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Abstract

Multiple algorithms are known for efficiently
calculating the prefix probability of a string
under a probabilistic context-free grammar
(PCFG). Good algorithms for the problem have
a runtime cubic in the length of the input string.
However, some proposed algorithms are subop-
timal with respect to the size of the grammar.
This paper proposes a novel speed-up of Jelinek
and Lafferty’s (1991) algorithm, which runs
in O(N3|N |3 + |N |4), where N is the input
length and |N | is the number of non-terminals
in the grammar. In contrast, our speed-up runs
in O(N2|N |3 +N3|N |2).

https://github.com/rycolab/
prefix-parsing

1 Introduction

Probabilistic context-free grammars (PCFGs) are
an important formalism in NLP (Eisenstein, 2019,
Chapter 10). One common use of PCFGs is to con-
struct a language model. For instance, PCFGs form
the backbone of many neural language models, e.g.,
recurrent neural network grammars (RNNGs; Dyer
et al., 2016; Dyer, 2017; Kim et al., 2019). How-
ever, in order to use a PCFG as a language model,
one needs to be able to compute prefix probabilities,
i.e., the probability that the yield of a derivation
starts with the given string. In notation, given a
string w = w1 · · ·wN , we seek the probability
p(S

∗⇒ w · · · ) where S is the distinguished start
symbol of the grammar and ∗⇒ is the closure over
applications of derivation rules of the grammar.1

Our paper gives a more efficient algorithm for the
simultaneous computation of the prefix probabil-
ities of all prefixes of a string w under a PCFG.

The authors are aware of two existing efficient
algorithms to compute prefix probabilities under
a PCFG.2 The first is Jelinek and Lafferty’s (1991)

1Specifically, α ∗⇒ β means that there exists an n ≥ 0
such that α⇒ · · · ⇒︸ ︷︷ ︸

n times

β, where ⇒ marks a derivation step.

2Upon publication of this work, the authors were made
aware of two other algorithms for finding prefix probabilities
in the special case of idempotent semirings (Corazza et al.
1994; Sánchez and Benedí 1997). See App. B for a discussion
of prefix parsing under a semiring.

algorithm which is derived from CKY (Kasami,
1965; Younger, 1967; Cocke and Schwartz, 1970)
and, thus, requires the grammar to be in Chomsky
normal form (CNF). Jelinek–Lafferty runs in
O(N3|N |3 + |N |4) time, where N is the length
of the input and N is the number of non-terminals
of the grammar, slower than the O(N3|N |3)
required for parsing with CKY, when the number
of non-terminals |N | is taken into account.

The second, due to Stolcke (1995), is derived
from Earley parsing (Earley, 1970) and can parse
arbitrary PCFGs,3 with a runtime of O(N3|N |3).
Many previous authors have improved the runtime
of Earley’s (Graham et al., 1980; Leermakers
et al., 1992; Moore, 2000, inter alia), and Opedal
et al. (2023) successfully applied this speed-up
to computing prefix probabilities, achieving a
runtime of O(N3|G|), where |G| is the size of
the grammar, that is, the sum of the number of
symbols in all production rules.

Our paper provides a more efficient version of
Jelinek and Lafferty (1991) for the computation of
prefix probabilities under a PCFG in CNF. Specif-
ically, we give an O(N2|N |3 +N3|N |2) time al-
gorithm, which is the fastest attested in the liter-
ature for dense grammars in CNF,4 matching the
complexity of CKY adapted for dense grammars
by Eisner and Blatz (2007).5 We provide a full
derivation and proof of correctness, as well as an
open-source implementation on GitHub. We also
briefly discuss how our improved algorithm can be
extended to work for semiring-weighted CFGs.

2 Preliminaries

We start by introducing the necessary background
on probabilistic context-free grammars.

3Note that Earley’s and, by extension, Stolcke’s algorithms
also implicitly binarize the grammar during execution by using
dotted rules as additional non-terminals.

4A PCFG in CNF is dense if for every X,Y,Z ∈ N , we
have a production rule X → YZ ∈ R.

