
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 2: Short Papers, pages 57–69

July 9-14, 2023 ©2023 Association for Computational Linguistics

A Fast Algorithm for Computing Prefix Probabilities
Franz Nowak Ryan Cotterell

ETH Zürich
{fnowak, rcotterell}@ethz.ch

Abstract

Multiple algorithms are known for efficiently
calculating the prefix probability of a string
under a probabilistic context-free grammar
(PCFG). Good algorithms for the problem have
a runtime cubic in the length of the input string.
However, some proposed algorithms are subop-
timal with respect to the size of the grammar.
This paper proposes a novel speed-up of Jelinek
and Lafferty’s (1991) algorithm, which runs
in O(N3|N |3 + |N |4), where N is the input
length and |N | is the number of non-terminals
in the grammar. In contrast, our speed-up runs
in O(N2|N |3 +N3|N |2).

https://github.com/rycolab/
prefix-parsing

1 Introduction

Probabilistic context-free grammars (PCFGs) are
an important formalism in NLP (Eisenstein, 2019,
Chapter 10). One common use of PCFGs is to con-
struct a language model. For instance, PCFGs form
the backbone of many neural language models, e.g.,
recurrent neural network grammars (RNNGs; Dyer
et al., 2016; Dyer, 2017; Kim et al., 2019). How-
ever, in order to use a PCFG as a language model,
one needs to be able to compute prefix probabilities,
i.e., the probability that the yield of a derivation
starts with the given string. In notation, given a
string w = w1 · · ·wN , we seek the probability
p(S

∗⇒ w · · ·) where S is the distinguished start
symbol of the grammar and ∗⇒ is the closure over
applications of derivation rules of the grammar.1

Our paper gives a more efficient algorithm for the
simultaneous computation of the prefix probabil-
ities of all prefixes of a string w under a PCFG.

The authors are aware of two existing efficient
algorithms to compute prefix probabilities under
a PCFG.2 The first is Jelinek and Lafferty’s (1991)

1Specifically, α ∗⇒ β means that there exists an n ≥ 0
such that α⇒ · · · ⇒︸ ︷︷ ︸

n times

β, where ⇒ marks a derivation step.

2Upon publication of this work, the authors were made
aware of two other algorithms for finding prefix probabilities
in the special case of idempotent semirings (Corazza et al.
1994; Sánchez and Benedí 1997). See App. B for a discussion
of prefix parsing under a semiring.

algorithm which is derived from CKY (Kasami,
1965; Younger, 1967; Cocke and Schwartz, 1970)
and, thus, requires the grammar to be in Chomsky
normal form (CNF). Jelinek–Lafferty runs in
O(N3|N |3 + |N |4) time, where N is the length
of the input and N is the number of non-terminals
of the grammar, slower than the O(N3|N |3)
required for parsing with CKY, when the number
of non-terminals |N | is taken into account.

The second, due to Stolcke (1995), is derived
from Earley parsing (Earley, 1970) and can parse
arbitrary PCFGs,3 with a runtime of O(N3|N |3).
Many previous authors have improved the runtime
of Earley’s (Graham et al., 1980; Leermakers
et al., 1992; Moore, 2000, inter alia), and Opedal
et al. (2023) successfully applied this speed-up
to computing prefix probabilities, achieving a
runtime of O(N3|G|), where |G| is the size of
the grammar, that is, the sum of the number of
symbols in all production rules.

Our paper provides a more efficient version of
Jelinek and Lafferty (1991) for the computation of
prefix probabilities under a PCFG in CNF. Specif-
ically, we give an O(N2|N |3 +N3|N |2) time al-
gorithm, which is the fastest attested in the liter-
ature for dense grammars in CNF,4 matching the
complexity of CKY adapted for dense grammars
by Eisner and Blatz (2007).5 We provide a full
derivation and proof of correctness, as well as an
open-source implementation on GitHub. We also
briefly discuss how our improved algorithm can be
extended to work for semiring-weighted CFGs.

2 Preliminaries

We start by introducing the necessary background
on probabilistic context-free grammars.

3Note that Earley’s and, by extension, Stolcke’s algorithms
also implicitly binarize the grammar during execution by using
dotted rules as additional non-terminals.

4A PCFG in CNF is dense if for every X,Y,Z ∈ N , we
have a production rule X → YZ ∈ R.

5Note that there exist approximate parsing algorithms with
lower complexity bounds (Cohen et al., 2013). Moreover,
there are parsing algorithms that asymptotically run in sub-
cubic time in the input length using fast matrix multiplication
(Valiant, 1975; Benedí and Sánchez, 2007). However, they are
of limited practical use (Lee, 1997).

