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Abstract

Previous work in phonetically-grounded language
generation has mainly focused on domains
such as lyrics and poetry. In this paper, we
present work on the generation of tongue twisters
- a form of language that is required to be
phonetically conditioned to maximise sound
overlap, whilst maintaining semantic consistency
with an input topic, and still being grammatically
correct. We present TwistList, a large annotated
dataset of tongue twisters, consisting of 2.1K+
human-authored examples. We additionally
present several benchmark systems (referred to as
TwisterMisters) for the proposed task of tongue
twister generation, including models that both
do and do not require training on in-domain data.
We present the results of automatic and human
evaluation to demonstrate the performance of
existing mainstream pre-trained models in this
task with limited (or no) task specific training and
data, and no explicit phonetic knowledge. We
find that the task of tongue twister generation is
challenging for models under these conditions,
yet some models are still capable of generating
acceptable examples of this language type.

1 Introduction

Phonetically constrained language generation is a pri-
mary subarea of computational creativity in natural
language generation (NLG), primarily encompassing
lyric and poetry generation (Tian and Peng, 2022;
Wöckener et al., 2021; Xue et al., 2021; Zhang et al.,
2020a; Agarwal and Kann, 2020), as well as pun gen-
eration (Sun et al., 2022; He et al., 2019; Yu et al.,
2018), and continues to prove challenging for myriad
reasons. Primarily, such works require the inclusion
of phonetic factors such as metre and rhyme, which
involves careful consideration of candidate vocabulary
on the syllable level, leading to a reduced pool of al-
lowable vocabulary once these constraints are in place.

*Equal contribution.
†Corresponding author.
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Orthography:
She sells seashells on the seashore. The seashells 
she sells are seashells she is sure.

[SH IY] [S EH L Z] [S IY SH EH L Z] [AA N] [DH AH] [S IY SH AO 
R]  [DH AH] [S IY SH EH L Z] [SH IY] [S EH L Z] [AA R] [S IY SH 
EH L Z] [SH IY] [IH Z] [SH UH R]

? Generate tongue twisters about the keyword(s):
seashells

Phonetics:

Input Keywords: seashells
Phonetics:  [S IY SH EH L Z] 

Figure 1: Tongue Twister Generation aims to generate an
utterance with high levels of phonetic overlap, requiring
understanding of semantics, grammar, and phonetics.

In this paper, we present work on the generation
of tongue twisters, a type of phonetically constrained
language that is rarely explored in the NLG com-
munity. As a form of creative generation, tongue
twisters can facilitate numerous useful applications,
including: (1) being used as a pedagogical tool
(Sugiharto et al., 2022; Somoff, 2014; Wilshire,
1999); (2) as a source of humorous entertainment
stemming from unintentional mispronunciations;
(3) as a stylistic device for engaging children in
reading (e.g. Dr. Seuss stories (Geisel, 1965)); (4)
as a method of designing memorable slogans and
tag lines (Guerini et al., 2015); and (5) as stimuli in
neuroscience/physiology research (Wong et al., 2019;
O’Halloran, 2020; Kember et al., 2017).

Tongue twister generation posits unique challenges
compared to other generation tasks. One of the
most pertinent features of tongue twisters is the
presence of high levels of phonetic overlap across
tokens (Wilshire, 1999). Consequently, whilst other
types of creative generation may require only some
output tokens to consider phonetics (such as rhyme or
syllable counts), tongue twisters present an extreme
version of this problem where the phonetics of almost
all generated tokens must be considered. This leads
to a very small vocabulary from which to choose

579



semantically relevant words, and presents further
challenges with maintaining grammatical validity.

