both methods to account for
multiple comparisons (Benjamini and Hochberg,
1995). Appendix F.2 shows this example is consis-
tent with the rest of the experiments.

In this example, only the word with the highest
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Corpus Experiment Correlation PMI GloVe SGNS

OpenSubtitles

Glasgow-Gender
r 0.58 0.49 0.55

Weighted r 0.58 0.69 0.72

Names-Gender
r 0.80 0.74 0.81

Weighted r 0.84 0.82 0.77

Occupations-Gender
r 0.66 0.67 0.79

Weighted r 0.81 0.83 0.89

Wikipedia

Glasgow-Gender
r 0.50 0.44 0.50

Weighted r 0.44 0.59 0.66

Names-Gender
r 0.78 0.74 0.77

Weighted r 0.75 0.79 0.76

Occupations-Gender
r 0.69 0.70 0.70

Weighted r 0.79 0.67 0.78

Table 1: Pearson’s r coefficients of each experiment. Weighted r accounts for the variability of each bias estimate.

BiasWE is significantly different from zero at a 0.10
significance level. In contrast, most words have a
BiasPMI significantly different from zero, with the
exception of some points with bias values close to
zero. This is because the procedures that compute
p-values for each type of metric capture essentially
different types of variability (see section 6.2).

6 Discussion

6.1 Interpretability
Although there are studies on how word vector
spaces are formed (Levy and Goldberg, 2014; Levy
et al., 2015; Ethayarajh et al., 2019) and on the
biases they encode (Bolukbasi et al., 2016; Zhao
et al., 2017; Gonen and Goldberg, 2019), there is no
transparent interpretation of the embedding-based
bias metrics in terms of co-occurrences of words in
the texts.

In contrast, BiasPMI can be expressed intrinsi-
cally in terms of conditional probabilities (equation
5). The bias is interpreted as the logarithm of how
much more likely it is to find words in C in the
context of words in A than in the context of words
in B. For example, in the Wikipedia corpus the
female BiasPMI of word nurse is 1.3172, thus,

P (nurse|A)

P (nurse|B)
= exp 1.3172 = 3.7330.

This means that it is 273.30% more likely to find
the word nurse in the context of female words (A)
than in the context of male words (B).

To the lack of interpretability of BiasWE con-
tributes the fact that SGNS and GloVe can cap-
ture word associations of second order or higher

(Altszyler et al., 2018; Schlechtweg et al., 2019),
whereas PMI is strictly a first-order association
metric. When embeddings are used to measure bi-
ases, it is not possible to tell whether the results are
due to widespread first-order co-occurrences or are
derived from obscure higher-order co-occurrences
(Brunet et al., 2019; Rekabsaz et al., 2021).

For instance, in OpenSubtitles, the BiasPMI of
the word evil equals −0.25, indicating a higher like-
lihood of appearing in the context of male context
words (B) compared to female ones (A). Con-
versely, BiasSGNS = 0.23. Even if this stands for
female bias, it is difficult to understand the exact
source of this result since it is influenced by sec-
ond and higher-order co-occurrences. Moreover,
in recent research we demonstrated that BiasWE
can also yield misleading results by inadvertently
capturing disparities in the frequencies of context
words (Valentini et al., 2022).

Nevertheless, bias metrics that capture second-
order associations have the advantage of managing
data sparsity. Since word embeddings can capture
synonymy, when data is sparse it might not be nec-
essary to include all related words to the concepts
of interest in order to measure meaningful biases.
In the case of our first-order metric, this problem
must be addressed by increasing word lists with
synonyms and forms of the words of interest.

To illustrate this, let’s consider the case of the
words nourish and nurture, which have differ-
ent frequencies in the Wikipedia corpus (700 and
3, 000, respectively). With BiasPMI, we obtain a
bias of 0.33 for nurture (p-value < 10−4). How-
ever, if we had used its less frequent synonym nour-
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ish instead, the BiasPMI would have been −0.10
and not statistically significant (p-value ≈ 0.66).
Here we would not have been able to determine
whether there is actually no bias or if there is insuffi-
cient data. This shows that it is generally advisable
to include all pertinent synonyms and variations of
the term whose bias we are trying to measure.