5Note that there exist approximate parsing algorithms with
lower complexity bounds (Cohen et al., 2013). Moreover,
there are parsing algorithms that asymptotically run in sub-
cubic time in the input length using fast matrix multiplication
(Valiant, 1975; Benedí and Sánchez, 2007). However, they are
of limited practical use (Lee, 1997).
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Definition 1. A probabilistic context-free gram-
mar (PCFG) is a five-tuple G = (N ,Σ,S,R, p),
made up of:

• An finite set of non-terminal symbols N ;

• An alphabet of terminal symbols Σ;

• A distinguished start symbol S ∈ N ;

• A finite set of production rules R ⊂ N ×
(N ∪ Σ)∗ where each rule is written as X −→
α with X ∈ N and α ∈ (N ∪ Σ)∗. Here, ∗

denotes the Kleene closure;

• A weighting function p : R → [0, 1] assigning
each rule r ∈ R a probability such that p
is locally normalized, meaning that for all
X ∈ N that appear on the left-hand side of a
rule,

∑
X−→α∈R

p(X −→ α) = 1.

Note that not every locally normalized PCFG con-
stitutes a valid distribution over Σ∗. Specifically,
some may place probability mass on infinite trees
(Chi and Geman, 1998). PCFGs that do constitute
a valid distribution over Σ∗ are referred to as tight.
Furthermore, if all non-terminals of the grammar
can be reached from the start non-terminal via
production rules, we say the PCFG is trim.

Definition 2. A PCFG G = (N ,Σ,S,R, p) is in
Chomsky normal form (CNF) if each production
rule inR is in one of the following forms:

X −→ YZ (1)

X −→ a (2)

S −→ ε (3)

where X,Y,Z ∈ N are non-terminals, a ∈ Σ are
terminal symbols, and ε is the empty string.

Definition 3. A derivation step α⇒ β is an appli-
cation of the binary relation⇒: (N ∪Σ)∗× (N ∪
Σ)∗, which rewrites the left-most non-terminal in
α according to a rule inR from the left-hand side
of that rule to its right-hand side, resulting in β.

Definition 4. A derivation under a grammar
G is a sequence α0,α1, · · · ,αm, where α0 ∈
N ,α1, · · · ,αm−1 ∈ (N ∪ Σ)∗, and αm ∈ Σ∗,
in which each αi+1 is formed by applying a deriva-
tion step to αi. αm = w1 · · ·wN ∈ Σ∗ is called
the yield of the derivation. If α0 is not the start
symbol S, we call it a partial derivation. We write
α0

∗⇒ w1 · · ·wN , where ∗⇒ is the closure over the
binary relation⇒ introduced in definition 3.

We represent derivations as trees whose structure
corresponds to production rules, where any parent
node is the non-terminal on the left-hand side of
a rule and its children are the symbols from the
right-hand side. The leaves of the tree, when read
from left to right, form the yield. Such a tree, when
rooted S, is called a derivation tree. Otherwise, it
is called a derivation subtree.
Definition 5. The probability of a derivation tree
(or derivation subtree) τ is the product of the prob-
abilities of all its corresponding production rules:

p(τ )
def
=

∏

(α−→β)∈τ
p(α −→ β) (4)

Definition 6. We define TX(wi · · ·wk) as the set
of all derivation subtrees τ rooted at X with yield
wi · · ·wk.
Definition 7. Given a PCFG G = (N ,Σ, S,R, p),
a non-terminal X ∈ N , and a string w =
w1 · · ·wN ∈ Σ∗, the inside probability of X be-
tween indices i and k (where 1 ≤ i ≤ k ≤ N ) is
defined as:

β(i, k | X) def
= p(X

∗⇒ wi · · ·wk) (5)

=
∑

τ∈TX(wi···wk)

p(τ ) (6)

