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Abstract

Measuring semantic change has thus far re-
mained a task where methods using contextual
embeddings have struggled to improve upon
simpler techniques relying only on static word
vectors. Moreover, many of the previously pro-
posed approaches suffer from downsides re-
lated to scalability and ease of interpretation.
We present a simplified approach to measuring
semantic change using contextual embeddings,
relying only on the most probable substitutes
for masked terms. Not only is this approach di-
rectly interpretable, it is also far more efficient
in terms of storage, achieves superior average
performance across the most frequently cited
datasets for this task, and allows for more nu-
anced investigation of change than is possible
with static word vectors.

1 Introduction

Measuring semantic change is one of the few areas
of NLP where contextual embeddings have not yet
led to a definitive improvement over previous meth-
ods. In particular, the commonly used approach
of aligning static embeddings trained on different
time periods (Hamilton et al., 2016b) continues to
be a surprisingly hard to beat baseline.

Given that contextual embeddings provide a rep-
resentation for each occurrence of a word in con-
text, they would seem to be ideally suited to a more
nuanced investigation of semantic change. Most at-
tempts to leverage them for this purpose, however,
produce quantitatively worse results, while being
less interpretable and requiring more resources.

Here, we present a simplified and improved ap-
proach to scalable, interpretable, semantic change
detection using contextual embeddings. Inspired by
Eyal et al. (2022), we work only with the most prob-
able replacements for masked words, and measure
semantic change in terms of the distributions of re-
placements in each time period. Not only does this
better match human judgements, it is highly space

efficient, works seamlessly for out-of-vocabulary
words, and helps intuitively characterize meaning
change and variation.

2 Background

Measuring semantic change involves a set of tasks
related to determining if and how a term’s meaning
has changed over time. Here, we focus on the task
of measuring the amount of change that has oc-
curred from one time period to another (Gulordava
and Baroni, 2011; Schlechtweg et al., 2020).1

Existing approaches to this task are mostly of
two types. The first is associating each term with a
single vector per time period and measuring the dis-
tance between vectors, of which we take Hamilton
et al. (2016b) to be representative. As a variation
on this, several authors have proposed averaging
the output of contextual embedding models to get a
single vector per term in each time period, but this
has generally not led to an improvement over using
static vectors (Martinc et al., 2020a; Kurtyigit et al.,
2021; Liu et al., 2021). A related approach is to
represent words in terms of their nearest neighbors
using static word vectors (Hamilton et al., 2016a;
Gonen et al., 2020), but this does not show a clear
improvement over other static embedding methods
(Montariol et al., 2021).

A second type of approach begins with vari-
ous methods for word sense induction, then mea-
sures change in terms of the relative prevalence
of a term’s different senses (Frermann and Lapata,
2016; Hu et al., 2019; Arefyev and Zhikov, 2020;
Arefyev and Bykov, 2021). In some cases, authors
simply cluster contextual representations for each
term, and measure differences in the distributions
of clusters between two time periods, rather than
dealing with explicit word senses (Giulianelli et al.,
2020; Martinc et al., 2020b; Montariol et al., 2021).

1For surveys of computational approaches to lexical seman-
tic change detection, see Kutuzov et al. (2018), Tang (2018),
and Tahmasebi et al. (2021).
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Despite the additional information provided by
contextual embedding models, methods using type
embeddings (as opposed to token), continue to be
competitive. For example, on the recent SemEval
multilingual semantic change detection task, none
of the top four systems used token embeddings
(Schlechtweg et al., 2020). Methods using contex-
tual embeddings have done better on some more
recent mono-lingual shared tasks (Kutuzov and
Pivovarova, 2021; Zamora-Reina et al., 2022), but
have not yet been evaluated with a consistent setup
across multiple languages.

3 Methods

Building on Eyal et al. (2022), we represent each
token in the corpus (or a sufficiently large sample of
them) by a small set of probable replacement terms
from a contextual embedding model. However,
whereas Eyal et al. (2022) did this for the purpose
of word sense disambiguation, we do so for the
purpose of measuring semantic change.

For each sampled occurrence of each term, we
mask the term of interest, feed the masked context
through a model, and obtain the predicted token
probabilities corresponding to the mask token.2

From these, we save only the top-k most proba-
ble words (excluding stopwords and partial word
pieces), and discard the rest.

