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Abstract

The recent emergence of Neuro-Symbolic
Agent (NeSA) approaches to natural language-
based interactions calls for the investigation of
model-based approaches. In contrast to model-
free approaches, which existing NeSAs take,
learning an explicit world model has an inter-
esting potential especially in the explainability,
which is one of the key selling points of NeSA.
To learn useful world models, we leverage
one of the recent neuro-symbolic architectures,
Logical Neural Networks (LNN). Here, we de-
scribe a method that can learn neuro-symbolic
world models on the TextWorld-Commonsense
set of games. We then show how this can be
improved further by taking inspiration from
the concept of proprioception, but for conver-
sation. This is done by enhancing the internal
logic state with a memory of previous actions
while also guiding future actions by augment-
ing the learned model with constraints based on
this memory. This greatly improves the game-
solving agents performance in a TextWorld set-
ting, where the advantage over the baseline is
an 85% average steps reduction and ×2.3 aver-
age score.

1 Introduction

Recent emergence of neuro-symbolic (NS) ap-
proaches include natural language-based sequential
decision making (Kimura et al., 2021b; Chaudhury
et al., 2021; Kimura et al., 2021a). They propose
a model-free approach of learning a logical policy,
and tested with interactive-text games (Narasimhan
et al., 2015; Côté et al., 2018; Hausknecht et al.,
2020; Murugesan et al., 2021), which have become
an interesting benchmark in the intersection of nat-
ural language processing and sequential decision
making. NS approaches give the direct explainabil-
ity of what is learned and allow natural integration
of external knowledge as logic. Despite that, ex-
isting NS approaches are of model-free reinforce-
ment learning (RL) but it would be useful if we

Figure 1: Simplified overview of the problem setting
and agent. The observation from the environment de-
scribes the state in a natural language form. Our agent
first uses a semantic parser to produce an estimate of
the logical state. We then use this in a model-based RL
module that learns a logical world model to plan actions
to be taken. We augment the RL agent with a specific
memory component inspired from proprioception.

could have model-based approaches that are poten-
tially more sample efficient and can reach higher
cumulative rewards as shown by neural world mod-
els (Hafner et al., 2019; Łukasz Kaiser et al., 2020).
In contrast to these, a logical world model learned
using NS approaches would allow an agent to use
logical reasoning which enables us to obtain a
trace of logical steps for better explainability. In
fact, several sets of benchmarks and game environ-
ments have been proposed such as TextWorld (Côté
et al., 2018), Jericho (Hausknecht et al., 2020)
and TextWorld Commonsense (TWC) (Murugesan
et al., 2021), which are far too complicated to solve
without reasoning and common sense, compared to
the original game setting (Narasimhan et al., 2015).
Also, existing implementations of NS agents do
not start from natural language but instead use the
logical facts provided from the game engines.

In this paper, we focus on the problem of learn-
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ing logical world models in NS methods. The main
research question to be addressed is then how we
can learn such models for text-based games us-
ing a general semantic parser. As a state-of-the-art
interactive-text agent, GATA (Adhikari et al., 2020)
constructs belief graphs used to enhance deep RL
methods. In contrast to understanding the world
state in a latent space, we want to explicitly use
the logical world models to plan optimal action
sequences and to provide direct explainability of
the decision making policy. For the explainabil-
ity purpose, we leverage general semantic parsing,
following one of the early work constructing knowl-
edge graphs (Ammanabrolu and Riedl, 2019).

An overview of our proposed method is depicted
by Figure 1. The left side depicts that the envi-
ronment state can be sufficiently approximated as
a set of logical facts. Continuing in the top right,
the agent can get textual observations of the en-
vironment. We assume that we have a semantic
parser (Drozdov et al., 2022) that converts these
observations into a logical form. In the real situ-
ation the semantic parsing is good, but won’t be
perfect, hence we require that our agent should be
capable of handling noisy logical states. From such
states, our agent should produce suitable actions
for accomplishing its tasks in the environment.