6.2 Statistical inference

The p-values, standard errors and confidence inter-
vals of the logOR approximation are fundamen-
tally different from the ones estimated for BiasWE
through permutations and bootstrap. The uncer-
tainty quantified for BiasPMI captures the vari-
ability of the underlying data generating process
i.e. the one induced by the randomness of co-
occurrence counts as random quantities. In con-
trast, the estimates for BiasWE only consider the
variability across the sets of context words. This
means that multiple words must be chosen so that
inference can be conducted. In fact, whenever A
and B are single-word lists, there is no way of esti-
mating uncertainty for BiasWE with these methods,
whereas it is perfectly feasible for BiasPMI.

As far as we know, we are the first to provide a
simple and efficient way of evaluating the statistical
significance of bias. This is especially important
in Computational Social Science, for which it is
useful to have not only a reliable metric to quan-
tify stereotypes but also a reliable tool to measure
uncertainty i.e. to know up to what degree the
measured values might have been due to statistical
fluctuation. Meaningful statistical tests and con-
fidence intervals that capture the variability that
really matters are therefore essential.

7 Conclusion

We presented a PMI-based metric to quantify bi-
ases in texts, which (a) allows for simple and com-
putationally inexpensive statistical inference, (b)
has a simple interpretation in terms of word co-
occurrences, and (c) is explicit and transparent in
the associations that it is quantifying, since it cap-
tures exclusively first-order co-occurrences. Our
method produces similar results to the GloVe-based
and SGNS-based metrics in experiments which
compare gender biases measured in large corpora
to the gender gaps of independent empirical data.

Limitations

We replicate three well-known experiments in the
gender bias literature, where bias is measured ac-
cording to a binary female vs. male view. This
choice ignores other views of gender but eases the
presentation of the frameworks.

We only use two corpora and three datasets
which by no means capture the biases of all the
people speaking or writing in the English language.
Moreover, we don’t experiment with different cor-
pus sizes, a more diversified set of corpora or more
bias types. We hope to explore this in future work.

The hyperparameters of the models have not
been varied, using their default values. This repli-
cates the standard experimental setting used in the
literature. Since there are no ground truths when
measuring biases (that is, there are no annotations
with the amount of bias of words in large corpora),
hyperparameters are usually set to their default val-
ues.
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A Contingency table of co-occurrences

BiasPMI is computed with the co-occurrences be-
tween the groups of words A, B and C. These
can be represented with the following contingency
table:

C not C Total
A fA,C fA,nC fA,C+fA,nC

B fB,C fB,nC fB,C+fB,nC

Table 2: Contingency table of words co-occurrences

This contains, for example, how many times
words in A appear in the context of words in C
(fA,C) and how many times they do not (fA,nC).

B Statistical inference for BiasPMI

The distribution of the log odds ratio (equation 7)
converges to normality (Agresti, 2003). Its 95%
confidence interval is given by

CI95%
(
BiasPMI

)
= BiasPMI ± 1.96SE

with

SE =

√
1

fA,C
+

1

fB,C
+

1

fA,nC
+

1

fB,nC

≈
√

1

fA,C
+

1

fB,C

This last approximation considers condition 6.
We can test the null hypothesis that the log odds

ratio is 0 (absence of bias) with a standard Z-test,
whereby the two-sided p-value is computed with
2P (Z < −|BiasPMI|/SE), where Z is a standard
normal random variable.

C Datasets

For the occupations-gender and names-gender ex-
periments, the female proportions for names and
occupations in the U.S. were extracted from the
datasets provided by Will Lowe’s cbn R library 4,
which contains tools for replicating Caliskan et al.
(2017). We used the 50 names and 44 occupations
available in this source.