For a given term in a particular time period, we
then count how many times each word in the model
vocabulary has appeared as a top-k replacement for
that term, and normalize this by its sum, giving us
a distribution over replacements. To obtain a raw
score of semantic change between two time peri-
ods, we compute the Jensen-Shannon Divergence
(JSD) between the two distributions representing
the same term in different time periods. However,
as we show below, the raw JSD scores are strongly
correlated with term frequency. Thus, to obtain a
scaled metric, we convert the raw JSD scores into
a quantile, comparing the raw score for a term of
interest to other terms with similar frequency.

Compared to saving the full output vector per
token, this approach only requires a miniscule
amount of storage per token, and thus does not
require the kind of heuristic dropping of tokens em-
ployed by Montariol et al. (2021). In addition, the
dominant meanings of a word in each context can
be summarized by the terms which occur most fre-

2Words that get tokenized into multiple word pieces are
replaced by a single mask token.

quently among the top-k replacements. Although
such replacements are limited to the terms which
exist in the model vocabulary, in practice this is
sufficient to represent a nuanced set of meanings,
and works even for words which get tokenized into
multiple word pieces, as we show below.

More formally, given two corpora C1 and C2,
let the count of token v as a top-k replacement for
term t in corpus c be:

count(v, t, c) = Σ
Nc(t)
i=1 I[v ∈ R(t, i, k)], (1)

where R(t, i, k) is the set of top-k most probable
replacements for occurrence i of term t (excluding
stopwords and partial word pieces in the model
vocabulary), and Nc(t) is the number of sampled
occurrence of term t in corpus c.3

Let ∆c
t by the distribution of top-k replace-

ment counts for term t in corpus c, obtained by
dividing the corresponding vector of counts (i.e.,
[count(·, t, c)]) by the sum over the model vocabu-
lary. The raw change score for term t is given by
the JSD between the two distributions:

raw(t) = JSD
(
∆C1

t ,∆C2
t

)
. (2)

Finally, we correct for frequency effects by
rescaling the raw JSD scores against the scores
for terms with similar frequency as the target term,
giving us a quantile scaled in [0, 1]:

scaled(t) = Σs∈T (t)I[raw(t) ≥ raw(s)]/|T (t)|,
(3)

where T (t) is the set of terms with similar fre-
quency to term t (excluding term t itself). More
specifically, we compare against all terms within a
fixed factor of the target frequency:

T (t) = {s : fr(t)/F ≤ fr(s) ≤ fr(t)× F, s ̸= t},
(4)

where fr(t) is the frequency of term t in the corpus,
with window factor F .

4 Experiments

To evaluate our method we make use of datasets for
which there have been prior evaluations of meth-
ods across multiple languages, following standards
established by past work for the sake of a head-to-
head comparison.4

3Unlike Eyal et al. (2022), we do not combine probabilities
for different forms of the same lemmas in the model vocabu-
lary. In addition, we do not exclude the target term from the
top-k replacements, except implicitly for terms which get split
into multiple word pieces.

4Code to replicate these experiments is available at
https://github.com/dallascard/SBSCD
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4.1 Data

We use five datasets with words labeled in terms of
semantic change between two time periods. Four
of these are from SemEval 2020 Task 1: Unsu-
pervised Lexical Semantic Change Detection (SE;
Schlechtweg et al., 2020). These datasets contain
31 to 48 terms from four languages, graded in terms
of change by human raters, along with accompa-
nying corpora to be used in estimating the amount
of change. The fifth dataset (GEMS) comes from
Gulordava and Baroni (2011), and contains 100
words labeled in terms of semantic change from
the 1960s to 1990s. As with most recent papers
which use this dataset, we use the Corpus of His-
torical American English (COHA; Davies, 2010)
for measuring change in the GEMS words.

4.2 Experimental Details

For each dataset, we fine tune an appropriate BERT
model to the union of the two associated unlabeled
corpora using continued masked language model
training with the HuggingFace transformers
package. We then index the corpora to find all oc-
currences of each word. For all target words, along
with a random set of 10,000 background terms, we
randomly sample up to 4,000 occurrences of each
from the associated corpora. We process all sam-
pled tokens as described above to obtain and store
the top-k replacements for each, with k = 5. Us-
ing the replacements obtained from the model, we
compute raw JSD scores for each term. Finally,
we convert these to scaled scores by comparing to
the background terms that have frequency within a
factor of two of the target term (i.e., F = 2).

