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Abstract
Augmenting language models with a retrieval
mechanism has been shown to significantly im-
prove their performance while keeping the num-
ber of parameters low. Retrieval-augmented
models commonly rely on a semantic retrieval
mechanism based on the similarity between
dense representations of the query chunk and
potential neighbors. In this paper, we study
the state-of-the-art RETRO model and observe
that its performance gain is better explained by
surface-level similarities, such as token over-
lap. Inspired by this, we replace the semantic
retrieval in RETRO with a surface-level method
based on BM25, obtaining a significant reduc-
tion in perplexity. As full BM25 retrieval can be
computationally costly for large datasets, we
also apply it in a re-ranking scenario, gaining
part of the perplexity reduction with minimal
computational overhead.

1 Introduction

The introduction of the Transformer architecture
(Vaswani et al., 2017) has led to a performance
boost in language modeling (see, e.g., Brown et al.
2020), but also to a steep increase of computational
cost, as the number of parameters and data points
is constantly growing. In reaction to this develop-
ment, there has recently been a surge in work on
retrieval-augmented language models (Izacard and
Grave, 2021a; Li et al., 2022), which shows that
enabling models to retrieve context from large cor-
pora results in lower perplexity and better accuracy
in downstream tasks such as question answering,
while at the same time using considerably fewer
parameters. In this paper, we specifically focus on
the Retrieval-Enhanced Transformer architecture
(RETRO; Borgeaud et al., 2022).

By augmenting a language model with a re-
trieval mechanism, RETRO, like similar architec-
tures, tries to decouple memorization of the train-
ing data from the additional generalization that

∗Correspondence to ehsan.doostmohammadi@liu.se.

comes with increasing the number of parameters.
In RETRO, when a chunk of text (a sequence of
tokens) has been generated, a dense representation
of this chunk is used to retrieve the most similar
neighboring chunks from a large retrieval set, based
on their L2 distance. Having the previously gen-
erated chunks and their nearest neighbors in the
retrieval set, the auto-regressive language model
has now access to an extended context when pre-
dicting the next chunk. The informativeness of this
context depends on the effectiveness of the retrieval
method.

Borgeaud et al. (2022) note that part of RETRO’s
performance can be attributed to the token over-
lap between the generated chunks and the retrieval
set. Our starting point in this paper is the obser-
vation that the performance gain is actually better
explained by such surface-level similarities than by
the L2 distance between the dense representations
that RETRO uses for retrieval. This is in line with
recent work by Norlund et al. (2023), who show
that the reduction in loss observed in RETRO “al-
most exclusively” stems from such overlap rather
than more sophisticated generalization. Based on
these findings, we replace the semantic retrieval
method in RETRO with one based on BM25 (Robert-
son et al., 1995), a surface-level measure. Our
results show that retrieving nearest neighbors using
BM25 during inference leads to a 13.6% lower per-
plexity, compared to dense retrieval based on sen-
tence transformers (ST) (Reimers and Gurevych,
2019), a model trained to represent the semantic
similarity between sentences.1

Finding the exact neighbors with BM25 is costly
on large retrieval sets and might not meet the
speed requirements of all applications of retrieval-
augmented language models. We therefore explore
a hybrid approach where we first retrieve approxi-
mate neighbors using ST representations and then

1The code and the data for this study can be accessed at
github.com/edoost/retro_bm25.
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re-rank them using BM25. We show that this ap-
proach yields 24.7% of the perplexity reduction we
get with BM25-based retrieval, with only minimal
computational overhead.

2 Method

We experiment with RETRO (Borgeaud et al., 2022)
as a state-of-the-art retrieval-augmented language
model.

2.1 Model

RETRO is very similar to a standard auto-regressive
language model such as T5 (Raffel et al., 2020), the
main differences being the introduction of the re-
trieval mechanism and how the retrieved neighbors
are used for language modeling.

Nearest Neighbor Retrieval In RETRO, all tex-
tual data is stored and used in chunks of 64 to-
kens. When the model has generated a chunk Cu,
it retrieves the k nearest neighbors N1:k to that
chunk, together with the chunks F1:k following
these neighbor chunks in the retrieval data. It then
generates the next chunk Cu+1 conditioned on the
retrieved chunk pairs. Retrieval uses the squared L2
distance on a dense representation (DR) of chunks:

d(Cu, Ni) = ∥DR(Cu)−DR(Ni)∥22

This leaves us with

RET(Cu) = ([N1
u ;F

1
u ], . . . , [N

k
u ;F

k
u ])

as the retrieved neighbors that the model receives as
additional context when generating the next chunk.
The likelihood of the first chunk (C1) does not de-
pend on any neighbors; the model has access to no
external context when generating that chunk. Dur-
ing training and perplexity evaluation, the retrieval
process is filtered such that chunks originating from
the same source document as the training sequence
are never considered as neighbors.