The original Glasgow Norms comprise 5,553
English words. Individuals from the University
of Glasgow were asked to measure the degree to
which each word is associated with male or female
behavior on a scale from 1 (very feminine) to 7
(very masculine). Following Lewis and Lupyan
(2020), we average the norms of homonyms and
compute 8− rating to flip the scale so that it rep-
resents femaleness according to human judgement.
4,668 words from the original list overlapped with
OpenSubtitle’s vocabulary, and 4,642 words over-
lapped with the Wikipedia vocabulary.

D Corpora

The Wikipedia corpus was built from the August
2014 dump, licensed under CC BY-SA 3.05. We
removed articles with less than 50 tokens.

The OpenSubtitles corpus (Lison and Tiede-
mann, 2016) includes English subtitles from
movies and TV shows and was built with the aid of
the subs2vec Python package with MIT License
(van Paridon and Thompson, 2021).

E Model training

We ignore words with less than 100 occurrences,
resulting in a vocabulary of 172,748 words for
Wikipedia and 128,974 words for OpenSubtitles.

We use a window size of 10 in all models and
apply "dirty" subsampling i.e. out-of-vocabulary
tokens are removed before the corpus is processed
into word-context pairs (Levy et al., 2015).

Word embeddings with 300 dimensions are
trained with SGNS and GloVe. For SGNS we use
the word2vec implementation of Gensim 4.1.2 li-
censed under GNU LGPLv2.1 (Řehůřek and So-
jka, 2010) with default hyperparameters. GloVe is
trained with the original implementation (Penning-
ton et al., 2014) with version 1.2 (Apache License,
Version 2.0) with 100 iterations. This version uses

4https://conjugateprior.github.io/cbn/
5https://archive.org/download/

enwiki-20141208
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by default additive word representations, in which
each word embedding is the sum of its correspond-
ing context and word vectors.

For PMI, we count co-occurrences with the
GloVe module (Pennington et al., 2014) with ver-
sion 1.2 and set the smoothing parameter ϵ to 0.5.

We ran all experiments on a desktop machine
with 4 cores Intel Core i5-4460 CPU and 32 GB
RAM. Training times were around 1 hour per epoch
with SGNS and 5 minutes per iteration with GloVe.
Co-occurrence counts used for PMI were obtained
in around 20 minutes with GloVe.

F Results

F.1 Experiments
In Figures 2, 3 and 4 we display the scatter plots of
the three experiments described in section 4 for the
Wikipedia corpus. The findings for OpenSubtitles
are qualitatively the same and we exclude the plots
for simplicity.

The vertical axes represent the female vs. mas-
culine bias measures based on PMI (left panels),
GloVe (middle panels), and SGNS (right panels).
Dashed lines represent linear regressions. In the
second row, the bias standard error was taken into
account as weights in the regression, and error bars
are confidence intervals.

All unweighted and weighted correlation coef-
ficients in Table 1 are significantly different from
zero at the 0.0001 level.

F.2 p-values
Figure 5 shows the corrected p-values for the gen-
der bias of each word in the vertical axes vs. the
value of the bias in the horizontal axes. p-values
for SGNS and GloVe result from permutations
tests whereas PMI uses the log odds ratio test.
All p-values have been corrected with Benjamini-
Hochberg separately for each setting. The plots for
OpenSubtitles are very similar and are excluded for
simplicity.
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Figure 2: Names-gender experiments in Wikipedia. Horizontal axes represent the percentage of people with each
name who are women as measured in the 1990 U.S. census.

Figure 3: Occupations-gender experiments in Wikipedia. Horizontal axes represent the percentage of women
employed in each occupation in 2015 according to the U.S. Bureau of Labor Statistics.
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Figure 4: Norms-gender experiments in Wikipedia. Horizontal axes represent the Glasgow Norm of each word.
Confidence intervals are not displayed in the second row to avoid overplotting.

Figure 5: Female vs. male bias p-values of the names-gender (row 1), occupations-gender (row 2) and norms-gender
(row 3) experiments in Wikipedia.
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