Following past work, we evaluate using Spear-
man correlation with human ratings, comparing
against the best results from recent papers. In par-
ticular, we include two results based on slight varia-
tions on Hamilton et al. (2016b), one of which was
the best performing method in the SemEval compe-
tition (Pömsl and Lyapin, 2020), as well as meth-
ods using contextual embeddings (Martinc et al.,
2020b; Montariol et al., 2021). For fully experi-
mental details, please refer to Appendix A.

4.3 Results

Full results are given in Table 1. Although our
method is not uniformly better than all previous
methods on all dataset, it does produce the best re-
sult on average, as well as improvements on GEMS,
SE English and SE Latin.
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Figure 1: Top: Raw JSD scores for both target and
randomly chosen background terms in the SE English
dataset, plotted against term counts. Bottom: Human rat-
ings for SE English, plotting against scaled JSD scores,
along with a fitted regression line (solid) and the 1:1
diagonal (dotted). Select terms in Table 2 are labeled.

As an example to better understand these results,
the raw JSD scores from our method are shown in
Figure 1 (top) for the SE English data, with select
terms labeled. As can be seen, there is a strong
relationship between term frequency and raw JSD,
hence the need to rescale the raw scores relative to
terms with similar frequency. After rescaling, we
see a strong correlation between our final semantic
change scores and the human ratings, as shown in
Figure 1 (bottom) for the SE English data.

As with the approach of Hamilton et al. (2016b),
our method supports direct interpretation of seman-
tic change. To understand the change in a word’s
typical usage, we can look at the overall most com-
mon replacements from each time period. Table 2
shows the scores and rankings of several selected
terms from SE English, along with the most com-
mon substitutes from each time period.

Looking at the results, we can see, for example,
strong agreement with human annotators on a dra-
matic change in the meaning of plane (comparing
1810–1860 vs. 1960–2010), from the geometric
concept to the flying machine. On the other hand,
our results suggest that human raters may have
slightly underestimated the amount of change in
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GEMS SE Eng SE Ger SE Lat SE Swe Average Average (weighted)
Number of words 96∗ 37 40 48 31
Static Embedding Methods
Pömsl and Lyapin (2020) - 0.422 0.725 0.412 0.547 - -
Montariol et al. (2021) [static] 0.347 0.321 0.712 0.372 0.631 0.477 0.452
Contextual Embedding Methods
Martinc et al. (2020b) 0.510 0.313 0.436 0.467 -0.026 0.340 0.394
Montariol et al. (2021) [contextual] 0.352 0.437 0.561 0.488 0.321 0.432 0.422
Scaled JSD 0.535 0.547 0.563 0.533 0.310 0.498 0.514

Table 1: Spearman correlation results on five datasets, including both an unweighted average and an average
weighted by number of words. Pömsl and Lyapin (2020) was the best submission from SemEval 2022 Task 1, but
did not evaluate on GEMS. Montariol et al. (2021) included results using static vectors, as well as several variations
on their own method using contextual embeddings, of which we take the one with the highest average performance.
Martinc et al. (2020b) only evaluated on GEMS, so we report the replication results from Montariol et al. (2021).
∗We exclude four terms from GEMS to match past work; for full results on GEMS, please refer to Appendix D.

Word SE
rating

SE
rank

Scaled
JSD

Scaled
JSD rank

Corpus A substitutes (1810–1860) Corpus B substitutes (1960–2010)

plane 0.88 1 0.97 1 plane line planes point surface lines plane aircraft planes jet airplane car
graft 0.55 4 0.97 2 tree plant stock vine fruit wood corruption bribery fraud crime violence
tip 0.68 2 0.85 7 tipped tip covered end filled tips give tip tips end tipped edge point top ends
gas 0.16 23 0.72 14 gas gases vapor air fire water gas gasoline oil gases fuel water air
head 0.30 10 0.68 16 head face hand heads hands eyes head face heads hand body hands eyes
bit 0.31 9 0.51 23 bit piece sort little pieces bits kind bit little lot touch tad piece bits pieces
fiction 0.02 35 0.41 27 fiction history literature art poetry fiction fact fantasy story stories novels
tree 0.07 33 0.22 33 trees tree plants branches plant wood trees tree plants woods branches bushes
ounce 0.28 11 0.08 37 ounce inch pounds hour acre dollars ounce pounds inch inches cups pieces