The only work that we are aware of on tongue
twister generation at the time of conducting this
research is by Keh et al. (2022), who present models
that train on graphemes and phonemes, and take
either a starting prompt to be continued, or keywords
around which to theme an output. They release
TT-Corp, a dataset of 644 tongue twisters with parallel
non-twister equivalents. We differentiate our work
through the release of a dataset that is over 3x larger
and which has undergone substantial human quality
control. Furthermore, we assess the results of a wider
range of popular pre-trained models on this task,
including ChatGPT, without explicit injection of
phonetic knowledge due to the difficulty in encoding
phonetics and the expertise required to utilise phonetic
characteristics appropriately. Our experimental results
show that most popular pretrained language models
(PLMs) rely on pure word repetition to generate
tongue twisters, whilst some (i.e. BART) are able to
generate more sophisticated examples. Additionally,
very large zero-shot models (i.e. ChatGPT) are able
to generate convincing tongue twisters almost on-par
with human equivalents.1

To summarise our contributions, we present:
• TwistList, a large annotated dataset of human-

authored tongue twisters, containing 2.1K+
examples with human evaluation of their quality.

• TwisterMisters, a series of baseline models for
tongue twister generation using the most popular
state-of-the-art PLMs.

• Extensive automatic and human evaluation to
assess the ability of PLMs to implicitly model the
complex phonetic phenomena in tongue twisters.

2 Related Works

Previous work in phonetically constrained generation
has taken one of two approaches: 1) train a generation
model on a collection of in-domain texts, or 2) train a
generation model on prosaic out-of-domain text, with
constraints imposed at decoding time. For example,
Lau et al. (2018) collect 3,355 sonnets to produce
novel poetry and train models to generate text in
iambic pentameter, whilst Xue et al. (2021) train a rap
generation model on 272,839 in-domain examples,
infusing knowledge of rhythm afterwards. On the
other hand, Van de Cruys (2020) train on a subset of
CommonCrawl, imposing constraints on topic and

1Our code and resources can be accessed at
https://github.com/tangg555/TwistList

Dataset Train Val Test Total

# Tongue Twisters 1912 106 107 2128
Vocabulary Size 9556 946 880 10358

# Total Phonemes 55 43 46 56
# RAKE Keywords 3333 316 288 3567
# BERTopic Keywords 250 132 160 250

Avg. # Input Keywords (RAKE) 3.16 3.32 3.01 3.16
Avg. # Input Phonemes 5.57 5.83 5.16 5.56
Avg. Tongue Twister Length (Words) 15.01 16.59 13.54 15.01
Avg. # Input Phonemes 26.06 28.25 23.50 26.04

Table 1: The Statistics of TwistList.

rhyme as a priori distributions, whilst Tian and Peng
(2022) train a title-to-keyword module on narrative
texts in addition to a sonnet generation model trained
on news articles and short stories from Reddit. They
imposed literary techniques (simile/metaphor) and
metre/rhyme constraints at decoding time, owing to
the lack of sufficient training data.2

3 Tongue Twister Generation

3.1 Task Definition

We formulate the task of tongue twister generation
as follows: for a given set of keywords, we aim to
generate a tongue twister T , whereby T comprises
a sequence of words {w1,w2,...wn}. The generated
output must satisfy the following constraints: (1) the
output should be semantically related to the input
keywords; (2) the output should show maximal levels
of phonetic overlap across tokens; and (3) the output
should be grammatically valid (Wilshire, 1999). Of
these requirements, phonetic overlap is the most
central to defining text as a “tongue twister”.

3.2 TwistList Dataset

Dataset Construction. We present TwistList, an
annotated dataset of 2.1K+ human-authored tongue
twisters for use by the community. The examples
contained therein come from a variety of sources
available on the web.3 For each tongue twister,
phonetic transcription is provided using the g2p-en
package,4 in addition to keywords extracted with
RAKE and BERTopic to represent the topic of the
tongue twister. Following experimentation with both
RAKE and BERTopic, only RAKE keywords are
used in training due to human preference and issues
regarding the use of BERTopic on short texts (where

2Additionally, there is often a reluctance in computational
creativity to train on examples, under the assumption that the
newly generated content will be overly derivative.