Integration of the Neighbors RETRO improves
auto-regressive language modeling by conditioning
the next token prediction on the retrieved chunks
of text. This means that the probability of gen-
erating the next token xt+1 depends not only on
the previously generated tokens x1:t but also on
the retrieved neighbors of the previously generated
chunks, as well as their following chunks:

P (xt+1 |x1:t, RET(C1), . . . , RET(Cu−1); θ)

When generating the next token, the neighbors
as well as the current chunk Cu are passed through
a Transformer encoder. In the decoder, cross-
attention is over the output of that encoder and
the concatenation of the intermediary embeddings
of the last few tokens in the previous chunk Cu−1

and the already generated tokens in Cu, a mech-
anism called chunked cross-attention. For more
details, see Borgeaud et al. (2022).

Implementation Details As an official imple-
mentation of RETRO is not publicly available,
we draw upon the implementation in Norlund
et al. (2023), which is based on the description
in Borgeaud et al. (2022). Our implementation
deviates only in that (1) we use learnable relative
positional biases as in T5 (Raffel et al., 2020), with
a bucket for each unique relative position; (2) in-
stead of BERT (Devlin et al., 2019), we use the pre-
trained sentence transformers (ST) (Reimers and
Gurevych, 2019) model to embed the chunks for
the offline retrieval. ST is preferable over BERT,
as it is trained for the task of similarity search,
and produces embeddings of lower dimensionality,
which makes it more efficient. We use PyTorch
(Paszke et al., 2019) and PyTorch Lightning for
distributed training. For the tokenization, we use
the pre-trained T5 tokenizer (HuggingFace). For
retrieving approximate neighbors, we use faiss
(Johnson et al., 2019), which performs efficient sim-
ilarity search between dense representations with
GPU support for faster indexing and retrieval.

2.2 Data

Borgeaud et al. (2022) use the MassiveText dataset
(Rae et al., 2021) for both training and retrieval.
As this dataset is not publicly available, we set
out to replicate it using open sources. MassiveText
consists of multilingual text data in five categories:
Wikipedia articles, books, GitHub code, news, and
common crawl web data. We use Pile (Gao et al.,
2021) and RealNews (Zellers et al., 2019) to build
a large dataset resembling MassiveText’s composi-
tion. The new dataset (see Norlund et al. (2023)
for details) consists of 36M documents containing
52B tokens. For Pile, we keep the training and val-
idation splits, while for RealNews, we use the full
training set but downsample the validation set to
16,400 news articles to match the proportions of the
categories in Pile. For details on the deduplication
process, we refer to Gao et al. (2021) and Zellers
et al. (2019).
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2.3 Training

We use our dataset to train a RETRO model with
approximately 630M parameters. For more details
refer to Norlund et al. (2023). During training, we
retrieve from the training set; during validation, we
retrieve from the union of the training and valida-
tion sets. We train the model on sequences trun-
cated to 1,024 tokens. The chunk size is 64, as in
Borgeaud et al. (2022), and the number of retrieved
neighbors is k = 2 for training and validation. We
train the model for 140k training steps with a batch
size of 16, taking seven days on 16 A100 GPUs.
This means that we use 6% of the training data dur-
ing training, not including the retrieved neighbors.
As our optimizer, we use Adam (Kingma and Ba,
2015) with a fixed learning rate of 1e−4.

3 A Study on Correlations

We experiment with two settings: RETRO[ON],
the language model with retrieval enabled, and
RETRO[OFF], where there are no chunk cross-
attention layers and therefore no retrieval, leaving
us with a decoder-only language model. As shown
by Borgeaud et al. (2022), the RETRO[ON] model
performs better when it can exploit an overlap be-
tween the generated text and the retrieved neighbor.
This is more apparent in text categories with higher
token overlap, such as GitHub. The studies in the
RETRO paper also show that allowing more over-
lap when deduplicating the data results in a lower
bits-per-byte (BPB2). Norlund et al. (2023) take
this further to show even minimal overlap results in
significant loss reduction, demonstrating the large
extent RETRO relies on surface-level similarities.
These findings lead us to hypothesize that having a
retrieval method that can find the highest overlap-
ping neighbors will yield lower perplexity (PPL).
Because BERT, ST and similar deep representa-
tions of sentences do not always capture surface-
level similarities, we set out to investigate where
performance gains come from.