Table 2: Example terms from the SE English dataset, showing the most common substitutes from our approach.

the meaning of graft, which was previously used
mostly in reference to vegetation, but now most
commonly refers to corruption.5

By contrast, ounce may be a case where our
method has underestimated the change that has
taken place. Older usages seem to map more gener-
ically to a wider range of quantities (hence the ap-
pearance among the early substitutes of hour, acre,
and dollars), whereas modern usage seems more
restricted. Indeed, we do find some difference in
the distribution of substitutes between the two time
periods, but less of a difference than is typical for
words with similar frequency, hence the low final
score from our method (see Figure 1).

Although we do not emphasize it in this paper,
of our method can easily be combined with the
approach of Eyal et al. (2022) to further investi-
gate meaning changes, by inferring senses from
the term replacements, and looking at how their
usage varies by time period. In particular, for each
target term, we can construct a graph from the set
of term substitutes (as nodes), where edge weights
represent the number of top-k clusters in which two

5Note that because graft is not a term in the BERT vocabu-
lary, the term itself does not appear as a potential substitute,
but the results remain interpretable nonetheless.

substitutes co-occur. Following Eyal et al. (2022),
we experiment with Louvain community detection
to identify sense clusters from these graphs for each
term of interest, and use Jaccard similarity to asso-
ciate each mention with a sense cluster, based on
substitute overlap (see Appendix A for details).

Inspecting the distribution of these senses over
time helps to distinguish the gradual adoption of
existing senses from the creation of new ones. For
example, the most common sense of plane is cap-
tured by the sense cluster {aircraft, jet, airplane,
car}, and as expected, this sense is not found in the
1810–1860 English data, except for two instances
which appear to be errors in the inferred sense. By
contrast, the second most common sense—{planes,
line, point, surface}—appears in both time periods,
but is much more common in the earlier time.

This approach also provides more insight into
how the meaning of graft has changed. The most
common sense cluster is the horticultural meaning
{tree, plant, stock, vine}, and this meaning occurs
in both time periods, but is much more common
in the earlier one. A second cluster, corresponding
to illicit activity—{corruption, violence, bribery,
fraud}—occurs only in the later time period. This
clustering method also surfaces a third sense with
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a medical meaning—{transplant, surgery, disease,
drug}—which is not revealed by the top few overall
most common replacements given in Table 2.

5 Discussion and Related Work

As noted by others, new and larger datasets for
rigorously evaluating semantic change are badly
needed (Tahmasebi et al., 2021). Existing datasets
are relatively small, and are mostly based on in-
specting a limited number of examples per term.
Unfortunately, determining ground truth for seman-
tic change is challenging, and producing such re-
sources is costly. Ideally, future datasets for evalua-
tion should be larger, both to allow for more robust
evaluation, and to have sufficient targets for both
hyperparameter tuning and evaluation.

In addition to the dataset we have used in this
paper, two others are available from shared tasks
on Spanish and Russian, respectively (Kutuzov
and Pivovarova, 2021; Zamora-Reina et al., 2022).
Both of these are comparable in size to the GEMS
dataset used here. Unfortunately, they are less
useful for evaluation because most submissions
to these shared tasks only evaluated on the task
data, and not on other datasets. As shown by the
replication of Martinc et al. (2020b) in Montariol
et al. (2021), a method can sometimes perform well
on one language but fail to generalize to others. As
such, we have based our evaluation on datasets
for which there has been a consistent evaluation
of methods across multiple languages. As future
work, a careful replication study of all methods
from each competition on all available datasets,
including an assessment of sensitivity to hyperpa-
rameters, would be highly informative.