The main contributions of this paper are: the pro-
posal of a novel world model-learning method with
a neuro-symbolic approach, and its experimental
results with TWC.

2 Problem Definition

Text-based games are often modelled with the RL
problem setting in mind as Partially Observable -
Markov Decision Processes (PO-MDP) (Côté et al.,
2018; Hausknecht et al., 2020). As a first approach,
we add an assumption - that the semantic parser
can remove partial observability and that we are
dealing with an MDP. At each time step the agent
uses the information in a state, s, to take an action,
a, which transitions the state to the new state, s′

according to the state transition function T such
that s′ = T (s, a). While acting in this environment
the agent also gets rewards, r, according to an un-
known reward function, R, such that r = R(s, a).
The training loop consists of exploring the environ-
ment by taking actions while keeping track of the
experience in the form of {s, a, r, s′}. An agent
then uses this set of experiences to learn some-
thing that enables it to take better actions. In the

model-free RL setting, the agent learns a policy
or value function which can directly govern the
actions. Here, we are interested in the model-based
RL setting where the agent learns a model of the
world which usually consists of both T and R. This
model can then be used with planning methods to
find the optimal actions.

Based on the classical model-based RL setting,
our problem has two more important specifications.
First, we assume that our environment is relational,
similar to (Lang et al., 2012). This means that
all actions and states are composed of relational
logic. They may be in the propositional form but
there must be a corresponding lifted form that has a
consistent meaning. For example, the propositional
state, on(book,table) can be abstracted or lifted into
on(x,y) with predicate, on, and the variables, (x, y).
The first assumption is that all states and actions
handled by the agent are in this relational lifted
form. This assumption can be handled as a design
specification of the semantic parser. The second
assumption is that the goal state is given. This is a
weaker assumption that is already used in current
RL research, the so-called goal-conditioned RL.
Here, it allows us to concentrate only on learning
T since R is no longer required for planning when
we are given the goal state.

3 Learning Logical World Models

The problem of learning logical rules that explain
a given set of logical examples can be cast into
the general problem called Inductive Logic Pro-
gramming (ILP) (Muggleton and De Raedt, 1994).
What needs to be done is then to cast our relational
model-based RL problem into ILP form. But be-
fore going into that detail, it is important to note
that relying on classical ILP has significant failings.
In particular, it is not well suited to noisy data to
the extent that a single erroneous data point may
cause the whole system to fail.

However, newer methods that leverage neural
networks have shown great promise on working
even with noisy data (Evans and Grefenstette,
2018). These are sometimes called neural ILP,
differentiable ILP or neuro-symbolic ILP. These
advances are the main impetus for us to research
on the learning of logical world models.

We may use any such ILP method that is noise-
resistant but here we use the Logical Neural Net-
work (LNN) (Riegel et al., 2020) as a Neuro-
Symbolic AI framework. It is an end-to-end dif-
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ferentiable system that enables scalable gradient-
based learning and it has a real-valued logic repre-
sentation of each neuron that enables logical rea-
soning (Riegel et al., 2020).

Action ILP with LNN

Now, getting back to the task of expressing our
relational model-based RL problem as ILP, we first
gather data samples which are triples of lifted logic,
(s, a, s′). This is gathered by using an exploration
policy to generate actions. This data collection may
be done in an offline or online RL setting but we
assume that a large enough batch is available in
the online RL setting before we start the learning
procedure. Here, we used a policy that uniformly
randomly samples the action space but better explo-
ration methods may be used, such as that outlined
in (Lang et al., 2012). The improvement of better
exploration is usually seen in data efficiency lead-
ing to faster convergence but using a sufficiently
large amount of data won’t change the benchmark
scores on the TWC environment. We believe that
a more rigorous treatment on the exploration of
exponential but structured (logical) spaces merits
its own research topic.