57

mailto:fnowak@ethz.ch
mailto:ryan.cotterell@inf.ethz.ch
https://github.com/rycolab/prefix-parsing
https://github.com/rycolab/prefix-parsing

Definition 1. A probabilistic context-free gram-
mar (PCFG) is a five-tuple G = (N ,Σ,S,R, p),
made up of:

• An finite set of non-terminal symbols N ;

• An alphabet of terminal symbols Σ;

• A distinguished start symbol S ∈ N ;

• A finite set of production rules R ⊂ N ×
(N ∪ Σ)∗ where each rule is written as X −→
α with X ∈ N and α ∈ (N ∪ Σ)∗. Here, ∗

denotes the Kleene closure;

• A weighting function p : R → [0, 1] assigning
each rule r ∈ R a probability such that p
is locally normalized, meaning that for all
X ∈ N that appear on the left-hand side of a
rule,

∑
X−→α∈R

p(X −→ α) = 1.

Note that not every locally normalized PCFG con-
stitutes a valid distribution over Σ∗. Specifically,
some may place probability mass on infinite trees
(Chi and Geman, 1998). PCFGs that do constitute
a valid distribution over Σ∗ are referred to as tight.
Furthermore, if all non-terminals of the grammar
can be reached from the start non-terminal via
production rules, we say the PCFG is trim.

Definition 2. A PCFG G = (N ,Σ,S,R, p) is in
Chomsky normal form (CNF) if each production
rule inR is in one of the following forms:

X −→ YZ (1)

X −→ a (2)

S −→ ε (3)

where X,Y,Z ∈ N are non-terminals, a ∈ Σ are
terminal symbols, and ε is the empty string.

Definition 3. A derivation step α⇒ β is an appli-
cation of the binary relation⇒: (N ∪Σ)∗× (N ∪
Σ)∗, which rewrites the left-most non-terminal in
α according to a rule inR from the left-hand side
of that rule to its right-hand side, resulting in β.

Definition 4. A derivation under a grammar
G is a sequence α0,α1, · · · ,αm, where α0 ∈
N ,α1, · · · ,αm−1 ∈ (N ∪ Σ)∗, and αm ∈ Σ∗,
in which each αi+1 is formed by applying a deriva-
tion step to αi. αm = w1 · · ·wN ∈ Σ∗ is called
the yield of the derivation. If α0 is not the start
symbol S, we call it a partial derivation. We write
α0

∗⇒ w1 · · ·wN , where ∗⇒ is the closure over the
binary relation⇒ introduced in definition 3.

We represent derivations as trees whose structure
corresponds to production rules, where any parent
node is the non-terminal on the left-hand side of
a rule and its children are the symbols from the
right-hand side. The leaves of the tree, when read
from left to right, form the yield. Such a tree, when
rooted S, is called a derivation tree. Otherwise, it
is called a derivation subtree.
Definition 5. The probability of a derivation tree
(or derivation subtree) τ is the product of the prob-
abilities of all its corresponding production rules:

p(τ)
def
=

∏

(α−→β)∈τ
p(α −→ β) (4)

Definition 6. We define TX(wi · · ·wk) as the set
of all derivation subtrees τ rooted at X with yield
wi · · ·wk.
Definition 7. Given a PCFG G = (N ,Σ, S,R, p),
a non-terminal X ∈ N , and a string w =
w1 · · ·wN ∈ Σ∗, the inside probability of X be-
tween indices i and k (where 1 ≤ i ≤ k ≤ N) is
defined as:

β(i, k | X) def
= p(X

∗⇒ wi · · ·wk) (5)

=
∑

τ∈TX(wi···wk)

p(τ) (6)

That is, the sum of the probability of all derivation
trees τ starting at X that have yield wi · · ·wk.
Definition 8. Given a PCFG G = (N ,Σ, S,R, p),
a non-terminal X ∈ N , and a string w =
w1 · · ·wN ∈ Σ∗, we define the prefix probability
pπ, i.e., the probability of w being a prefix under
G, to be:

pπ(w | X)
def
=

∑

u∈Σ∗
p(X

∗⇒ wu) (7)

In words, pπ is the probability of deriving w
with an arbitrary continuation from X, that is, the
sum of probabilities of deriving wu from X over
all possible suffixes u ∈ Σ∗. In the following,
we write the prefix probability of deriving prefix
w = wi · · ·wk from X as pπ(i, k | X).
Definition 9. Let G be a PCFG in CNF. Then for
non-terminals X,Y,Z ∈ N , the left-corner expec-
tations Elc(Y | X) and Elc(Y Z | X) are, respec-
tively, defined as:

Elc(Y | X) def
=

∑

α∈N ∗
p(X

∗⇒ Yα) (8)

Elc(Y Z | X) def
=

∑

X′∈N
Elc(X

′ | X) · p(X′−→YZ)