3The source of each tongue twister is stated for each entry.
4https://pypi.org/project/g2p-en/
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frequently no keywords are extracted). The main
statistics of the dataset are presented in Table 1.

RAKE: sells thick socks

BERTopic: short shorts socks sock

Twister: Seth at Sainsbury’s sells thick socks.
Phonetics: [S EH1 TH] [AE1 T] [S EY1 N S B ER0

IY0 Z] [S EH1 L Z] [TH IH1 K] [S AA1
K S]

Table 2: Example from TwistList

Quality Control. Quality control on our dataset
was performed in multiple ways. Firstly, it was
ensured that only sufficiently unique tongue twisters
were kept in the dataset, as determined by removing
examples with over 90% word overlap (rather than
keeping variants of the same tongue twister, such as
“Peter Piper picked a pickled pepper” versus “Peter the
Piper picked...”). Additionally, non-standard spellings
were manually converted to standard US English5

to avoid G2P issues.6 Similarly, tongue-twisters
containing obscure vocabulary (such as medicine and
dinosaur names) were excluded to further minimise
errors. An annotation platform was developed (see
Appendix A.1), with which 3 human evaluators,
who are native speakers of English, were provided
with 100 sampled instances from the dataset to rate
the quality of the resulting tongue twisters and the
associated extracted keywords. The full dataset
contains 2,500+ tongue twisters, of which 2,128 are
kept for training/development/testing after filtering
examples with insufficient extracted keywords and
excessive similarity to existing entries.

To summarise, 3 annotators evaluated the quality
of the dataset, where 88% of assessed tongue twisters
were considered high quality, and 6% considered
“suitable” (Kappa = 0.321). An example from
TwistList is provided in Table 2. As Table 4 shows,
the final dataset can be considered high quality, owing
to fair/moderate levels of approval and agreement
across evaluators. Demographic information of the
evaluators can be found in Appendix A.2.

5For example, where phonetic spellings or letter substitutions
such as “k” for “c” were used for literary and visual effect, such
as “kwik“ for “quick“.

6g2p-en uses the CMU Pronouncing Dictionary to retrieve
transcriptions, which is an American English resource.

3.3 Baseline Models

We present the following baseline models (dubbed
TwisterMisters) for the task of tongue twister
generation on our TwistList dataset:

Finetuned Baselines. For the finetuned baselines,
we chose popular models for language generation,
including GPT-2 (Radford et al., 2019), DialoGPT
(Zhang et al., 2020c), T5 (Raffel et al., 2020), and
BART (Lewis et al., 2020). These were finetuned
with RAKE keywords extracted from human-authored
tongue twisters as the input and the tongue twister
text from TwistList as the target. This was in order
to represent our baselines training on in-domain data.
At inference time, the prompt “Generate tongue
twisters about the keyword(s): X” is used,
where X refers to the input consisting of one or more
RAKE keywords extracted from tongue twisters. The
full training details are given in Appendix A.3. We
also conducted experiments on all aforementioned
baselines without finetuning (i.e., a zero-shot setting),
and the results were very poor. Therefore, we did not
include these results in the paper.

Training-Free Baseline We additionally provide a
TwisterMister baseline that does not require any train-
ing. We utilise OpenAI’s ChatGPT7 with the same
prompt as a zero-shot setting for generation.8 Each re-
quest to ChatGPT was submitted as part of a separate
session, to avoid the effects of extended dialogue influ-
encing outputs. ChatGPT has been utilised in order to
set a practical upper-bound of what may be expected
from models without explicit phonetic knowledge, ow-
ing to its wealth of training data and 175B parameter
architecture.9 It is assumed that ChatGPT’s training
data contains tongue twisters, and therefore it is able
to abstract away the general patterns of such language
in order to provide novel examples (though most
likely based on graphemes rather than phonemes).