Given a batch of data samples, the learning pro-
cedure must produce an estimate of T . This T will
be the hypothesis to be generated by our ILP. This is
a set of logical rules that best fits the data. To make
learning more efficient we need to narrow down
the definition of T . Because we are ultimately in-
terested in using T for planning, we define it as
a set of planning operators where each one is a
quadruple of (α, β, γ, σ). Each element is a set of
logical conditions. The conditions (α, β) are pre-
conditions where α are conditions that must be true
for the action to be executable, β are ones that must
be false. The conditions (γ, σ) are post-conditions
where γ are ones made true by the action and σ are
ones made false. These conditions are the lifted
logic statements that comprise a state, s, and the
set of all possible conditions is P .

We model each of the operator elements as an
LNN conjunction operator whose inputs are P . The
LNN learning procedure can learn weights for each
of these inputs that correspond to real-valued logic
(Riegel et al., 2020; Sen et al., 2021). For the LNNs
of α and β, the inputs are given the corresponding
logical values of the conditions in s. The output
is true when action, a, corresponds and s ̸= s′

otherwise it is false. For the LNNs of γ and σ, the

inputs are given the logical values corresponding
to the difference in the conditions of s and s′ such
that γ are the the conditions made true and σ those
that are made false. The output is true when action,
a, corresponds otherwise it is false.

Using these inputs and outputs to the LNN,
gradient-based optimization can be used for super-
vised learning (Riegel et al., 2020; Sen et al., 2021).
When learning converges, we have a set of weights
for each of the corresponding elements. These may
be interpreted as probabilistic transitions but here
we simply threshold them and maintain a determin-
istic transition system for our final estimate of T .
Given this operator transition model and the goal,
we can be in any state and use classical planning
methods to find a series of actions to reach the goal.

Conversational Proprioception as
Memory-Based Constraints

To further enhance our logical model, we take inspi-
ration from the concept of proprioception (Tuthill
and Azim, 2018), which is the sensation of body po-
sition and movement critical to human experience,
while it is typically absent from conscious percep-
tion. This concept is commonly used in imitation
learning (Torabi et al., 2019) and in robotics (Cong
et al., 2022). In these domains, the type of sensors
clearly distinguish the internal state measurement
(proprioception) and external state measurement
(perception). Combining both information sources
is crucial to improving an agent’s world model. We
take inspiration from this to improve our logical
world model estimate for text-based games or other
tasks with logical state representations.

In general, proprioception is a prediction of the
next state, s′ = T̂ (s, a), based on the existing
knowledge of one’s body dynamics in the form of
the transition model estimate, T̂ , the current state, s,
and the action taken, a. This additional information
is crucial to help us disambiguate and better locate
the next state. For our task where T is a logical
model, we propose to augment our learned T with a
set of proprioception rules, ϵ(s, a), such that our T
will now be defined as (α, β, γ, σ, ϵ(s, a)). For our
agent, we define ϵ very generally such that it only
consists of 2 rules. First, it tracks state-action pairs
that were already tried and augments the state with
this information. This serves as a type of memory
added onto the state. Second, it adds a precondition
onto the transition models. This serves as a type of
constraint on the actions. For our TWC agent, we
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defined preconditions that prevent state-action pairs
from repeating. These 2 rules are general enough
to apply to any TWC environment and possibly
beyond to other conversational agents in general.
We leave the design of further proprioception rules
as a possible future work.

4 Experiment and Discussion

For evaluating the quality of the world model
learned, we first qualitatively analyze the learned
action models. Then we measure the interactive-
text agent performance against a quantitative
TextWorld benchmark. In this paper, we experi-
ment on the TextWorld Commonsense (TWC) set
of games (Murugesan et al., 2021) with the same
experimental settings.

Once we have a logical world model, we can use
it with a planner. Here, we use the Fast-Downward
system (Helmert, 2006). For convenience, we con-
vert the learned logical transition model into the
PDDL (Planning Domain Definition Language) for-
mat by combining (α, β, ϵ) into the preconditions
and (γ, σ) into the effects. We also augment the
state with ϵ(s, a).