To this end, we measure how the PPL difference
(∆PPL) between RETRO[ON] and RETRO[OFF] for
the current chunk (Cu, u ≥ 2) correlates with (1)
squared L2 distance between the ST embeddings
of Cu and RET(Cu−1) (ST), and (2) unigram token
overlap, based on T5 tokenization, between Cu

2BPB = (LT /LB)L/ln(2), where LT and LB are the
lengths of the validation set in T5 tokens and UTF-8 en-
coded bytes, respectively, and L stands for log likelihood
loss. LT /LB is 0.258415 for our validation set.

X Y ρ r

L22 (ST) ∆PPL 0.349 0.160
token overlap ∆PPL 0.528 0.488

L22 (ST) token overlap 0.464 0.515

Table 1: Spearman ρ and Pearson r between variables X
and Y . L22 (ST) is the (negative) squared L2 distance
between the ST embeddings of RET(Cu−1) and Cu; to-
ken overlap is the unigram token overlap between these
two chunks; and ∆PPL = PPLRETRO[OFF]−PPLRETRO[ON]
for the chunk Cu.

and RET(Cu−1). The results, reported in Table 1,
show a considerably stronger correlation between
∆PPL and unigram token overlap (measure 2) than
between ∆PPL and L2 distance (measure 1). The
trend is similar between Spearman and Pearson
correlation coefficients.

4 Changing the Retrieval Method

As the results from the previous section show a
stronger correlation between performance gain and
surface-level similarity than ST similarity, we ex-
periment with a retrieval method based on BM25.

4.1 BM25

Okapi BM25, introduced by Robertson et al. (1995),
is a bag-of-words retrieval method based on tf–idf
scores and some free parameters. These parame-
ters are k1, which normalizes the term frequency,
and b, which controls how much the length of a
document would affect the term frequency values.
We use Pyserini (Lin et al., 2021), a Python inter-
face to Lucene’s BM25 implementation. We build
the BM25 index on the training set and leave the
free parameters at their default values (k1 = 0.9,
b = 0.4). These values were also shown to per-
form the best by Karpukhin et al. (2020a). Using
Lucene’s Analyzer pipeline3 results in more than
50M unique words for our corpus. We instead use
the T5 tokenizer from Hugging Face Transformers
(Wolf et al., 2020) and limit our vocabulary to 32k
words for the reranking experiments.

4.2 Retrieving with BM25

We use the model described in Section 2.3 and
change the retrieval method only at inference time
to retrieve better neighbors. The results can be
found in Table 2. The perplexity is 21.44 for

3Lucene Analyzers (Lucene) are used to extract index
terms from text, which includes tokenization and preprocess-
ing.
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Model PPL BPB

RETRO[OFF] 21.44 1.142

RETRO[ON]-ST 15.30 1.017
RETRO[ON]-ST + BM25 reranking 14.62 1.000

RETRO[ON]-BM25 12.55 0.943

Table 2: PPL and BPB for various retrieval settings on
the validation set. The basic RETRO model is the same
for all rows.

RETRO[OFF] and 15.30 for RETRO[ON] with ST re-
trieval (RETRO[ON]-ST), corresponding to a 28.6%
reduction in PPL. Replacing the retrieval method
with BM25 (RETRO[ON]-BM25) gives an additional
13.6% reduction, which is 47.5% of the initial drop.
For comparability with Borgeaud et al. (2022), we
also report BPB. The results show that using neigh-
bors with more surface-level similarity to the gen-
erated chunk is a solid method for leveraging the
retrieval mechanism to reduce the perplexity. If the
retrieval augmentation is meant to act as an exter-
nal memory, or to offload memorization from the
model (Borgeaud et al., 2022), then BM25 is a more
suitable method to achieve this goal.

4.3 Reranking

While the performance gain is significant, finding
the exact neighbors using BM25 could be costly, de-
pending on the size of the datasets. On the other
hand, faiss provides an efficient similarity search
for dense vectors to find the approximate neighbors.
Therefore, if enough of the BM25-retrieved neigh-
bors could be found among top-k faiss-retrieved
ones, with an efficient reranking, we could expect
at least part of the performance gain with minimal
computational overhead, as long as k is not signifi-
cantly large. To find an optimal k, we first need to
know how many of BM25 neighbors could be found
in top-k faiss-retrieved chunks.