4 Experiments

Automatic Evaluation. We present the results
of automatic evaluation on generated outputs and
golden examples in Table 3 for the following metrics:
Perplexity (PPL), BLEU (B-1/B-2) (Papineni et al.,
2002), ROUGE (R-1/R-2/R-L) (Lin, 2004), and
BERTScore Precision, Recall, and F-Measure (Zhang

7https://chat.openai.com/chat
8No direct comparison is made to PANCETTA (Keh et al.,

2022) as no code has been publicly released at the time of writing,
and essential implementation details are absent from the paper.

9ChatGPT based on GPT-3.5, rather than GPT-4.
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Model PPL↓ B-1↑ B-2↑ R-1↑ R-2↑ R-L↑ PO↓ Init-PO↓ BS-P↑ BS-R↑ BS-F↑
GPT-2 8.40 0.007 0.003 1.301 0.123 1.315 0.022 0.020 0.690 0.810 0.744
DialoGPT 3.83 0.038 0.025 7.724 3.610 7.640 0.069 0.089 0.754 0.831 0.790
T5 10.16 0.057 0.038 9.701 4.573 9.574 0.689 0.727 0.795 0.818 0.806
BART 1.65 0.073 0.051 11.883 6.109 10.353 0.075 0.120 0.795 0.845 0.819

ChatGPT N/A 0.200 0.137 36.765 20.659 33.437 0.093 0.157 0.888 0.894 0.883

Table 3: Results of Automatic Evaluation. Golden PO = 0.385 and Golden Init-PO = 0.417. Due to the one-to-many
issue in creative language generation, we acknowledge that the referenced metrics are imperfect.

Choices (%) Sample Quality
High. Suitable. Bad. Kappa

RAKE keywords 82.0 18.0 0.0 0.321
BERTopic keywords 15.0 85.0 0.0 0.445

Tongue Twisters 88.0 6.0 4.0 0.321

Table 4: Kappa refers to Fleiss’ Kappa (Fleiss, 1971). All
results achieve fair or moderate agreement. Good tongue
twisters that are deemed a bit longer (3%) or shorter (3%)
than expected are considered "suitable".

et al., 2020b) (BS-P/BS-R/BS-F). PPL, BLEU and
ROUGE are standard metrics in language generation
to assess quality, whilst BERTScore assesses semantic
similarity to a gold reference. Additionally, we
propose two new metrics, Phonetic Overlap (PO) and
Initial Phonetic Overlap (Init-PO). PO refers to the av-
erage overlap of all phonemes across tokens (# unique
phonemes / # total phonemes), whereas Init-PO is the
ratio of unique word-initial phonemes to the number
of words (# unique word-initial phonemes / # words).

These phonetic metrics reward longer outputs. We
argue that, all things equal, a longer tongue twister is
better than a shorter one as it provides more entertain-
ment and more opportunities for mispronunciation.
Perfect scores on PO and Init-PO can be achieved by
repetition of a single word. Whilst this does not lead
to high quality outputs, these metrics are intended
exclusively to be indicators of the phonetics, rather
than an overall guide to quality. In both cases, higher
levels of overlap results in lower (“better”) scores,
and the highest (“worst”) achievable score is 1.

The results in Table 3 show rather clear scaling,
with the performance ranking on most metrics (except
Perplexity and phoneme overlap) being identical. On
the models explicitly finetuned for this task, GPT-2
is shown to be the worst, whilst BART performs the
best. We hypothesise that GPT-2’s poor performance
is in part due to its simple causal language modelling
objective alongside its decoder-only architecture
(which is also in DialoGPT). Furthermore, whilst
T5 performed well on the automatic metrics, manual