Learned Models

We confirmed that the world models were meaning-
fully learned by any of model-based approaches.
Figure 2 shows example learned action models in
a converted PDDL form for an action insert_into
(insert XX into YY) by model-based approaches
from AMR-based logical facts. For our results, we
first show some examples of the learned rules in
our logical world model in Figure 2. Here, we can
visually inspect the validity of the rules. For exam-
ple with the left case, the effect would be that the
object v0 is at/in/on the container v1 (has_location-
2) but now it is no longer in the inventory (carry-1).
This level of explainability is inherent in logical
models although it requires careful inspection.

The effect of proprioception can be seen in
the right-hand side of Figure 2. The predicate
of tried_insert_into is from an AMR-based pred-
icate insert_into but with the intention modality
of the agent, which is encoded in first-order logic.
This recognition of an already-performed action in-
sert_into should contribute to avoiding repeatedly
performing failed actions.

TWC Performance

It would be more interesting if we take altogether
to see if the learned rules allow us to plan optimal
actions in the world. To answer this, we present our
results in Table 1. By running our complete frame-
work, we can quantitatively compare against the
benchmarks in (Murugesan et al., 2021). We can
also see the effects of the important components of
our agent.

Table 1 compares seven different meth-
ods/configurations corresponding to each row. The
first row is a deep-learning-only method which is
the best from the original benchmark in (Muruge-
san et al., 2021). The second and third rows are
model-free neuro-symbolic methods. The fourth
row is a planning result without any learning by
using an ideal world model (assumed given) and ac-
cess to (noiseless) logical game states. This serves
as an upper bound for comparison only since hav-
ing access the the ideal model and states is dif-
ficult or impossible in other applications. The
fifth row is a model-based RL method given the
ideal game-engine facts (equivalent to a perfect,
noiseless semantic parser). The sixth row is our
model-based RL method with a practical AMR-
based semantic parser but without proprioception.
Finally, the seventh row is our complete model-
based RL method with a practical AMR-based se-
mantic parser and proprioception module (memory-
based constraints). In summary, the first four rows
serve as comparison points and the last three rows
shows the result of our method. Note that we have
additional assumptions differing from the deep-
learning-only setting of the original setup and we
note these in the table as what type of semantic
parsing and handicap are used. The TWC games
are categorized into Easy-Medium-Hard with a val-
idation and testing set for each as shown in the
columns.

Comparing the result of our full method (last
row) against current methods (first 3 rows) shows
a significant improvement across the board. This
shows the strength of the model-based NeSA frame-
work against purely deep learning methods or the
previously published model-free NeSA.

To see the effect of each component we can com-
pare the results of the last four rows. Comparing
the model-based NeSA with ideal semantic parsing
(third to last row) against the planning upper bound,
we can see that we can perfectly solve all except
the test set of the hard games. After investigating,