Besides Eyal et al. (2022), The closest prior work
to ours is Kudisov and Arefyev (2022), who use
dynamic patterns to generate many variations on
example usages sampled from the given corpora.
These variations are then used to generate hun-
dreds of replacement terms from a masked lan-
guage model with associated probabilities. These
probabilities are averaged (heuristically combin-
ing replacements with differing numbers of word
pieces) to obtain a mean vector for each sampled
instance. Finally, semantic change is computed as
the average cosine distance between all pairs of
vectors across corpora. This method was evalu-
ated as part of the LSCDiscovery shared task on
Spanish (Zamora-Reina et al., 2022). Preliminary
work on this method was described in Arefyev and

Bykov (2021), where a slightly different version of
it was evaluated on the RuShiftEval shared task on
Russian (Kutuzov and Pivovarova, 2021).

Compared to Kudisov and Arefyev (2022), our
approach is considerably simpler, and better suited
to storing representations of a complete corpus for
subsequent analysis and exploration. In particular,
we only consider a small number of substitutes for
each example (storing only the top-k most prob-
able terms, without the associated probabilities).
We do not use dynamic patterns, and only consider
terms in the model vocabulary as potential substi-
tutes. We also associate each term with a single
distribution over the model vocabulary per time
period (not per mention), and use Jensen-Shannon
divergence to more naturally measure the distance
between distributions. Importantly, we also correct
for frequency effects, as described above.

Although our approach avoids the onerous stor-
age requirements of methods which save full con-
textual vectors, it still requires considerable pro-
cessing time to obtain the top-k replacements for
all tokens. Future work could explore smaller or
more efficient models for this purpose.6

Finally, despite its simplicity, measuring the co-
sine distance between aligned static vectors re-
mains a strong and efficient baseline (Hamilton
et al., 2016b). More work is needed to determine
where contextual embeddings can offer sufficient
advantage in measuring semantic change to justify
their greater computational cost.

Compared to static embeddings, our approach
is weakest on the German and Swedish datasets,
which could relate to the quality of the pretrained
models that are available for those languages, the
data used for pretraining, or perhaps issues that
arise in tokenization of the reference corpora. For
a tentative exploration of some possible factors,
please refer to Appendix C.

6 Conclusion

We have presented a simplified and improved ap-
proach to measuring semantic change using con-
textual embeddings, based on the Jensen-Shannon
Divergence between the distributions of the most
probable replacements for masked tokens in differ-
ent time periods, corrected for frequency effects.
This approach achieves superior performance on av-
erage, while remaining directly interpretable, with
vastly reduced storage requirements.

6See Appendix B for results using various model sizes.
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Limitations

There are several limitations to this work which
should be kept in mind. First and foremost, the
datasets for evaluating the measurement of seman-
tic change are relatively small, meaning that any
estimates of correlation with human judgements
will be relatively high variance. In addition, al-
though the SemEval data includes text from four
languages, there is no guarantee that these methods
will work as well as they do on other languages
or other time periods. Moreover, our approach de-
pends on the use of pretrained language models,
and the quality (or existence) of these and other
relevant resources will vary by language.

In addition, like all methods, our approach in-
volves numerous small choices, such as the num-
ber of background terms to sample, the number of
samples taken, and the value of k in choosing top
substitutes. We have kept our choices for these con-
sistent across all five datasets, and these values have
not been tuned. As such, different choices could
result in better or worse correlation with human
judgements. It is also worth noting that the hu-
man judgements collected by the creators of these
datasets may involve errors or noise. It is possible
that a different sample of data, or having differ-
ent people evaluate the same data, would produce
different judgements.

For exploring the variation in word meanings,
we have used the approach of Eyal et al. (2022) di-
rectly, with the only differences being that we mask
terms of interest (allowing us to work with terms
that do not exist in the model vocabulary), and
do not combine multiple forms of lemmas when
getting the top-k terms. We adopt this approach
because it is especially easy to combine with our
own work, but different methods for word sense
induction might lead to different conclusions about
the different meanings of a term that existed in any
particular time period. In addition, any conclusions
drawn are necessarily limited to the corpora that
are used, most of which will be a highly biased
sample of all text that was produced by all people
for any given period of time.

Ethical Considerations

This work only uses well established datasets for
the purposes for which they were designed (study-
ing changes in languages and evaluating measure-
ment of semantic change), thus poses few ethical
concerns that did not already exist for these data.