inspection revealed that T5 often misinterpreted the
task from the prompt, choosing to select its own
keywords from the entire prompt, rather than using
only the provided keyword list. On the other hand, the
training-free zero-shot model, ChatGPT, was shown
to perform best on all metrics. This is to be expected
as ChatGPT has over 50x more parameters than any
other tested PLM, with various pre-training objectives
and reinforcement learning, leading to performant
zero-shot capabilities. This further demonstrates that
PLMs struggle to learn phonetic patterns implicitly
from text, especially in English, which has high levels
of irregular orthography. Furthermore, with limited
data, PLMs struggle to learn the unusual probability
distributions underlying tongue twisters, where word
choices are intentionally “twisted”, obscure, and
anti-euphonious. Additionally, due to the wealth of
training data seen by ChatGPT, it is likely that many
examples have been seen during training.

Human Evaluation. Due to tongue twisters being a
creative domain where articulation abilities are tested,
we also perform human evaluation. 3 evaluators were
asked to rate 100 outputs from the best performing
standard baseline (BART), in addition to ChatGPT
outputs and gold examples from TwistList on the
following criteria: Relevance (how relevant the
tongue twister is given the keyword inputs), Fluency
(how grammatically valid the output is), Difficulty of
Articulation (how difficult a tongue twister is to say),
Cohesion (how much sense the output makes), and
Entertainment Value (how entertaining the output is,
considering sounds and semantics). All ratings were
on a 5-point Likert scale. Evaluator demographics
and training materials are in Appendix A.2.

The mean scores of human evaluation (Table 5)
fall in line with expectations, with golden examples
performing best on all metrics, and ChatGPT placing
second on all but Difficulty of Articulation.10 BART
is able to produce outputs that are deemed to be the

10We exclude relevance for the golden examples as these were
collected from the web, not elicited with keyword prompts.
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Score (1 to 5) Human Evaluation
BART ChatGPT Golden

Relevance 4.667∗ 4.971† N/A
Difficulty of Articulation 4.143∗ 4.102∗ 4.291∗

Fluency 3.028∗∗ 4.915∗∗ 4.938∗∗
Coherence 3.217∗ 4.798∗ 4.909∗

Entertainment Value 3.269∗ 4.070∗ 4.254∗

Table 5: Results of Human Evaluation. The best scores are
in bold, and the second best are underlined. We calculate
Fleiss’ Kappa for each metric, and mark the agreement
fair∗, moderate∗∗ and substantial†.

second most difficult to articulate, which we infer
may be the result of slight morphological variants
of input keywords being used repeatedly, making
distinguishing between them during articulation quite
challenging (whilst not being able to exploit deeper
phonetic relations). The moderate score on Fluency
(3.028) suggests instances of poor grammar may also
hinder articulation abilities when expected grammat-
ical structures are not found, leading to an interaction
between grammatical validity and articulatory
difficulty. Additionally, ChatGPT scoring the lowest
for articulatory difficulty may be due to occasionally
misunderstanding the requirements of a tongue twister,
sometimes producing rhymes or standard prose (see
Appendix A.4). However, ChatGPT scores well for
Relevance and Fluency, highlighting its capability in
producing high-quality coherent language. Perhaps
most interestingly, none of the BART score averages
on any human evaluation criteria fall below 3 (“neither
agree nor disagree”). This performance is therefore
quite good for a model finetuned on only 2128
examples, with no additional phonetic knowledge.

Input assistant assist

GPT-2 assistant assist assistant assist assistant

DialogGPT assistant assistant assistant assistant
assistant assistant assistant assistant

T5 assistant assist assistant

BART A assistant assist is an assistant assist,
assistants assist to assist assistants.

ChatGPT Assistant ants assist ants in carrying leaves
to the ant hill.

Golden If I assist a sister-assistant, will the sister’s
sister-assistant assist me?

Table 6: Example outputs for the input "assistant assist".
"Golden" refers to the human-authored tongue twisters.