(9)

58

Algorithm 1 CKY
1: def CKY(w = w1 · · ·wN ,G):
2: ▷ Initialize inside probabilities

3: β(·, · | ·)←− 0
4: for k ∈ 1, . . . , N :
5: for X −→ wk ∈ R :
6: ▷Handle single word tokens

7: β(k, k | X)←−β(k, k | X)+p(X −→ wk)

8: ▷ ℓ is the span size

9: for ℓ ∈ 2, . . . , N :
10: ▷ i marks the beginning of the span

11: for i ∈ 1, . . . , N − ℓ+ 1 :
12: ▷ k marks the end of the span

13: k ←− i+ ℓ− 1
14: ▷Recursively compute β

15: for X −→ Y Z ∈ R :
16: β(i, k | X) ←− β(i, k | X) + p(X −→

YZ) ·
k−1∑
j=i

β(i, j | Y) · β(j+1, k | Z)

17: return β

Algorithm 2 Jelinek–Lafferty

1: def JL(w = w1 · · ·wN ,G):
2: pπ(·, · | ·)←− 0 ▷ Initialize prefix probabilities

3: β ←− CKY(w) ▷ Precompute β with Algorithm 1

4: for Xi,Xj ∈ N : ▷ Precompute Elc(Y | X)

5: Elc(Xj | Xi)←−
[
(I − P)−1

]
ij

6: for X′ −→ Y Z ∈ R : ▷ Precompute Elc(Y Z | X)

7: Elc(Y Z|X)←− ∑
X∈N

Elc(X
′|X) · p(X′−→YZ)

8: for k ∈ 1, . . . , N :
9: for X ∈ N : ▷ Compute base case

10: pπ(k, k | X)←− ∑
Y∈N

Elc(Y|X) ·p(Y−→wk)

11: for ℓ ∈ 2 . . . N :
12: for i ∈ 1 . . . N − ℓ+ 1 :
13: k ←− i+ ℓ− 1
14: for X,Y,Z ∈ N : ▷ Recursively compute pπ

15: pπ(i, k | X) ←− pπ(i, k | X) +

Elc(YZ|X) ·
k−1∑
j=i

β(i, j | Y) · pπ(j+1, k | Z)

16: return pπ

Figure 1: Pseudocode for the CKY algorithm (left) and Jelinek–Lafferty (right)

X

· · ·
Y

(a) Elc(Y | X)

X

· · ·X′

Y Z

(b) Elc(Y Z | X)

Figure 2: Visualization of left-corner expectations

The left-corner expectation Elc(Y | X) is hence
the sum of the probabilities of partial derivation
subtrees rooted in X that have Y as the left-most
leaf; see Fig. 2a for a visualization. Similarly,
Elc(Y Z | X) is the sum of the probabilities of
partial derivation subtrees that have Y and Z as the
leftmost leaves; see Fig. 2b.

3 Jelinek and Lafferty (1991)

We now give a derivation of the Jelinek–Lafferty
algorithm. The first step is to derive an expression
for the prefix probability in PCFG terms.

Lemma 1. Given a tight, trim PCFG in CNF and
a string w = w1 · · ·wN , the prefix probability of
a substring wi · · ·wk of w, can be defined recur-
sively as follows:

pπ(i, k | X) =
∑

Y,Z∈N
Elc(Y Z | X)

·
k−1∑

j=i

β(i, j | Y) · pπ(j+1, k | Z)
(10)

Proof. A proof of Lemma 1 is given in App. A.

The above formulation of the prefix probability
is closely related to that of the inside probability
from Baker’s (1979) inside–outside algorithm,
which can be efficiently computed using CKY, see
Algorithm 1.

Next, the left-corner expectations Elc as de-
fined by Eq. (8) can be computed efficiently as
follows. Let P denote the square matrix of dimen-
sion |N |, with rows and columns indexed by the
non-terminals N (in some fixed order), where the
entry at the ith row and the jth column corresponds
to p(Xi −→ Xj •), i.e., the probability of deriving

59

Xj on the left corner from Xi in one step:

p(Xi −→ Xj •) def
=

∑

Y∈N
p(Xi −→ Xj Y) (11)

We can find the probability of getting to non-
terminal Xj after k derivation steps starting from
Xi by multiplying P with itself k times:

p(Xi
k−→ Xj •) = (P k)i,j (12)

We can hence get the matrix P ∗, whose entries cor-
respond to deriving Xj from Xi after any number
of derivation steps, by summing over all the powers
of the matrix P :6

P ∗ def
= I + P + P 2 + P 3 + · · · =

∞∑

n=0

Pn (13)