That is, the sum of the probability of all derivation
trees τ starting at X that have yield wi · · ·wk.
Definition 8. Given a PCFG G = (N ,Σ, S,R, p),
a non-terminal X ∈ N , and a string w =
w1 · · ·wN ∈ Σ∗, we define the prefix probability
pπ, i.e., the probability of w being a prefix under
G, to be:

pπ(w | X)
def
=

∑

u∈Σ∗
p(X

∗⇒ wu) (7)

In words, pπ is the probability of deriving w
with an arbitrary continuation from X, that is, the
sum of probabilities of deriving wu from X over
all possible suffixes u ∈ Σ∗. In the following,
we write the prefix probability of deriving prefix
w = wi · · ·wk from X as pπ(i, k | X).
Definition 9. Let G be a PCFG in CNF. Then for
non-terminals X,Y,Z ∈ N , the left-corner expec-
tations Elc(Y | X) and Elc(Y Z | X) are, respec-
tively, defined as:

Elc(Y | X) def
=

∑

α∈N ∗
p(X

∗⇒ Yα) (8)

Elc(Y Z | X) def
=

∑

X′∈N
Elc(X

′ | X) · p(X′−→YZ)

(9)
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Algorithm 1 CKY
1: def CKY(w = w1 · · ·wN ,G):
2: ▷ Initialize inside probabilities

3: β(·, · | ·)←− 0
4: for k ∈ 1, . . . , N :
5: for X −→ wk ∈ R :
6: ▷Handle single word tokens

7: β(k, k | X)←−β(k, k | X)+p(X −→ wk)

8: ▷ ℓ is the span size

9: for ℓ ∈ 2, . . . , N :
10: ▷ i marks the beginning of the span

11: for i ∈ 1, . . . , N − ℓ+ 1 :
12: ▷ k marks the end of the span

13: k ←− i+ ℓ− 1
14: ▷Recursively compute β

15: for X −→ Y Z ∈ R :
16: β(i, k | X) ←− β(i, k | X) + p(X −→

YZ) ·
k−1∑
j=i

β(i, j | Y) · β(j+1, k | Z)

17: return β

Algorithm 2 Jelinek–Lafferty

1: def JL(w = w1 · · ·wN ,G):
2: pπ(·, · | ·)←− 0 ▷ Initialize prefix probabilities

3: β ←− CKY(w) ▷ Precompute β with Algorithm 1

4: for Xi,Xj ∈ N : ▷ Precompute Elc(Y | X)

5: Elc(Xj | Xi)←−
[
(I − P )−1

]
ij

6: for X′ −→ Y Z ∈ R : ▷ Precompute Elc(Y Z | X)

7: Elc(Y Z|X)←− ∑
X∈N

Elc(X
′|X) · p(X′−→YZ)

8: for k ∈ 1, . . . , N :
9: for X ∈ N : ▷ Compute base case

10: pπ(k, k | X)←− ∑
Y∈N

Elc(Y|X) ·p(Y−→wk)

11: for ℓ ∈ 2 . . . N :
12: for i ∈ 1 . . . N − ℓ+ 1 :
13: k ←− i+ ℓ− 1
14: for X,Y,Z ∈ N : ▷ Recursively compute pπ

15: pπ(i, k | X) ←− pπ(i, k | X) +

Elc(YZ|X) ·
k−1∑
j=i

β(i, j | Y) · pπ(j+1, k | Z)

16: return pπ

Figure 1: Pseudocode for the CKY algorithm (left) and Jelinek–Lafferty (right)

X

· · ·
Y

(a) Elc(Y | X)

X

· · ·X′

Y Z

(b) Elc(Y Z | X)

Figure 2: Visualization of left-corner expectations

The left-corner expectation Elc(Y | X) is hence
the sum of the probabilities of partial derivation
subtrees rooted in X that have Y as the left-most
leaf; see Fig. 2a for a visualization. Similarly,
Elc(Y Z | X) is the sum of the probabilities of
partial derivation subtrees that have Y and Z as the
leftmost leaves; see Fig. 2b.

3 Jelinek and Lafferty (1991)

We now give a derivation of the Jelinek–Lafferty
algorithm. The first step is to derive an expression
for the prefix probability in PCFG terms.