5 Case Study

Within the example in Table 6, GPT-2 resorts to
simply repeating the input, successfully achieving
phonetic overlap, but failing to be grammatically
valid or particularly sophisticated. This pattern is
also demonstrated by DialoGPT and T5. Conversely,
BART is able to introduce tokens unseen in the
input to create an almost grammatically valid
output (the primary mistake being indefinite article
agreement, where in the first instance “an” would
have been correct, rather than “a”). BART’s output
is also semantically and logically coherent, with
“A assistant assist is an assistant assist” being valid
(yet redundant), and “assistants assist to assist
assistants” also being comprehensible. This example
demonstrates why evaluators with high English
proficiency and language/linguistics education were
selected, as the same word may have different parts
of speech, creating outputs that seem grammatically
invalid, but do actually follow the rules of English.11

Further investigation is needed to ascertain whether
the models are intentionally exploiting this lexical
ambiguity, or if human evaluators are demonstrating
apophenia, where patterns are found in what is
effectively noise (Brugger, 2001). Finally, ChatGPT
utilises morphology to exploit the similarity of
the plural noun “assistants” and the phrase “assist
ants”, and provides a continuation that is in line
with the expected behaviour of ants. In comparison
to the golden example, ChatGPT’s output may be
considered more interesting topic-wise, at the expense
of not being as phonetically complex (“carrying leaves
to the ant hill” contributes heavily to semantics, whilst
not being recognisable as part of a tongue twister).
For further analysis, please see Appendix A.4.

6 Conclusion

We present work on the topic of tongue twister genera-
tion, a form of phonetically-constrained language gen-
eration that aims to maximise phonetic overlap, whilst
conveying meaningful semantics. We motivate the
potential application domains for such generated lan-
guage, and provide a large annotated dataset of tongue
twisters, TwistList, to encourage further work. Finally,
we present a series of benchmark models alongside au-
tomatic/human evaluation to assess generation quality.

11https://en.wikipedia.org/wiki/Buffalo_buffalo_
Buffalo_buffalo_buffalo_buffalo_Buffalo_buffalo
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Limitations

Whilst the system presented within this paper is capa-
ble of allowing human-in-the-loop contributions (via
selecting the input keywords on which to condition
the output), it is not able to produce tongue-twisters
that take advantage of particular features of speech
sounds such as place and manner of articulation, in
order to create more advanced outputs that exploit
phonetic relatedness (rather than exact matches). The
same can be said of our proposed metrics, PO and
Init-PO, which do not account for phonetic similarity
across sounds that share manner/place of articulation
(e.g. "she sells sea shells"). Additionally, whilst
commonly known tongue twisters may follow a
particular format (e.g. rhyme schemes), such schemes
and templates have not been enforced here. We also
do not demonstrate the capabilities of these systems if
they were trained on phonetic transcriptions explicitly,
as we only aim to assess their performance when
training on graphemes in standard orthography.

Ethics Statement

All use of human participants in this study has been
approved by the Ethics Board of the primary author’s
institution, including the disclosure of demographic
information. Regarding the generation of tongue
twisters, language generation is a necessarily creative
domain that has the ability to reproduce content that
some individuals may find offensive. Care was taken
to check outputs in the human evaluation set for any
such materials, and if they had been produced, they
would have been removed from the evaluation set.
Additionally, no egregiously offensive material has
been provided in the TwistList dataset. However, the
distinction between offensive and humorous content is
a highly complex topic, and therefore some examples
within the dataset may not be suitable for all individu-
als (e.g. suggestive content and swearing, such as "I’m
not the pheasant plucker, I’m the pheasant plucker’s
son", and the clear relation to common expletives).
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A Appendices

A.1 Dataset Quality Control
An annotation platform was developed as shown in
(Figure 2).

A.2 Human Participants
Due to tongue twisters being highly reliant on
articulation abilities, the demographics of the
human participants used within this work are
highly important. Additionally, tongue twisters are
also a form of humour and entertainment, where
individual perceptions of what may or may not be
considered humorous or entertaining differ according
to numerous factors. In an effort to remain as
transparent as possible, and follow best practices for
human evaluation, relevant demographic information
of participants are outlined below (with the necessary
requisite permission and ethical approval).