= I + P
∞∑

n=0

Pn = I + PP ∗ = (I − P)−1

Note that the entry at the ith row and jth col-
umn of P ∗ is exactly the left-corner expectation
Elc(Xj | Xi). Finally, we can compute the left-
corner expectations Elc(Y Z | X) using Eq. (9):

Elc(Y Z | X)
def
=

∑

X′∈N
Elc(X

′ | X) · p(X′−→YZ)

Similarly, we can compute the base case of the
recursive Eq. (10), namely pπ(k, k | X), which is
defined as follows.
Definition 10. The prefix probability of the token
at position k being derived from X is defined as:

pπ(k, k | X) def
=

∑

Y∈N
Elc(Y | X)·p(Y−→wk) (14)

We can now combine the quantities derived
above to obtain an efficient algorithm for the com-
putation of prefix probabilities pπ(i, k | S). For the
full algorithm, see Algorithm 2.
Proposition 1. The time complexity of the CKY al-
gorithm as presented in Algorithm 1 isO(N3|N |3).

Proof. Clearly, the computationally critical part is
in lines 9–13, where we iterate over all indices of
w for i, j, and k, as well as over the whole set of
grammar rules, thus taking O(N3|R|). In a PCFG
in CNF, with the size of the alphabet taken as con-
stant, the number of rules, |R|, isO(|N |3), making
the overall complexity of CKY O(N3|N |3). ■

6Note that this sum converges if the PCFG is tight and trim
since infinite derivation (sub)trees have zero probability mass.

Proposition 2. The total time complexity of Jelinek–
Lafferty is O(N3|N |3 + |N |4):

Proof. 1. We begin by pre-computing all the in-
side probabilities β in line 2 of Algorithm 2,
which takes O(N3|N |3) by Proposition 1.

2. Next, in lines 3–4, we pre-compute all the
left-corner expectations Elc(Y | X) using
Eq. (13), which has the complexity of invert-
ing the matrix P , i.e., O(|N |3).

3. In lines 5–7, we then use Eq. (9) to com-
pute Elc(Y Z | X), iterating once over all
non-terminals X for each rule, which takes
O(|R||N |), that is, O(|N |4).

4. Computing pπ(k, k | X) for all X ∈ N by
Eq. (14) in lines 8–10 takes O(N |N |2) as we
iterate over all positions k ∈ N and over all
Y ∈ N for each X ∈ N .

5. And finally, computing the pπ chart in lines
11–14 takesO(N3|N |3) since we iterate over
all ℓ, i, j ≤ N and X,Y,Z ∈ N .

6. This yields an overall time complexity of
O(N3|N |3 + |N |4).

■

4 Our Speed-up

We now turn to our development of a faster dy-
namic program to compute all prefix probabilities.
The speed-up comes from a different way to factor-
ize pπ(i, k | X), which allows additional memoiza-
tion. Starting with the definition of the prefix prob-
ability in Eq. (15a), we first expand Elc(Y Z | X)
by Eq. (9), as seen in Eq. (15b). Then, we factor
out all terms that depend on the left-corner non-
terminal Y in Eq. (15c), which we store in a chart
γ, see Eq. (15e). We then do the same for all terms
depending on X′, factoring them out in Eq. (15d)
and storing them in another chart δ, see Eq. (15f).

Our improved algorithm for computing all prefix
probabilities is shown in Algorithm 3.

Proposition 3. The complexity of our improved
algorithm is O(N2|N |3 +N3|N |2).

Proof. 1. As before, computing Elc(Y | X) and
pπ(k, k | X) takes O(|N |3) and O(N |N |2),
respectively.

60

pπ(i, k | X) =
∑

Y,Z∈N
Elc(Y,Z | X) ·

k−1∑

j=i

β(i, j | Y) · pπ(j+1, k | Z) (15a)

=
∑

Y,Z∈N

∑

X′∈N
Elc(X

′ | X) · p(X′ −→ YZ) ·
k−1∑

j=i

β(i, j | Y) · pπ(j+1, k | Z) (15b)

=
∑

X′,Z∈N
Elc(X

′ | X) ·
k−1∑

j=i

γij(X
′,Z) · pπ(j+1, k | Z) (15c)

=
∑

Z∈N

k−1∑

j=i

δij(X,Z) · pπ(j+1, k | Z) (15d)

where γij(X
′,Z) def

=
∑

Y∈N
p(X′ −→ YZ) · β(i, j | Y) (15e)

and δij(X,Z)
def
=

∑

X′∈N
Elc(X

′ | X) · γij(X′,Z) (15f)

Algorithm 3 Faster prefix probability algorithm

1: def FastJL(w = w1 · · ·wN ,G):
2: pπ(·, · | ·)←− 0 ▷ Initialize prefix probabilities
3: β ←− CKY(w) ▷ Precompute β with Algorithm 1
4: for Xi,Xj ∈ N : ▷ Precompute Elc(Y | X)

