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Abstract

In this study, we create a CConS (Counter-
commonsense Contextual Size comparison)
dataset to investigate how physical common-
sense affects the contextualized size compari-
son task; the proposed dataset consists of both
contexts that fit physical commonsense and
those that do not. This dataset tests the abil-
ity of language models to predict the size re-
lationship between objects under various con-
texts generated from our curated noun list and
templates. We measure the ability of several
masked language models and generative mod-
els. The results show that while large language
models can use prepositions such as “in” and
“into” in the provided context to infer size rela-
tionships, they fail to use verbs and thus make
incorrect judgments led by their prior physical
commonsense.

1 Introduction

Humans possess physical commonsense regarding
the behavior of everyday objects. Physical com-
monsense knowledge is relevant to their physical
properties, affordances, and how they can be ma-
nipulated (Bisk et al., 2020). While a significant
amount of physical commonsense can be expressed
in language (Forbes and Choi, 2017; Bisk et al.,
2020), direct sentences describing facts such as
“people are smaller than houses” rarely appear be-
cause of reporting bias (Gordon and Van Durme,
2013; Ilievski et al., 2021). Recent language mod-
els have succeeded in tasks that do not require con-
textual reasoning, such as size comparison and pre-
diction of event frequency (Talmor et al., 2020).

However, what about inferences that are context-
dependent? Whether a language model can make
correct inferences in various contexts is impor-
tant because physical reasoning is highly context-
dependent (Ogborn, 2011). Several studies on con-
textual physical reasoning (Forbes et al., 2019;
Bisk et al., 2020; Aroca-Ouellette et al., 2021;

Template:<*> is in <box>.  

A house is in an eletctric bulb.  

Is the electric bulb bigger than the house?

An electric bulb is in a house.  
Ordinary Counter-Commonsense

Figure 1: Examples of contexts that do or do not ac-
cord with ordinary commonsense. Humans can imagine
the situation and make correct inferences, but language
models are drawn to commonsense and make incorrect
judgments. The example images are generated by Mid-
journey (https://midjourney.com).

Zellers et al., 2021) have been conducted to pro-
duce datasets that assess the ability to recognize
physical situations described in writing. Without
context, however, these datasets may be answered
by commonsense.

Humans also can reason in ways that differ from
simply using commonsense. For instance, if the
context “there is a house inside a light bulb.” is
provided, humans can still imagine the situation
and reason that the bulb must be larger than the
house. In other words, commonsense is just a
sweeping generalization, and reasoning about con-
text must be independent of commonsense. This
reasoning with defeasibility, which reflects the abil-
ity to reason logically without relying only on com-
monsense, seems to have been overlooked in the
study of language models compared to the acqui-
sition of commonsense. Previous investigations
of contextual physical reasoning (Aroca-Ouellette
et al., 2021; Yu et al., 2022) failed to distinguish
physical reasoning from the simple use of physical
commonsense. To appropriately measure physi-
cal reasoning ability, we must use contexts that go
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against commonsense to rule out the possibility
that the model is overconfident in physical com-
monsense.

In this study, we investigate the behavior of the
language model concerning physical commonsense
given the context of a situation that contradicts
commonsense. We choose the size comparison
task despite various possible domains of physical
commonsense (Ilievski et al., 2021). The task is
one of the easiest physical commonsense reason-
ing tasks for language models (Forbes and Choi,
2017; Goel et al., 2019), and it is also easy to add
a context to change the relationship between sizes.
For example, in this study, the context is a sentence
that implies a size relationship, such as “<obj1>
contains <obj2>.”

For this purpose, we created a new dataset,
CConS (Counter-commonsense Contextual Size
comparison)1. This dataset contains 1,112 sen-
tences generated from 139 templates and tests the
ability of language models to infer the size relation-
ship between objects using a cloze-style prompt.
Figure 1 shows the size comparison examples with
or without contexts that (do not) agree with ordi-
nary commonsense. Our experiments using recent
language models show that GPT-3(text-davinci-
003) (Brown et al., 2020) correctly reasons in con-
text when it is consistent with commonsense, yield-
ing 85% accuracy. In contrast, even GPT-3 can only
show poor performance (41 % accuracy) for exam-
ples that contradict commonsense. This suggests
that the models may not effectively distinguish be-
tween physical commonsense and inferences based
on contexts, leading to incorrect predictions. Nev-
ertheless, when prepositions hint at the relation-
ships, the accuracy rate exceeded 55%, even for
counter-commonsense examples. In summary, our
counter-commonsense examples reveal the differ-
ence in influence between prepositions and verbs
in contextualized physical reasoning.