Dataset Evaluation All evaluators involved in
the quality control process of the TwistList dataset
are native speakers of English, and either have or
are working towards University level qualifications.
Additionally, 2 of the 3 evaluators have extensive
education in linguistics or modern languages. No
monetary incentive was provided.

Generation Evaluation All evaluators involved
in the evaluation of the quality of generated tongue
twisters are native speakers of English, and either
hold or are working towards University level quali-
fications in Linguistics, Modern Languages or NLP.
Additionally, all evaluators cited the United Kingdom
as their country of socialisation, and no participants
reported language processing difficulties that could
affect results. No monetary incentive was provided.

Materials Provided to Human Participants
Additionally, all evaluators for both the dataset and
generation outputs were presented with calibration ex-
amples to demonstrate the sort of outputs that would
be presented, and the logic behind particular scores,
in order to minimise individual interpretations of the
scoring criteria. All evaluation was performed on a
custom made online annotation platform (Figure 3).

A.3 Training Details

All pre-trained models used (naturally excluding
ChatGPT) are based on publicly available checkpoints
from Hugging Face.12 Models are trained for up
to 5 epochs on a Tesla A5000 machine with the
best checkpoints selected based on the validation
loss. The batch size is set to 32, and the learning
rate is 8e−5, with the Adam optimiser selected for
training. To help the loss curve converge on our small
few-shot dataset, we limit the generation length to
100 (covering all test tongue twisters). Meanwhile,
the source length is limited to 150. The training and
testing steps are set up with the implementation of
the PyTorch Lightning13 framework to guarantee the
reliability of the experiment. All language models are
fairly trained and tested with the same steps.

A.4 Further Qualitative Comments

Whilst the pattern of extreme word repetition is seen
in many of the finetuned models (often with the excep-
tion of BART, which is demonstrated to be capable of
producing slightly more sophisticated outputs), overall
assessment of the tongue twisters produced at infer-
ence time reveals interesting patterns, particularly in
regard to ChatGPT outputs. Firstly, the limits of Chat-
GPT are made apparent in a few examples such as the
input "silver shiny ship sank" generating "How much
wood would a woodchuck chuck if a woodchuck
could chuck silver shiny ships?", a clear derivation of
a famous woodchuck related tongue twister that it is
rather safe to assume appears multiple times in Chat-
GPTs training material. Additionally, comments from
evaluators also reveal that ChatGPT’s output is often
considered more of a rhyme or general literary text,
rather than specifically a tongue twister. However,
examples such as these are also found in the human-
authored golden examples, demonstrating that there is
no steadfast consistent opinion as to what constitutes a
(good) tongue twister. Likewise, some examples may
contain large amounts of sound repetition, but not in
a way that necessarily presents articulatory difficulty.

A.5 Future Works

In this paper, we mainly analyse the performance
of large-scale pretrained language models (PLMs)
on Tongue Twister Generation, and propose a
corresponding dataset for further investigation. In
further works, we aim to propose novel models
which can better leverage phonetic symbols. There

12https://huggingface.co/models
13https://www.pytorchlightning.ai/
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Figure 2: TwistList Quality Control Annotation Platform

Figure 3: Human Evaluation Platform for Generated Outputs

are numerous existing works (Huang et al., 2022;
Tang et al., 2022a,b) that provide approaches for
injecting such knowledge into PLMs. However,
the phonetic features differ from these text-format
knowledge items, as phonemes are hard to encode
with input text tokens when feeding into PLM
encoders. Another promising approach is to explicitly
model the phonetic features into text sequences (Tang
et al., 2022c), though there is no observed method for
transforming phonetic notation. We intend to perform
further research based on these existing approaches.
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