5: Elc(Xj | Xi)←−
[(
I − P)−1

)]
ij

6: for i, j = 1, . . . , N :
7: for X,Z ∈ N : ▷ Precompute γ by Eq. (15e)
8: γij(X,Z)←−

∑
Y∈N

p(X−→YZ)·β(i, j | Y)

9: for X,Z ∈ N : ▷ Precompute δ by Eq. (15f)
10: δij(X,Z)←− ∑

Y∈N
Elc(Y | X) · γij(Y,Z)

11: for k ∈ 1, . . . , N, for X ∈ N : ▷ Base case
12: pπ(k, k | X)←− ∑

Y∈N
Elc(Y|X) ·p(Y−→wk)

13: for ℓ ∈ 2 . . . N :
14: for i ∈ 1 . . . N − ℓ+ 1 :
15: k ←− i+ ℓ− 1
16: for X,Z ∈ N : ▷ Recursively compute pπ

17: pπ(i, k | X) ←− pπ(i, k | X) +
k−1∑
j=i

δij(X,Z) · pπ(j+1, k | Z)

18: return pπ

2. As Eisner and Blatz (2007) show, one can
compute β inO(N2|N |3+N3|N |2), thus im-
proving the runtime of Algorithm 1 for dense
grammars.

3. Pre-computing γ and δ in lines 5–9 takes
O(N2|N |3), as we sum over non-terminals,

and both charts each have two dimensions in-
dexing N and two indexing N .

4. The loops computing pπ in lines 13–17 take
O(N3|N |2), as we are now iterating over
X,Z ∈ N and ℓ, i, j ≤ N .

5. Hence, our new overall time complexity is
O(N2|N |3 +N3|N |2).

■

5 Generalization to Semirings

It turns out that Jelinek–Lafferty, and, by extension,
our improved algorithm, can be generalized to work
for semiring-weighted CFGs, with the same time
complexity, under the condition that the weights
are locally normalized and the semiring has a well-
defined Kleene closure. This follows from the fact
that the only operations used by the algorithm are
addition and multiplication if we use Lehmann’s
(1977) algorithm for the computation of left-corner
expectations, Elc. The definitions, derivation, and
proof of this statement can be found in App. B.

6 Conclusion

In this paper, we have shown how to efficiently
compute prefix probabilities for PCFGs in CNF,
adapting Jelinek–Lafferty to use additional memo-
ization, thereby reducing the time complexity from
O(N3|N |3+ |N |4) toO(N2|N |3+N3|N |2). We
thereby addressed one of the main limitations of
the original formulation, of being slow for large
grammar sizes.

61

7 Limitations

While we have improved the asymptotic running
time of a classic algorithm with regard to grammar
size, the time complexity of our algorithm is still
cubic in the length of the input. Our result follows
the tradition of dynamic programming algorithms
that trade time for space by memoizing and reusing
pre-computed intermediate results. The usefulness
of this trade-off in practice depends on the specifics
of the grammar, and while the complexity is strictly
better in terms of non-terminals, it will be most
noticeable for denser grammars with many non-
terminals.

8 Ethics Statement

We do not foresee any ethical issues arising from
this work.

9 Acknowledgements

We would like to thank the anonymous reviewers
for their helpful comments. We would also like to
thank Abra Ganz, Anej Svete, and Tim Vieira for
helpful feedback on a draft of this paper.

References
J. K. Baker. 1979. Trainable grammars for speech recog-

nition. In Speech Communication Papers presented
at the 97th Meeting of the Acoustical Society of Amer-
ica, pages 547–550, MIT, Cambridge, Massachusetts.

José-Miguel Benedí and Joan-Andreu Sánchez. 2007.
Fast stochastic context-free parsing: A stochastic ver-
sion of the valiant algorithm. In Pattern Recognition
and Image Analysis, pages 80–88, Berlin, Heidelberg.
Springer Berlin Heidelberg.

Zhiyi Chi and Stuart Geman. 1998. Estimation of prob-
abilistic context-free grammars. Computational Lin-
guistics, 24(2):299–305.

John Cocke and J.T. Schwartz. 1970. Programming
languages and their compilers: Preliminary notes.
Courant Institute of Mathematical Sciences, New
York University.

Shay B. Cohen, Giorgio Satta, and Michael Collins.
2013. Approximate PCFG parsing using tensor de-
composition. In Proceedings of the 2013 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 487–496, Atlanta, Georgia. As-
sociation for Computational Linguistics.

A. Corazza, R. De Mori, R. Gretter, and G. Satta.
1994. Optimal probabilistic evaluation functions for

search controlled by stochastic context-free gram-
mars. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 16(10):1018–1027.