651



Semantic parsing Handicap Easy Medium Hard
Valid Test Valid Test Valid Test

TWC agent (DL-only)
[AAAI 2021] Word embedding

(these are common)
Admissible action
Inventory
Curated Common Sense

17.65 ± 3.62
85% ± 7%

18.00 ± 3.24
87% ± 5%

37.18 ± 4.86
72% ± 7%

43.08 ± 4.13
54% ± 17%

49.36 ± 7.50
46% ± 10%

49.96 ± 0.00
22% ± 0%

Model-free NeSA
based on [EMNLP 2021] Skipped Game-engine facts - 15.00

100% - 28.60
100% - -

Model-free NeSA
(REINFORCE) AMR-based facts - - 32.28 ± 3.24

63% ± 5% - 43.68 ± 5.36
38% ± 25% - 49.48 ± 1.04

28% ± 13%
Planning
(Model-based NeSA) Skipped Action transition

Game-engine facts
2.4
100%

2.4
100%

4.4
100%

3.6
100%

13.6
100%

14.0
100%

Model-based NeSA
(Learned action transition) Skipped Game-engine facts 2.4 ± 0.0

100%
2.4 ± 0.0
100%

4.4 ± 0.0
100%

3.6 ± 0.0
100%

13.6 ± 0.0
100%

28.4 ± 0.0
60.6%

Model-based NeSA
w/o proprioception AMR-based facts - 21.4 ± 0.0

57.1%
21.2 ± 0.0
42.9%

31.6 ± 0.0
38.5%

31.6 ± 0.0
50.0%

42.8 ± 0.0
20.6%

42.8 ± 0.0
24.2%

Model-based NeSA
w/ proprioception AMR-based facts - 3.6 ± 0.0

100%
4.0 ± 0.0
100%

7.6 ± 0.0
100%

5.6 ± 0.0
100%

33.2 ± 0.0
64.7%

42.8 ± 0.0
24.2%

Table 1: Scores on the TextWorld Commonsense (TWC) set of games. Each cell contains 2 rows of metrics, each
showing the average and standard deviations reported when available. The top row indicates the number of steps
taken by an agent to finish the game. Lower is better because we want to reach the goal as fast as possible. The
environment only allows a maximum of 50 steps. The bottom row is a normalized game score which is computed
by taking the rewards obtained by the agent divided by the maximum rewards obtainable. Higher is better, where
100% means that the agent solved all the games in the benchmark set.

(:action insert_into
:parameters (?v0 ?v1)
:precondition
(and

(not (tried_insert_into ?v0 ?v1))
(carry-1 ?v0)
(not (has_location-2 ?v0 ?v1)))

:effect
(and

(has_location-2 ?v0 ?v1)
(not (carry-1 ?v0))
(tried_insert_into ?v0 ?v1)))

(:action insert_into
:parameters (?v0 ?v1)
:precondition
(and

(carry-1 ?v0)
(not (has_location-2 ?v0 ?v1)))

:effect
(and

(has_location-2 ?v0 ?v1)
(not (carry-1 ?v0))))

Figure 2: Examples of the learned action models

we found an interesting limitation wherein novel
predicates appear in the test set that do not appear
in any of the training or validation set. This is a
current limitation of our system. Since we do not
do any online learning during the test phase, there
is no way to take these novel predicates into ac-
count. The significant effects of AMR-originated
noise or lack of information can be seen by compar-
ing the second-to-last and third-to-last rows. Here
we see a significant degradation across metrics and
datasets. However, the performance is still com-
parable or often better than the deep-learning-only
benchmark of the first row. Comparing the last
row (full method with proprioception module) and
second-to-last row shows that we can recover most
of the performance. We can also see that the met-
rics are competitive to the model-based approach
from game-engine provided logical facts (3rd-last
row). This shows the effectiveness of adding the
proprioception module comprising both the mem-
ory and memory-based constraints.

5 Conclusion

We proposed a model-based RL agent for text-
based games which comprises of a semantic parser

producing logical states, a neuro-symbolic ILP
module for learning logical world models, and an
off-the-shelf planning system to produce optimal
actions in the game world. We augment this with
a proprioception-inspired module comprising both
the memory and memory-based constraints. Our
results and experiments show that each of the com-
ponents are essential and our model-based NeSA
agent outperforms previous benchmarks on the
TextWorld Commonsense set of games.

6 Limitations

The experimental environment we used for testing
our agents gives artificially generated natural lan-
guage text, whose distribution of vocabulary, syn-
tax, and semantic frames is controlled and limited
to what the natural language text generators can
provide. While we tried to include out of vocabu-
lary for entities in our experiments, applying the
proposed approach to natural language text in the
wild, such as chatbots working with human, must
be faced with issues such as out-of-vocabulary enti-
ties, relations, etc. We believe, however, approach-
ing from controlled “wildness” is an important di-
rection of the work for interactive-text agents.

The experiments and embodiment of the method
presented here also makes some assumptions on
the underlying model (MDP) of the environment.
These are discussed in the problem definition and
methods (section 2 and 3). Perhaps the most impor-
tant is the assumption that the environment can be
sufficiently approximated with logical states. We
also used a deterministic planner so highly stochas-
tic environments are currently out-of-scope.
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