Lemma 1. Given a tight, trim PCFG in CNF and
a string w = w1 · · ·wN , the prefix probability of
a substring wi · · ·wk of w, can be defined recur-
sively as follows:

pπ(i, k | X) =
∑

Y,Z∈N
Elc(Y Z | X)

·
k−1∑

j=i

β(i, j | Y) · pπ(j+1, k | Z)
(10)

Proof. A proof of Lemma 1 is given in App. A.

The above formulation of the prefix probability
is closely related to that of the inside probability
from Baker’s (1979) inside–outside algorithm,
which can be efficiently computed using CKY, see
Algorithm 1.

Next, the left-corner expectations Elc as de-
fined by Eq. (8) can be computed efficiently as
follows. Let P denote the square matrix of dimen-
sion |N |, with rows and columns indexed by the
non-terminals N (in some fixed order), where the
entry at the ith row and the jth column corresponds
to p(Xi −→ Xj •), i.e., the probability of deriving
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Xj on the left corner from Xi in one step:

p(Xi −→ Xj •) def
=

∑

Y∈N
p(Xi −→ Xj Y) (11)

We can find the probability of getting to non-
terminal Xj after k derivation steps starting from
Xi by multiplying P with itself k times:

p(Xi
k−→ Xj •) = (P k)i,j (12)

We can hence get the matrix P ∗, whose entries cor-
respond to deriving Xj from Xi after any number
of derivation steps, by summing over all the powers
of the matrix P :6

P ∗ def
= I + P + P 2 + P 3 + · · · =

∞∑

n=0

Pn (13)

= I + P
∞∑

n=0

Pn = I + PP ∗ = (I − P )−1

Note that the entry at the ith row and jth col-
umn of P ∗ is exactly the left-corner expectation
Elc(Xj | Xi). Finally, we can compute the left-
corner expectations Elc(Y Z | X) using Eq. (9):

Elc(Y Z | X)
def
=

∑

X′∈N
Elc(X

′ | X) · p(X′−→YZ)

Similarly, we can compute the base case of the
recursive Eq. (10), namely pπ(k, k | X), which is
defined as follows.
Definition 10. The prefix probability of the token
at position k being derived from X is defined as:

pπ(k, k | X) def
=

∑

Y∈N
Elc(Y | X)·p(Y−→wk) (14)

We can now combine the quantities derived
above to obtain an efficient algorithm for the com-
putation of prefix probabilities pπ(i, k | S). For the
full algorithm, see Algorithm 2.
Proposition 1. The time complexity of the CKY al-
gorithm as presented in Algorithm 1 isO(N3|N |3).

Proof. Clearly, the computationally critical part is
in lines 9–13, where we iterate over all indices of
w for i, j, and k, as well as over the whole set of
grammar rules, thus taking O(N3|R|). In a PCFG
in CNF, with the size of the alphabet taken as con-
stant, the number of rules, |R|, isO(|N |3), making
the overall complexity of CKY O(N3|N |3). ■

6Note that this sum converges if the PCFG is tight and trim
since infinite derivation (sub)trees have zero probability mass.

Proposition 2. The total time complexity of Jelinek–
Lafferty is O(N3|N |3 + |N |4):

Proof. 1. We begin by pre-computing all the in-
side probabilities β in line 2 of Algorithm 2,
which takes O(N3|N |3) by Proposition 1.

2. Next, in lines 3–4, we pre-compute all the
left-corner expectations Elc(Y | X) using
Eq. (13), which has the complexity of invert-
ing the matrix P , i.e., O(|N |3).

3. In lines 5–7, we then use Eq. (9) to com-
pute Elc(Y Z | X), iterating once over all
non-terminals X for each rule, which takes
O(|R||N |), that is, O(|N |4).

4. Computing pπ(k, k | X) for all X ∈ N by
Eq. (14) in lines 8–10 takes O(N |N |2) as we
iterate over all positions k ∈ N and over all
Y ∈ N for each X ∈ N .