Chris Dyer. 2017. Should neural network architec-
ture reflect linguistic structure? In Proceedings of
the 21st Conference on Computational Natural Lan-
guage Learning (CoNLL 2017), page 1, Vancouver,
Canada. Association for Computational Linguistics.

Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros,
and Noah A. Smith. 2016. Recurrent neural network
grammars. In Proceedings of the 2016 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 199–209, San Diego, California.
Association for Computational Linguistics.

Jay Earley. 1970. An efficient context-free parsing algo-
rithm. Communications of the ACM, 13(2):94–102.

Jacob Eisenstein. 2019. Introduction to Natural Lan-
guage Processing. Adaptive Computation and Ma-
chine Learning series. MIT Press.

Jason Eisner and John Blatz. 2007. Program transfor-
mations for optimization of parsing algorithms and
other weighted logic programs. In Proceedings of
FG 2006: The 11th Conference on Formal Grammar,
pages 45–85. CSLI Publications.

Robert W. Floyd. 1962. Algorithm 97: Shortest path.
Communications of the ACM, 5(6):345.

Susan L. Graham, Michael Harrison, and Walter L.
Ruzzo. 1980. An improved context-free recognizer.
ACM Transactions on Programming Languages and
Systems, 2(3):415–462.

Frederick Jelinek and John D. Lafferty. 1991. Computa-
tion of the probability of initial substring generation
by stochastic context-free grammars. Computational
Linguistics, 17(3):315–353.

Tadao Kasami. 1965. An efficient recognition and
syntax-analysis algorithm for context-free languages.
In Technical Report, Air Force Cambridge Research
Lab, Bedford, MA.

Yoon Kim, Alexander Rush, Lei Yu, Adhiguna Kuncoro,
Chris Dyer, and Gábor Melis. 2019. Unsupervised
recurrent neural network grammars. In Proceedings
of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and
Short Papers), pages 1105–1117, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Lillian Lee. 1997. Fast context-free parsing requires fast
Boolean matrix multiplication. In 35th Annual Meet-
ing of the Association for Computational Linguistics
and 8th Conference of the European Chapter of the
Association for Computational Linguistics, pages 9–
15, Madrid, Spain. Association for Computational
Linguistics.

62

https://doi.org/10.1121/1.2017061
https://doi.org/10.1121/1.2017061
https://link.springer.com/chapter/10.1007/978-3-540-72847-4_12
https://link.springer.com/chapter/10.1007/978-3-540-72847-4_12
https://aclanthology.org/J98-2005
https://aclanthology.org/J98-2005
https://www.softwarepreservation.org/projects/FORTRAN/CockeSchwartz_ProgLangCompilers.pdf
https://www.softwarepreservation.org/projects/FORTRAN/CockeSchwartz_ProgLangCompilers.pdf
https://aclanthology.org/N13-1052
https://aclanthology.org/N13-1052
https://doi.org/10.1109/34.329008
https://doi.org/10.1109/34.329008
https://doi.org/10.1109/34.329008
https://doi.org/10.18653/v1/K17-1001
https://doi.org/10.18653/v1/K17-1001
https://doi.org/10.18653/v1/N16-1024
https://doi.org/10.18653/v1/N16-1024
https://doi.org/10.1145/362007.362035
https://doi.org/10.1145/362007.362035
https://books.google.ch/books?id=72yuDwAAQBAJ
https://books.google.ch/books?id=72yuDwAAQBAJ
http://cs.jhu.edu/~jason/papers/#eisner-blatz-2007
http://cs.jhu.edu/~jason/papers/#eisner-blatz-2007
http://cs.jhu.edu/~jason/papers/#eisner-blatz-2007
https://doi.org/10.1145/367766.368168
https://doi.org/10.1145/357103.357112
https://aclanthology.org/J91-3004
https://aclanthology.org/J91-3004
https://aclanthology.org/J91-3004
https://www.ideals.illinois.edu/items/100444
https://www.ideals.illinois.edu/items/100444
https://doi.org/10.18653/v1/N19-1114
https://doi.org/10.18653/v1/N19-1114
https://doi.org/10.3115/976909.979619
https://doi.org/10.3115/976909.979619

M. C. J. Leermakers, A. Augusteijn, and F.E.J. Kruse-
man Aretz. 1992. A functional LR parser. Theoreti-
cal Computer Science, 104(2):313–323.

Daniel J. Lehmann. 1977. Algebraic structures for
transitive closure. Theoretical Computer Science,
4(1):59–76.

Robert C. Moore. 2000. Time as a measure of parsing ef-
ficiency. In Proceedings of the COLING-2000 Work-
shop on Efficiency In Large-Scale Parsing Systems,
pages 23–28, Centre Universitaire, Luxembourg. In-
ternational Committee on Computational Linguistics.