Nevertheless, it is worth emphasizing that all of
methods discussed in this paper only return, at best,
a noisy estimate of semantic change. Words are
used differently by different people, and attempts
to measure changes in language inevitably sim-
plify the diversity of uses into a single number,
which discards a great deal of nuance. As such, any
work applying these methods to measure semantic
change should be aware of their limitations and
proceed carefully.
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A Experimental Details

For each dataset, we use a BERT model, prefer-
ring a high quality monolingual model where
available. For GEMS and SE English, we use
bert-large-uncased. For SE Latin we
use bert-base-multilingual-uncased,
deepset/gbert-large for SE German,
and KB/bert-base-swedish-cased for
SE Swedish, with all models available through
HuggingFace. In all cases, we first adapt the model
to the dataset by doing continued masked language
model training for five epochs on the union of the
two associated corpora.

For the SemEval data, the corpora are provided
in both raw and lemmatized formats, with the tar-
get terms given as lemmas. Because the contex-
tual embedding models have been trained on non-
lemmatized text, we prefer to embed mentions
using the raw (non-lemmatized data). However,
because of uncertainty about how the raw text
was lemmatized, we begin by aligning the lem-
matized data to the non-lemmatized text. We then
index terms in the lemmatized data (for both tar-
get terms and random background terms), and then
map these indices to indices in the corresponding
non-lemmatized data, which we then sample to get
replacements.

To do the alignment, we begin by tokenizing the
text, and then removing the punctuation from both
the lemmatized and non-lemmatized text, storing
indices to allow mapping back to the original token
sequences in the non-lemmatized data. For each
pair of texts (a raw and a lemmatized form), we first
identify tokens that occur exactly once in each, and
align the positions of these to each other, as long as
the ordering of these tokens is consistent. We then
recursively do this for the subsequences between
each adjacent pair of aligned tokens. Given these
landmark alignments, (using exact matches), we
then attempt to align all remaining substrings be-
tween each pair of aligned tokens, (adding padding
tokens as necessary), using Levenshtein distance
as a heuristic way to evaluate possible token align-
ments. Finally, we do a post-alignment correction
to consider inserting a padding token in each posi-
tion to correct for occasional off-by-one errors, and
taking the best scoring overall alignment.

By inspecting the target tokens in the raw (non-
lemmatized text) that are obtained using this align-
ment (based on indexing target terms in the lem-
matized version, then mapping these indices to

the non-lemmatized text using the alignment), we
find that the vast majority of mentions are properly
aligned. To eliminate the small number of align-
ment errors, we only keep tokens that are at least
two characters in length where the non-lemmatized
form comprises at least 0.02% of the total number
of indexed terms for a given lemma, and where the
first letter of the indexed token matches the first
letter of the target lemma. To account for a small
number of special cases (such as examples in SE
Latin where a word sometimes starts with “j” and
sometimes with “i”, (presumably due to OCR er-
rors), we create a handful of exceptions to the first
letter rule. For full details of this alignment process
and exceptions, please refer to replication code.7

In addition, for the SE English data, target terms
(only) are given with specific part of speech tags.
However, to better match a random sample of back-
ground lemmas, we ignore part of speech in our
experiments, and index all occurrences of each tar-
get term in the lemmatized data. Future work could
explore the impact of restricting measurements to
certain parts of speech, both for target and back-
ground terms.

For GEMS, where the targets are not lemmatized,
we ignore lemmatization and simply sample from
all exact matches of the target terms as tokens in the
raw text. As with past work, we combine the mul-
tiple annotations for the GEMS data by averaging
their scores.

All masked tokens are fed into the appropriate
model with up to 50 tokens to either side from the
original context, which returns a probability distri-
bution over the model vocabulary. When comput-
ing the top-k most probable substitutes, we follow
Eyal et al. (2022) and exclude stopwords and par-
tial word pieces (i.e., those that start with ##). For
GEMS and SE English, we use the stopword list
from the Snowball stemmer.8 For SE Latin, we
use a Latin stopword list from the Perseus Digital
Library.9 For SE German and SE Swedish, we use
the respective stopword lists from NLTK.10

For the exploration of sense clusters in the main
paper using Louvain community detection, we
use the same data as used in measuring semantic
change, keeping k = 5, but we exclude the target

7https://github.com/dallascard/SBSCD
8http://snowball.tartarus.org/

algorithms/english/stop.txt
9https://www.perseus.tufts.edu/hopper/

stopwords
10https://www.nltk.org/
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term itself when gathering the top-k substitutes.11

We then construct a weighted graph for each tar-
get term, where nodes represent substitutes, and
edge weights correspond to the number of top-k re-
placement sets in which each pair of replacements
appear together.