5. And finally, computing the pπ chart in lines
11–14 takesO(N3|N |3) since we iterate over
all ℓ, i, j ≤ N and X,Y,Z ∈ N .

6. This yields an overall time complexity of
O(N3|N |3 + |N |4).

■

4 Our Speed-up

We now turn to our development of a faster dy-
namic program to compute all prefix probabilities.
The speed-up comes from a different way to factor-
ize pπ(i, k | X), which allows additional memoiza-
tion. Starting with the definition of the prefix prob-
ability in Eq. (15a), we first expand Elc(Y Z | X)
by Eq. (9), as seen in Eq. (15b). Then, we factor
out all terms that depend on the left-corner non-
terminal Y in Eq. (15c), which we store in a chart
γ, see Eq. (15e). We then do the same for all terms
depending on X′, factoring them out in Eq. (15d)
and storing them in another chart δ, see Eq. (15f).

Our improved algorithm for computing all prefix
probabilities is shown in Algorithm 3.

Proposition 3. The complexity of our improved
algorithm is O(N2|N |3 +N3|N |2).

Proof. 1. As before, computing Elc(Y | X) and
pπ(k, k | X) takes O(|N |3) and O(N |N |2),
respectively.
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pπ(i, k | X) =
∑

Y,Z∈N
Elc(Y,Z | X) ·

k−1∑

j=i

β(i, j | Y) · pπ(j+1, k | Z) (15a)

=
∑

Y,Z∈N

∑

X′∈N
Elc(X

′ | X) · p(X′ −→ YZ) ·
k−1∑

j=i

β(i, j | Y) · pπ(j+1, k | Z) (15b)

=
∑

X′,Z∈N
Elc(X

′ | X) ·
k−1∑

j=i

γij(X
′,Z) · pπ(j+1, k | Z) (15c)

=
∑

Z∈N

k−1∑

j=i

δij(X,Z) · pπ(j+1, k | Z) (15d)

where γij(X
′,Z) def

=
∑

Y∈N
p(X′ −→ YZ) · β(i, j | Y) (15e)

and δij(X,Z)
def
=

∑

X′∈N
Elc(X

′ | X) · γij(X′,Z) (15f)

Algorithm 3 Faster prefix probability algorithm

1: def FastJL(w = w1 · · ·wN ,G):
2: pπ(·, · | ·)←− 0 ▷ Initialize prefix probabilities
3: β ←− CKY(w) ▷ Precompute β with Algorithm 1
4: for Xi,Xj ∈ N : ▷ Precompute Elc(Y | X)

5: Elc(Xj | Xi)←−
[(
I − P )−1

)]
ij

6: for i, j = 1, . . . , N :
7: for X,Z ∈ N : ▷ Precompute γ by Eq. (15e)
8: γij(X,Z)←−

∑
Y∈N

p(X−→YZ)·β(i, j | Y)

9: for X,Z ∈ N : ▷ Precompute δ by Eq. (15f)
10: δij(X,Z)←− ∑

Y∈N
Elc(Y | X) · γij(Y,Z)

11: for k ∈ 1, . . . , N, for X ∈ N : ▷ Base case
12: pπ(k, k | X)←− ∑

Y∈N
Elc(Y|X) ·p(Y−→wk)

13: for ℓ ∈ 2 . . . N :
14: for i ∈ 1 . . . N − ℓ+ 1 :
15: k ←− i+ ℓ− 1
16: for X,Z ∈ N : ▷ Recursively compute pπ

17: pπ(i, k | X) ←− pπ(i, k | X) +
k−1∑
j=i

δij(X,Z) · pπ(j+1, k | Z)

18: return pπ

2. As Eisner and Blatz (2007) show, one can
compute β inO(N2|N |3+N3|N |2), thus im-
proving the runtime of Algorithm 1 for dense
grammars.

3. Pre-computing γ and δ in lines 5–9 takes
O(N2|N |3), as we sum over non-terminals,

and both charts each have two dimensions in-
dexing N and two indexing N .