Andreas Opedal, Ran Zmigrod, Tim Vieira, Ryan Cot-
terell, and Jason Eisner. 2023. Efficient semiring-
weighted Earley parsing. In Proceedings of the 61st
Annual Meeting of the Association for Computational
Linguistics (ACL), Toronto, Canada.

Bernard Roy. 1959. Transitivité et connexité. Comptes
rendus hebdomadaires des séances de l’Académie
des sciences, 249:216–218.

Grzegorz Rozenberg and Arto Salomaa, editors. 1997.
Handbook of Formal Languages, Vol. 1: Word, Lan-
guage, Grammar. Springer-Verlag, Berlin, Heidel-
berg.

Joan-Andreu Sánchez and José-Miguel Benedí. 1997.
Computation of the probability of the best derivation
of an initial substring from a stochastic context-free
grammar. Proceedings of the VII Spanish Symposium
on Pattern Recognition and Image Analysis, pages
181–186.

Andreas Stolcke. 1995. An efficient probabilistic
context-free parsing algorithm that computes prefix
probabilities. Computational Linguistics, 21(2):165–
201.

Leslie G. Valiant. 1975. General context-free recogni-
tion in less than cubic time. Journal of Computer
and System Sciences, 10(2):308–315.

Stephen Warshall. 1962. A theorem on boolean matri-
ces. Journal of the ACM, 9(1):11–12.

Daniel H. Younger. 1967. Recognition and parsing of
context-free languages in time n3. Information and
Control, 10(2):189–208.

63

https://doi.org/10.1016/0304-3975(92)90128-3
https://www.sciencedirect.com/science/article/pii/0304397577900561
https://www.sciencedirect.com/science/article/pii/0304397577900561
https://aclanthology.org/W00-1603
https://aclanthology.org/W00-1603
http://cs.jhu.edu/~jason/papers/#opedal-et-al-2023
http://cs.jhu.edu/~jason/papers/#opedal-et-al-2023
https://gallica.bnf.fr/ark:/12148/bpt6k3201c/f222.image
https://link.springer.com/book/10.1007/978-3-642-59136-5
https://link.springer.com/book/10.1007/978-3-642-59136-5
https://aclanthology.org/J95-2002
https://aclanthology.org/J95-2002
https://aclanthology.org/J95-2002
https://doi.org/https://doi.org/10.1016/S0022-0000(75)80046-8
https://doi.org/https://doi.org/10.1016/S0022-0000(75)80046-8
https://doi.org/10.1145/321105.321107
https://doi.org/10.1145/321105.321107
https://doi.org/https://doi.org/10.1016/S0019-9958(67)80007-X
https://doi.org/https://doi.org/10.1016/S0019-9958(67)80007-X

A Proof of Lemma 1

Lemma 1. Given a tight, trim PCFG in CNF and a string w = w1 · · ·wN , the prefix probability of a
substring wi · · ·wk of w, can be defined recursively as follows:

pπ(i, k | X) =
∑

Y,Z∈N
Elc(Y Z | X)

·
k−1∑

j=i

β(i, j | Y) · pπ(j+1, k | Z)
(10)

Proof. Given the PCFG is in CNF and k > i, in order to derive the prefix wi · · ·wk we must first apply
some rule X −→ YZ, where the first part of the substring is then derived from Y and the remainder (and
potentially more) from Z:

pπ(i, k | X) =
∑

Y,Z∈N
p(X −→ YZ) ·

k−1∑

j=i

β(i, j | Y) · pπ(j+1, k | Z) + pπ(i, k | Y)

 (16)

where the last term, pπ(i, k | Y), handles the case where the whole prefix is derived from Y alone.
This term is clearly recursively defined through Eq. (16), with X replaced by Y. Defining R(Y,Z)

def
=∑k−1

j=i β(i, j | Y) · pπ(j+1, k | Z), we can rewrite Eq. (16) as:

pπ(i, k | X) =
∑

Y,Z∈N
p(X −→ YZ) ·R(Y,Z) +

∑

A,B∈N
p(X −→ AB) · pπ(i, k | A) (17)

After repeated substitutions ad infinitum, we get:

pπ(i, k | X) =
∑

A,B∈N
p(X

∗⇒ AB) ·
∑

Y,Z∈N
p(A −→ YZ) ·R(Y,Z) (18)

Note that, in the last step, infinite derivations do not carry any probability mass since we assumed the
PCFG to be tight and trim. Hence, the final form of the equation is:

pπ(i, k | X) =
∑

A,B∈N
p(X

∗⇒ AB)
∑

Y,Z∈N
p(A −→ YZ) ·R(Y,Z)

=
∑

Y,Z∈N
Elc(Y Z | X) ·

k−1∑

j=i

β(i, j | Y) · pπ(j+1, k | Z)

■

64

B Extension of Algorithm 3 to Semirings

In the following, we give the necessary background on semirings and then show how the algorithms
introduced above can be framed in terms of semirings. We start by introducing the necessary definitions
and notation.