The contributions of this study are as follows:

1. We create a dataset that assesses size com-
parison ability more precisely by contrasting
examples that conform to physical common-
sense with ones that do not.

2. We show that physical commonsense prevents
measuring the language models’ ability of
contextual physical reasoning.

1https://github.com/cfkazu/
Counter-Commonsense-Context

3. We demonstrate that even large models per-
form poorly when making inferences that vi-
olate physical commonsense. Specifically,
they struggle to infer size relations implied
by verbs and can infer only when prepositions
indicate.

2 Related Works

Size Comparison Task The size comparison
task, which previous studies (Yang et al., 2018;
Goel et al., 2019) investigated since the earlier lin-
guistic representations, such as GloVe (Pennington
et al., 2014) or ELMo (Peters et al., 2018), is one of
the easiest physical common-sense inference tasks
for language models (Forbes and Choi, 2017; Goel
et al., 2019). While there are many prior studies
(Elazar et al., 2019; Zhang et al., 2020) on this
topic, VerbPhysics (Forbes and Choi, 2017) is the
most similar to this study in that it focuses on the
relationship between sizes and verbs. There are
also some other approaches, such as methods that
extract external knowledge (Elazar et al., 2019),
filling-masks (Talmor et al., 2020), or generate im-
ages (Liu et al., 2022). These results suggest that
the commonsense of comparing object size is en-
coded in recent language models. However, these
studies do not consider the context that might influ-
ence the results of size comparisons.

Defeasible Reasoning According to Koons
(2022), defeasible reasoning is an argument that is
rationally persuasive but not completely valid as
a deduction. This defeasible reasoning is similar
to the subject of this study in that it involves the
recognition that commonsense and assumptions in
a given context are not entirely correct propositions.
Therefore, this study can be seen as an investiga-
tion into whether a language model can capture
commonsense as defeasible reasoning. The cre-
ation of a dataset dealing with defeasible reasoning
has been discussed by Rudinger et al. (2020) and
Allaway et al. (2022). Our study is similar to All-
away et al. (2022) in that it generates sentences that
violate the context by fitting words to a template.
However, this study differs in that we also generate
examples contrary to commonsense for measuring
the actual performance of the language model as
well as the differences from the ordinary case.

3 Dataset Creation

In this study, we create 139 templates and auto-
matically generate 1,112 examples. Table 1 lists
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Template Generated: Ordinary Examples Generated: Counter-Commonsense Examples

He found <portable> in <box>. He found a key in a key box. He found a monitor in a key box.
<box> contains <portable>. A key box contains a key. A key box contains a monitor.
<*> fills <box>. A marble fills a bin. A refrigerator fills a bin.
<*> is covered by <flat>. A pen is covered by a newspaper. A desk is covered by a handkerchief.

Table 1: Examples of the templates. <tag> constrains possible nouns to be filled. For example, <box> means that
the noun entering there must have the attribute “box,” that is, it must be able to hold things. <*> indicates that any
words in the noun list (only material nouns) can be inserted.

examples of these templates.

Designing Template We focus on the compre-
hensiveness of verb phrases while designing tem-
plates to ensure that the choice of verbs is not arbi-
trary. Therefore, we extract 139 verb phrases that
indicate size relationships from the Oxford 5000
dictionary 2 and manually assemble simple sen-
tences. For example, the statement “<obj1> beats
<obj2>” is not included in this template because
this statement is not informative enough to deter-
mine a size relation.

Moreover, in comparing sizes, we also notice
not only verbs but the usage of prepositions such
as “in” or “into” may provide clear clues about the
size relationships. Therefore, we select templates
that contain only examples with these prepositions
and distinguish them as easy templates from those
that do not as hard templates. In subsequent ex-
periments, we also investigate the effect of this
difference on the behavior of the language model.

Restriction on Noun If nouns are arbitrarily in-
serted, the resulting sentences may be nonsensical
or impossible for a human to imagine. For example,
we choose not to include the sentence “the stone
threw the dog” because it is beyond imagination.

We place restrictions on the nouns used in the
sentence templates by defining tags to avoid this
nonsense. A single placeholder can have con-
straints (multiple tags). There are 18 types of tags,
including “have_hands,” “box,” and “portable.”
Tags are manually determined to abstract the prop-
erties of verb phrases. We also use the Oxford
5000 dictionary to obtain a list of nouns referring
to physical objects. One of the nouns that satisfy
all constraints is randomly selected from a list of
195 nouns and inserted.