To obtain sense clusters, we use the imple-
mentation of Louvain community detection in
networkx with default parameter settings, to de-
tect clusters in the graph.12 Finally, we associate
each instance of a target term with a correspond-
ing cluster using Jaccard similarity between the
instance’s set of top-k replacements and the terms
in the cluster.

All of these experiments were run on either an
NVidia RTX A6000 or A5000 GPU.

B Alternative Models

In order to investigate the effect of model size on
the performance of our approach to measuring se-
mantic change, we try a range of model sizes for
BERT on the English datasets, all available from
HuggingFace. The results are shown in Table 3.
As can be seen, there is a clear correlation between
model size and task performance for the SE En-
glish data, but this is not the case for the GEMS
dataset, perhaps because the COHA corpora used
for GEMS provides longer contexts for term men-
tions (see Appendix C).

We also demonstrate the effect of using a mul-
tilingual model, rather than a language specific
model, for all datasets other than SE Latin (for
which we are already using a multilingual model
in the main paper). As can be seen in Table 4, the
multilingual model uniformly results in worse per-
formance, demonstrating the importance of having
a strong language-specific model for measuring
semantic change in this way.

C Exploring Performance Differences
Across Languages

Using the method presented in the main paper, our
results were better than using static word vectors
for English and Latin, but worse for German and
Swedish. Unfortunately, we do not yet have a satis-
factory explanation for this discrepancy in perfor-
mance. Notably, other approaches using contextual

11In practice, this is done by initially saving the top-(k+ 1)
substitutes, and dropping the target term for the purpose of
clustering, where necessary.

12https://networkx.org/

embeddings (e.g., Montariol et al., 2021), have also
performed worse on these languages (relative to ap-
proaches based on Hamilton et al., 2016b).

Several possible explanations suggest them-
selves for why methods based on contextual embed-
dings might struggle. For example, tokenization
used for these models breaks some words into mul-
tiple word pieces, which is not an issue for static
embeddings. Another consideration is the amount
of context in which the examples occur in the ref-
erence corpora (since static vectors typically only
use very small context windows, whereas contex-
tual embedding models are capable of using much
longer contexts). We might also consider factors
relevant to all methods, such as the number of ex-
amples given for each target term, or the number of
different word forms in which each lemma occurs
in the corpora provided.

Although several of these factors perhaps help to
explain why performance on English is especially
good (relative to static vectors), they do not pro-
vide a convincing way to explain the differences in
performance observed on the other languages. In
particular, the SE English data has the highest pro-
portion of target words that occur in the model vo-
cabulary (without being broken into multiple word
pieces), and these lemmas occur in text using the
fewest number of surface forms per target.

By contrast, the other languages tend to have
more surface forms, on average, with fewer of the
target terms occurring in the corresponding model
vocabulary, but Swedish is mid-range on the later
(with German being lowest). Latin, by contrast,
tends to have more examples of target terms per
corpus in both time periods (with German again the
lowest), but Swedish is between English and Latin.
The Swedish model does have a larger vocabulary,
but it is not as large as the multilingual model we
used for Latin. Quantitative summaries of these
factors are presented for reference in Table 5.

Ultimately, perhaps the best explanation has to
do with the quality of the underlying pretrained
models available for each language. Given that dif-
ferent models for different languages were trained
on entirely different data, this seems like a highly
relevant source of potential differences. Unfortu-
nately, is it difficult to assess the overall quality
of pretrained models across languages, so all of
these explanations essentially remain no more than
hypotheses for further investigation.
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Model GEMS SE English
google/bert_uncased_L-4_H-256_A-4 (mini) 0.559 0.433
google/bert_uncased_L-4_H-512_A-8 (small) 0.544 0.495
google/bert_uncased_L-8_H-512_A-8 (medium) 0.538 0.522
google/bert_uncased_L-12_H-768_A-12 (base) 0.541 0.512
bert-base-uncased 0.509 0.525
bert-large-uncased 0.535 0.547

Table 3: Results on the English datasets (Spearman correlation) using a range of BERT model sizes on HuggingFace.