Looking at the faiss-retrieved neighbors, we
see that of top-4 BM25-retrieved neighbors, 17.6%
appear in top-100 faiss-retrieved chunks, while
the overlap is 22.1% for top-1000. We decide to
continue our experiment with top-1000 neighbors,
but it is obvious that one could get an even higher
overlap with a higher k, with diminishing returns.
The results in Table 2 show that with the proposed
reranking, RETRO[ON]-ST could achieve 24.7% of
the PPL reduction of RETRO[ON]-BM25 compared
to RETRO[ON]-ST. The reranking results are inter-
esting not only due to their practical implications

but also as an analysis revealing the limited num-
ber of high-quality neighbors that can be retrieved
using semantic retrieval, even in situations where a
large k is feasible.

5 Related Work

Augmenting language models with mechanisms
that help them incorporate larger contexts has been
approached extensively in different forms, such as
Guu et al. (2018)’s retrieve-and-edit approach to
reduce the PPL in language generation, and Asai
et al. (2020) that make use of lexical overlap to
improve the performance in question answering.
While retrieval-augmentation has been used with
different objectives in mind, such as language mod-
eling (Khandelwal et al., 2020; Wu et al., 2022)
and machine translation (Khandelwal et al., 2021),
question answering has been the application to at-
tract the most interest (Guu et al., 2020; Karpukhin
et al., 2020b; Izacard and Grave, 2021b).

An extensive study was performed by Izacard
et al. (2022), showing that while we get perfor-
mance gains using retrieval augmentation, training
the retrieval part of the model would yield even
more benefits. RETRO (Borgeaud et al., 2022),
on the other hand, aims at scaling such language
models and therefore opts for keeping the retriever
frozen, showing substantial PPL reduction with
increasing either the number of language model
parameters or the size of retrieval set.

Among the more recent work, Xu et al. (2023)
found that training using approximate neighbors
resulted in a 2.6% decrease in perplexity. This
suggests that non-exact neighbors may have a reg-
ularization effect, leading to improved generaliza-
tion ability. Additionally, Ram et al. (2023) re-
port a drop in perplexity using BM25 over BERT
retrieval using in-context retrieval-augmented lan-
guage models.

6 Conclusions and Future Work

In this paper, we study the source of performance
gains in RETRO, which could be generalized to
similar retrieval-augmented language models. Af-
ter observing that the PPL drop correlates more
strongly with surface-level overlap between the
query and the retrieved text, we replace the retrieval
method with BM25, and observe a significant drop
in PPL, which confirms us in the findings of the
correlation study. This is also an interesting insight
as to how these models work, which could be lever-
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aged for performance gain in tasks like question
answering where model relies on retrieving facts.
In the end, we also conduct an analysis to find
out how much BM25 neighbors overlap with those
retrieved using ST. The results show that while
faiss is able to find some of the neighbors with
high token overlap, the majority of them remain
unretrieved. This is however, enough to gain part
of the loss reduction achieved with a pure BM25
retrieval system.

The proposed methods could also be used during
training. By retrieving more overlapping neighbors
during training, the process of guiding the model
to use retrieved neighbors for language modeling
could be done more efficiently. This is particu-
larly relevant when augmenting an already trained
language model with a retrieval mechanism. As re-
ported by Borgeaud et al. (2022), retrieval augmen-
tation results in a larger drop in BPB as the number
of model parameters and the size of retrieval data
grow. This calls for more efficient methods based
on surface-level similarities if we wish to exploit
this potential. Furthermore, the retrieval system in
RETRO is based on semantic retrieval, the model
seems to rely more on surface-level similarities.
This could affect the generalizability capabilities
of such models, which necessitates further inves-
tigations. Lastly, we only evaluate our modified
RETRO model on language modeling. It would be
interesting to know the impacts of BM25 retrieval
on downstream tasks where retrieval is of use.

Limitations

We only experiment with one type of retrieval-
augmented language models, i.e., RETRO. How-
ever, the ways the other models retrieve neighbors
and integrate them are not so much different to
affect the results in this paper. The experiments
in this paper are done with a small size RETRO

model and data compared to the sizes considered
by Borgeaud et al. (2022), due to computational
limitations. According to the same authors, how-
ever, the gains should be constant with the increase
of the model and retrieval set size. The larger mod-
els are mainly different in their behavior when there
is no overlap. However, this should not affect the
copying tendency of these models tremendously,
as it is still the easiest way to generate the next
token. It is also worth noting that RETRO[OFF],
while not using retrieval at test time, is still trained
using retrieval – so it is not a complete retrieval-

free model. The results presented by Borgeaud
et al. (2022) however, show that RETRO[OFF] is
on a par with their retrieval-free baseline in terms
of BPB. Finally, we note that our evaluations have
only considered the perplexity under teacher forc-
ing, and we have not investigated the behavior of
the model in free-form generation or with any kind
of fine-tuning.
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