Generating Sentences The template tags are
replaced with the corresponding nouns to generate

2https://www.oxfordlearnersdictionaries.
com/about/wordlists/oxford3000-5000

the context, and the questions asking for size
comparisons are combined. For example, the
contextualized question text provided to the
masked language models is as follows:
“«context» In this situation, the size

of <obj1> is probably much [MASK] than

the size of <obj2>.”
Contexts and questions are used to generate input

for each of the masked language models and gen-
erative models. We classify generated sentences
to the Ordinary or Counter-Commonsense (CCom-
mon) subset based on whether the size relationship
between objects indicated by the template accords
commonsense.

4 Experiment

Task Definition We measure the ability of
masked language models and generative models
to recognize size relationships by providing sen-
tences for each architecture. These sentences are
generated from templates (Section 3). We also see
how the language model’s behavior changes when
context sentences follow or do not follow a general
common-size relationship.

Comparison Aspects We investigate how lan-
guage models create physical reasoning without
being biased by their prior physical commonsense.

1. How do the physical reasoning results of the
language model change when contexts are
consistent or inconsistent with commonsense?

2. How does the performance of a language
model change when comparing an easy
dataset that contains certain prepositions that
hint at size relationships with a hard dataset
that does not?

Model Settings In this study, BERT (Devlin
et al., 2019), RoBERTa (Liu et al., 2019), and AL-
BERT (Lan et al., 2020) are used to assess the
performance of the masked language models. We
also investigate how the size of the model affects
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physical reasoning. We choose T0 (Sanh et al.,
2022) and GPT-3(text-davinci-003) to evaluate the
performance of the generative model.

According to Talmor et al. (2020), RoBERTa-
Large outperforms BERTs and RoBERTa-Base in a
no-context size comparison task. Proceeding from
this analysis we attempt to detect whether com-
monsense influences physical reasoning by giving
examples contrary to commonsense as context.

Tasks Format Details The tasks are performed
by inputting sentences according to the format de-
fined for each of the models, as follows.

Format for Masked Language Models
WithContext: «context» In this
situation, the size of <obj1>
is probably much [MASK] than the
size of <obj2>.
WithoutContext: The size of <obj1>
is probably much [MASK] than the
size of <obj2>.

The candidates for [MASK] are “larger,” “big-
ger,” “smaller,” and “shorter.” If the sum of the
probabilities of the first two options exceeds 0.5,
language models predict that obj1 is larger than
obj2. Therefore, the language model always makes
binary decisions.

Format for Generative Models
WithContext: «context» Which is
bigger in this situation, <obj1>
or <obj2>?
WithoutContext: Which is bigger in
general, <obj1> or <obj2>?
«context» is a sentence generated from
templates.

Human Evaluation We ask crowdworkers to per-
form the same size comparison task to measure the
accuracy of humans in this task. Thus, we can test
the validity of the automatically generated ques-
tions. The crowdworkers are given the same con-
text and make a choice that is larger. (See Appendix
B for details.) Five crowdworkers are assigned to
each question. We use some intuitive examples,
such as “<obj1> contains <obj2>,” which are pro-
vided for qualification, and exclude those who get
such examples wrong or choose the same answer
for all examples.

Model Ordinary CCommon NoCon

BERT-B 0.483 0.515 0.495
BERT-L 0.500 0.521 0.494
RoBERTa-B 0.554 0.443 0.507
RoBERTa-L 0.692 0.413 0.639
ALBERT-B 0.500 0.521 0.494
ALBERT-XXL 0.720 0.346 0.701
T0++ 0.682 0.530 0.589
T0 0.684 0.443 0.574
GPT-3 0.856 0.415 0.764

Human 0.814 0.798 0.791

Table 2: The inference results of the language model
for data sets where the context follows and does not
follow commonsense and context is removed.

5 Result and Analysis

Tables 2 and 3 exhibit the performance of the
language model on our datasets. GPT-3 outper-
forms other models in Ordinary and NoCon setups.
RoBERTa-Large and ALBERT-XXLarge show bet-
ter reasoning ability than the other masked lan-
guage models in the Ordinary dataset. However, for
the CCommon dataset, the performance of the pre-
trained language model decreases, particularly in
ALBERT-XXLarge. This result suggests that com-
monsense built into the model hinders its ability to
make accurate judgments. Other models struggle
to capture size relationships. These results with-
out context (NoCon) are generally consistent with
the findings of a previous investigation of the no-
context size comparison task conducted by Talmor
et al. (2020).

In some CCommon examples, BERT performs
better than RoBERTa. This may be because BERT
is less equipped with commonsense, allowing it to
make simpler judgments without being influenced.