4. The loops computing pπ in lines 13–17 take
O(N3|N |2), as we are now iterating over
X,Z ∈ N and ℓ, i, j ≤ N .

5. Hence, our new overall time complexity is
O(N2|N |3 +N3|N |2).

■

5 Generalization to Semirings

It turns out that Jelinek–Lafferty, and, by extension,
our improved algorithm, can be generalized to work
for semiring-weighted CFGs, with the same time
complexity, under the condition that the weights
are locally normalized and the semiring has a well-
defined Kleene closure. This follows from the fact
that the only operations used by the algorithm are
addition and multiplication if we use Lehmann’s
(1977) algorithm for the computation of left-corner
expectations, Elc. The definitions, derivation, and
proof of this statement can be found in App. B.

6 Conclusion

In this paper, we have shown how to efficiently
compute prefix probabilities for PCFGs in CNF,
adapting Jelinek–Lafferty to use additional memo-
ization, thereby reducing the time complexity from
O(N3|N |3+ |N |4) toO(N2|N |3+N3|N |2). We
thereby addressed one of the main limitations of
the original formulation, of being slow for large
grammar sizes.
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7 Limitations

While we have improved the asymptotic running
time of a classic algorithm with regard to grammar
size, the time complexity of our algorithm is still
cubic in the length of the input. Our result follows
the tradition of dynamic programming algorithms
that trade time for space by memoizing and reusing
pre-computed intermediate results. The usefulness
of this trade-off in practice depends on the specifics
of the grammar, and while the complexity is strictly
better in terms of non-terminals, it will be most
noticeable for denser grammars with many non-
terminals.
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A Proof of Lemma 1

Lemma 1. Given a tight, trim PCFG in CNF and a string w = w1 · · ·wN , the prefix probability of a
substring wi · · ·wk of w, can be defined recursively as follows:

pπ(i, k | X) =
∑

Y,Z∈N
Elc(Y Z | X)

·
k−1∑

j=i

β(i, j | Y) · pπ(j+1, k | Z)
(10)

Proof. Given the PCFG is in CNF and k > i, in order to derive the prefix wi · · ·wk we must first apply
some rule X −→ YZ, where the first part of the substring is then derived from Y and the remainder (and
potentially more) from Z:

pπ(i, k | X) =
∑

Y,Z∈N
p(X −→ YZ) ·



k−1∑

j=i

β(i, j | Y) · pπ(j+1, k | Z) + pπ(i, k | Y)


 (16)

where the last term, pπ(i, k | Y), handles the case where the whole prefix is derived from Y alone.
This term is clearly recursively defined through Eq. (16), with X replaced by Y. Defining R(Y,Z)

def
=∑k−1

j=i β(i, j | Y) · pπ(j+1, k | Z), we can rewrite Eq. (16) as:

pπ(i, k | X) =
∑

Y,Z∈N
p(X −→ YZ) ·R(Y,Z) +

∑

A,B∈N
p(X −→ AB) · pπ(i, k | A) (17)

After repeated substitutions ad infinitum, we get:

pπ(i, k | X) =
∑

A,B∈N
p(X

∗⇒ AB) ·
∑

Y,Z∈N
p(A −→ YZ) ·R(Y,Z) (18)

Note that, in the last step, infinite derivations do not carry any probability mass since we assumed the
PCFG to be tight and trim. Hence, the final form of the equation is:

pπ(i, k | X) =
∑

A,B∈N
p(X

∗⇒ AB)
∑

Y,Z∈N
p(A −→ YZ) ·R(Y,Z)

=
∑

Y,Z∈N
Elc(Y Z | X) ·

k−1∑

j=i

β(i, j | Y) · pπ(j+1, k | Z)

■
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B Extension of Algorithm 3 to Semirings

In the following, we give the necessary background on semirings and then show how the algorithms
introduced above can be framed in terms of semirings. We start by introducing the necessary definitions
and notation.