Model GEMS SE Eng SE Ger SE Swe
bert-base-multilingual-uncased 0.524 0.480 0.481 0.209
Language specific model (from Table 1 in main paper) 0.535 0.547 0.563 0.310

Table 4: Results when using a multilingual model, compared to the language specific models used in the paper.

Dataset Model Median lower
target count

Median
target
forms

Median
context
length

% targets
as whole

words

Vocab
size

GEMS bert-large-uncased 93 1 191 97.0 30522
SE Eng bert-large-uncased 209 4 26 95.6 30522
SE Ger deepset/gbert-large 101 7 28 22.9 31102
SE Lat bert-base-multilingual-uncased 472 8 28 25.0 105879
SE Swe KB/bert-base-swedish-cased 249 9 25 74.2 50325

Table 5: Quantitative summary statistics of various factors which we might be expected to affect differences in
performance across languages (relative to approaches based on static word embeddings). Median lower target count
is the median across target terms of the number of examples of each target term in the corpus with the lower count
(early or later). Median target forms is the median across examples of the number of surface forms corresponding to
each target lemma. Median context length is the median number of tokens in which target terms occur. % targets as
whole words is the percent of target terms which exist in the model vocabulary. Vocab size is the number of words
in the model vocabulary. Ultimately, none of these provides a convincing explanation for observed differences.

D Additional Results on GEMS

The GEMS dataset has been used for evaluation by
many additional papers, beyond those discussed in
the main body of this paper. However, these have
not all used consistent metrics and corpora, making
comparison difficult. For completeness, we include
additional results here, as shown in Table 6.

The GEMS dataset was originally introduced
by Gulordava and Baroni (2011), from whom we
obtained the labeled data. These authors reported
results in terms of Pearson correlation, and used
multiple datasets for measuring semantic change,
including the Google Books Corpus. Frermann
and Lapata (2016) also used this dataset for eval-
uation, but used different additional data (beyond
COHA), and reported results in terms of Spearman
correlation.

More recent papers using this dataset (from Giu-
lianelli et al., 2020 onwards) have tended to make
use of the COHA data from the 1960s and 1990s
as the corpus in which to measure change, to cor-
respond to the periods used in the annotation pro-
cess, which we also use for our results in this pa-
per. Martinc et al. (2020b) reported very strong

results on this dataset, but subsequent work from
the same authors (Montariol et al., 2021) revealed
that this method performed relatively poorly on
the SemEval datasets, as reported in Table 1 in the
main paper.

Paper Pearson Spearman

Gulordava and Baroni (2011) 0.386 -
Frermann and Lapata (2016) - 0.377
Giulianelli et al. (2020) [99] 0.231 0.293
Martinc et al. (2020b) [96] 0.560 0.510
Montariol et al. (2021) [96] - 0.352
Scaled JSD [96] 0.532 0.535
Scaled JSD [99] 0.541 0.553

Table 6: Additional results on the GEMS dataset from
Gulordava and Baroni (2011). Note that not all pa-
pers reporting results on this dataset used the same cor-
pora or evaluation metric, hence we report both Pearson
and Spearman correlation, and restrict ourselves to the
COHA dataset, which was used by all authors. Numbers
in brackets show the number of target terms excluded.
We evaluate using the exclusions of both Giulianelli
et al. (2020) [99] and Martinc et al. (2020b) [96] to
enable a full comparison. Note that the high correlation
reported on this dataset by Martinc et al. (2020b) did not
seem to transfer to the SemEval datasets, as shown by
Montariol et al. (2021) and Table 1 in the main paper.
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Different authors have excluded different num-
bers of words from the 100 target terms in evalua-
tion. Giulianelli et al. (2020) excluded extracellu-
lar due to insufficient occurrences in COHA during
the 1960 and 1990s, which we also exclude for the
same reason. Martinc et al. (2020b) and Montariol
et al. (2021) excluded assay, extracellular, medi-
aeval, and sulphate because they were split into
multiple tokens by BERT. Because we mask the
target terms, multi-piece words are not a problem,
but for completeness we evaluate using the exclu-
sions of both Giulianelli et al. (2020) and Martinc
et al. (2020b) and report both in Table 6.
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