Impact of Prepositions Prepositions did not sig-
nificantly impact the prediction for the masked lan-
guage models in the Ordinary dataset. However,
there is a significant difference in the correct re-
sponse rates in the CCommon dataset. RoBERTa-
Large performs well in easy data, regardless of
whether the context defies commonsense. This re-
sult indicates that RoBERTa-Large recognizes the
connection between the prepositions and size re-
lationships. The ALBERT-XXLarge model does
not perform well for the CCommon dataset, even
if the setting is easy; therefore, we consider that it
merely answers according to commonsense rather
than making inferences. In short, context is not
useful for ALBERT when the prepositions do not
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Ordinary CCommon
Model Easy Hard Easy Hard

BERT-B 0.506 0.471 0.460 0.557
BERT-L 0.527 0.479 0.480 0.553
RoBERTa-B 0.557 0.550 0.473 0.419
RoBERTa-L 0.711 0.671 0.467 0.369
ALBERT-B 0.527 0.479 0.480 0.553
ALBERT-XXL 0.744 0.693 0.353 0.346
T0++ 0.762 0.607 0.593 0.480
T0 0.726 0.638 0.473 0.424
GPT-3 0.940 0.788 0.567 0.296

Human 0.835 0.796 0.829 0.769

Table 3: Comparison results of reasoning ability of the
language model for datasets that follow the common-
sense and those that do not. Sentences with prepositions
“in” or “into” are included in the easy dataset and other-
wise in the hard.

provide direct hints.
GPT-3 uses prepositions more effectively than

other models and performs better on the Easy
dataset, while the model struggles to answer the
CCommon dataset in the hard setting. This result
means GPT-3 learns commonsense well but cannot
make physical logical inferences.

6 Conclusion

We develop a method providing a counter-
commonsense context to measure physical reason-
ing ability. Our proposed contextualized physical
commonsense inference dataset reveals that current
language models can partially predict size relations
but do not perform as well as humans in contexts
that contradict commonsense. These judgments are
possible to a limited extent in the presence of cer-
tain prepositions such as “in” and “into.” While we
focused on size comparison tasks in this study, the
importance of context in physical reasoning is not
limited to this task. Increasing the size and scope of
the datasets for contextual commonsense inference
is necessary to build language models that more
closely resemble humans and differentiate between
general commonsense and the facts at hand.

Limitations

The main limitation of our method is that it requires
human effort to increase the variety of templates,
which makes it difficult to create large datasets.
Using templates to generate data reduces the time
required to create data manually, but the need for
human labor remains an obstacle. To resolve this,
the templates themselves need to be generated auto-

matically, although the tags that constrain the nouns
also need to be generated automatically, which is a
difficult problem.
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Model Model-FullName

BERT-B bert-base-uncased
BERT-L bert-large-uncased
RoBERTa-B roberta-base
RoBERTa-L roberta-large
ALBERT-B albert-base-v2
ALBERT-XXL albert-xxlarge-v2
T0++ bigscience/T0pp
T0 bigscience/T0

Table 4: Paths for using the Hugging Face models
used in this study. These models were used without
modification.
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A Experiment Details

We used a language model published on hugging
face Transformers (Wolf et al., 2020) except GPT-
3 under MIT (RoBERTa) or Apache-2.0 (BERT,
ALBERT, T0, T0++) license. For GPT-3, the Ope-
nAI API (text-davinci-0033) is used. All of these
models are designed to solve downstream natural
language tasks. Table 4 lists the paths for accessing
the models via hugging face.

We use a GPU Tesla V100-PCIE-32GB. The
total computation time was 1 hour for the masked
language models and 2 hours for the generative
models.

B Human Evaluation Details

We evaluate human accuracy in a size comparison
task using Amazon Mechanical Turk. We provide

3https://platform.openai.com/docs/
models/gpt-3-5

the following instructions and let the crowdwork-
ers choose their answers: We calculate the reward
as $15 per hour. Figure 2 shows the instructions
for the contextualized size comparison task. The
choices are virtually two-option questions, except
“I can’t imagine the situation,” etc. Figure 3 shows
the instructions for the non-contextualized size
comparison task. The choices are “obj1”,“obj2,”
and “N/A (cannot determine).”

No personal information is obtained. Crowd-
workers live in the United Kingdom, the United
States, and Canada. By accepting Amazon Me-
chanical Turk’s participation agreement 4, crowd-
workers consent to the collection and use of non-
personal data for research purposes.

4https://www.mturk.com/
participation-agreement
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Figure 2: An instruction and options given to Amazon Mechanical Turk crowdworkers for contextualized size
comparison task. Annotators are asked to read a context and determine which object is larger in the situation.

Figure 3: An instruction and options given to Amazon Mechanical Turk crowdworkers for contextualized size
comparison task. Annotators are asked to judge which object is generally larger.
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