Definition 11. A monoid is a 3-tuple ⟨A, ◦,1⟩ where:

(i) A is a non-empty set;

(ii) ◦ is a binary operation which is associative: ∀a, b, c ∈ A, (a ◦ b) ◦ c = a ◦ (b ◦ c);

(iii) 1 is a left and right identity element: ∀a ∈ A,1 ◦ a = a ◦ 1 = a

(iv) A is closed under the operation ◦: ∀a, b ∈ A, a ◦ b ∈ A

A monoid is commutative if ∀a, b ∈ A : a ◦ b = b ◦ a.

Definition 12. A semiring is a 5-tupleW = ⟨A,⊕,⊗,0,1⟩, where

(i) ⟨A,⊕,0⟩ is a commutative monoid over A with identity element 0 under the addition operation ⊕;

(ii) ⟨A,⊗,1⟩ is a monoid over A with identity element 1 under the multiplication operation ⊗;

(iii) Multiplication is distributive over addition, that is, ∀a, b, c ∈ A:

• a⊗ (b⊕ c) = a⊗ b⊕ a⊗ c;
• (b⊕ c)⊗ a = b⊗ a⊕ c⊗ a.

(iv) 0 is an annihilator for A, that is, ∀a ∈ A,0⊗ a = a⊗ 0 = 0.

A semiring is idempotent if ∀a ∈ A : a⊕ a = a.

Definition 13. A semiringW = ⟨A,⊕,⊗,0,1⟩ is complete if it is possible to extend the addition operator
⊕ to infinite sums, maintaining the properties of associativity, commutativity, and distributivity from the
finite case (Rozenberg and Salomaa, 1997, Chapter 9). In this case, we can define the unary operation of
the Kleene star denoted by a superscript ∗ as the infinite sum over its operand, that is, ∀a ∈ A:

a∗ def
=

∞⊕

i=0

ai (19)

Analogously to Eq. (13), it then follows that:

a∗ =
∞⊕

i=0

ai = a0 ⊕
∞⊕

i=1

ai = 1⊕ a⊗
∞⊕

i=0

ai = 1⊕ a⊗ a∗ (20)

and, similarly:

a∗ = a0 ⊕
∞⊕

i=1

ai = 1⊕
∞⊕

i=a

ai ⊗ a = 1⊕ a∗ ⊗ a (21)

We now discuss how complete semirings can be lifted to matrices. The definitions follow analogously
to matrices over the reals.

Definition 14. We define semiring matrix addition as follows. Let A and B be d × d matrices whose
entries are elements from a complete semiringW = ⟨A,⊕,⊗,0,1⟩. Then the sum ("+") of A and B is
defined as:

(A+B)ij
def
= Aij ⊕Bij i, j ∈ 1, . . . , d (22)
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Definition 15. We define semiring matrix multiplication as follows. Let A and B be d × d matrices
whose entries are elements from a complete semiringW = ⟨A,⊕,⊗,0,1⟩. Then the product (“·”) of A
and B is defined as:

(A ·B)ij
def
=

d⊕

k=1

Aik ⊗Bkj i, j ∈ 1, . . . , d (23)

We also define the zero matrix, O, over the complete semiringW = ⟨A,⊕,⊗,0,1⟩, such that all
entries are 0, and the unit matrix I as (I)ij = 1 iff i = j and 0 otherwise for all indices i, j ∈ 0, . . . , d.
It is then straightforward to show that matrix addition is associative and commutative while matrix
multiplication is associative and distributive over matrix addition. Hence, ⟨Wd×d,+, ·,O, I⟩ is a semiring.
Furthermore, by the element-wise definition of its addition operation, it is also complete.

We now consider a semiring-weighted CFG G = ⟨N ,Σ,S,R, p,W⟩, where N ,Σ,S,R are defined as
before, except the (locally normalized) weighting function p is now semiring-valued:

p : R −→W such that
⊕

X−→α∈R
p(X −→ α) = 1

As before, we define the matrix P as the square matrix of dimension |N | whose rows and columns
are indexed by the non-terminals N in some fixed order so that the entry Pij corresponds to p(Xi −→
Xj•) =

⊕
Y∈N

p(Xi −→ XjY). We can then calculate the probability of getting Xj from Xi at the leftmost

non-terminal after exactly k derivation steps as (P k)ij =

(
k⊗

i=0
P

)

ij

. Note that this holds because the

production rule weights are locally normalized, meaning that we only need to consider the left-most rule
applications instead of having to explicitly calculate the full treesum.

Finally, to get the left-corner expectations, we then need to calculate the Kleene closure over the
matrix P ,7 that is, we want to find P ∗ =

⊕∞
k=0 P

k. To compute the Kleene closure over the transition
matrix we can use an efficient algorithm by Lehmann (1977) which is a generalization of the well-known
shortest-path algorithm usually attributed to Floyd (1962) and Warshall (1962), but introduced previously
by Roy (1959). The algorithm works under the condition that the Kleene closure of all individual matrix
entries from semiringW exists, which is true for our case since we assumedW to be complete. The
algorithm is shown in Algorithm 4.

Algorithm 4 Lehmann’s algorithm for computing the Kleene closure over a transition matrix

1: def Lehmann(M ):
2: d←− dim(M) ▷ M is a d× d matrix over a complete semiring

3: M (0) ←−M
4: for j = 1, . . . , d :
5: for i = 1, . . . , d :
6: for k = 1, . . . , d :
7: M

(j)
ik ←−M

(j−1)
ik ⊕M

(j−1)
ij ⊗

(
M

(j−1)
jj

)∗
⊗M

(j−1)
jk

8: return I⊕M (d)

With this, we can now generalize our prefix probability algorithm to semirings, as shown in Algorithm 5.

Proposition 4. The semiring-weighted version of our algorithm runs in O(N2|N |3 +N3|N |2).

Proof. Lehmann’s algorithm, as presented in Algorithm 4, has three nested for loops of d iterations each,
where d is the dimension of the input matrix. In our case, d is the number of non-terminals, |N |. Assuming

7Note that the Kleene closure exists since matrices with elements from a complete semiring are complete.

66



Algorithm 5 Faster prefix probability algorithm over semirings

1: def FastSemiringJL(w = w1 · · ·wN ,G):
2: β ←− CKY(w) ▷ Precompute β with Algorithm 1

3: P ∗ ←− Lehmann(P ) ▷ Precompute P ∗ with Algorithm 4

4: for Xi,Xj ∈ N : ▷ Precompute Elc(Xj | Xi)

5: Elc(Xj | Xi)←− (P ∗)ij
6: for i, j = 1, . . . , N :
7: for X,Z ∈ N : ▷ Precompute γ by Eq. (15e)

8: γij(X,Z)←−
⊕

Y∈N
p(X−→YZ)⊗ β(i, j | Y)

9: for X,Z ∈ N : ▷ Precompute δ by Eq. (15f)

10: δij(X,Z)←−
⊕

Y∈N
Elc(Y | X)⊗ γij(Y,Z)

11: for k ∈ 1, . . . , N :
12: for X ∈ N : ▷ Base case

13: pπ(k, k | X)←− ⊕
Y∈N

Elc(Y | X)⊗ p(Y−→wk)

14: for ℓ ∈ 2 . . . N :
15: for i ∈ 1 . . . N − ℓ+ 1 :
16: k ←− i+ ℓ− 1
17: for X,Z ∈ N : ▷ Recursively compute pπ

18: pπ(i, k | X)←− pπ(i, k | X)⊕
k−1⊕
j=i

δij(X,Z)⊗ pπ(j+1, k | Z)

19: return pπ

the Kleene closure of elements inW can be evaluated in O(1), this means that computing the left corner
expectations in lines 3-5 of Algorithm 5 takes O(|N |3), as before. Hence, the complexity of the overall
algorithm remains unchanged, that is, we can compute the prefix probabilities under a semiring-weighted,
locally normalized CFG G in O(N2|N |3 +N3|N |2). ■
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