Definition 11. A monoid is a 3-tuple ⟨A, ◦,1⟩ where:

(i) A is a non-empty set;

(ii) ◦ is a binary operation which is associative: ∀a, b, c ∈ A, (a ◦ b) ◦ c = a ◦ (b ◦ c);

(iii) 1 is a left and right identity element: ∀a ∈ A,1 ◦ a = a ◦ 1 = a

(iv) A is closed under the operation ◦: ∀a, b ∈ A, a ◦ b ∈ A

A monoid is commutative if ∀a, b ∈ A : a ◦ b = b ◦ a.

Definition 12. A semiring is a 5-tupleW = ⟨A,⊕,⊗,0,1⟩, where

(i) ⟨A,⊕,0⟩ is a commutative monoid over A with identity element 0 under the addition operation ⊕;

(ii) ⟨A,⊗,1⟩ is a monoid over A with identity element 1 under the multiplication operation ⊗;

(iii) Multiplication is distributive over addition, that is, ∀a, b, c ∈ A:

• a⊗ (b⊕ c) = a⊗ b⊕ a⊗ c;
• (b⊕ c)⊗ a = b⊗ a⊕ c⊗ a.

(iv) 0 is an annihilator for A, that is, ∀a ∈ A,0⊗ a = a⊗ 0 = 0.

A semiring is idempotent if ∀a ∈ A : a⊕ a = a.

Definition 13. A semiringW = ⟨A,⊕,⊗,0,1⟩ is complete if it is possible to extend the addition operator
⊕ to infinite sums, maintaining the properties of associativity, commutativity, and distributivity from the
finite case (Rozenberg and Salomaa, 1997, Chapter 9). In this case, we can define the unary operation of
the Kleene star denoted by a superscript ∗ as the infinite sum over its operand, that is, ∀a ∈ A:

a∗ def
=

∞⊕

i=0

ai (19)

Analogously to Eq. (13), it then follows that:

a∗ =
∞⊕

i=0

ai = a0 ⊕
∞⊕

i=1

ai = 1⊕ a⊗
∞⊕

i=0

ai = 1⊕ a⊗ a∗ (20)

and, similarly:

a∗ = a0 ⊕
∞⊕

i=1

ai = 1⊕
∞⊕

i=a

ai ⊗ a = 1⊕ a∗ ⊗ a (21)

We now discuss how complete semirings can be lifted to matrices. The definitions follow analogously
to matrices over the reals.

Definition 14. We define semiring matrix addition as follows. Let A and B be d × d matrices whose
entries are elements from a complete semiringW = ⟨A,⊕,⊗,0,1⟩. Then the sum ("+") of A and B is
defined as:

(A+B)ij
def
= Aij ⊕Bij i, j ∈ 1, . . . , d (22)

65

Definition 15. We define semiring matrix multiplication as follows. Let A and B be d × d matrices
whose entries are elements from a complete semiringW = ⟨A,⊕,⊗,0,1⟩. Then the product (“·”) of A
and B is defined as:

(A ·B)ij
def
=

d⊕

k=1

Aik ⊗Bkj i, j ∈ 1, . . . , d (23)

We also define the zero matrix, O, over the complete semiringW = ⟨A,⊕,⊗,0,1⟩, such that all
entries are 0, and the unit matrix I as (I)ij = 1 iff i = j and 0 otherwise for all indices i, j ∈ 0, . . . , d.
It is then straightforward to show that matrix addition is associative and commutative while matrix
multiplication is associative and distributive over matrix addition. Hence, ⟨Wd×d,+, ·,O, I⟩ is a semiring.
Furthermore, by the element-wise definition of its addition operation, it is also complete.

We now consider a semiring-weighted CFG G = ⟨N ,Σ,S,R, p,W⟩, where N ,Σ,S,R are defined as
before, except the (locally normalized) weighting function p is now semiring-valued:

p : R −→W such that
⊕

X−→α∈R
p(X −→ α) = 1

As before, we define the matrix P as the square matrix of dimension |N | whose rows and columns
are indexed by the non-terminals N in some fixed order so that the entry Pij corresponds to p(Xi −→
Xj•) =

⊕
Y∈N

p(Xi −→ XjY). We can then calculate the probability of getting Xj from Xi at the leftmost

non-terminal after exactly k derivation steps as (P k)ij =

(
k⊗

i=0
P

)

ij

. Note that this holds because the

production rule weights are locally normalized, meaning that we only need to consider the left-most rule
applications instead of having to explicitly calculate the full treesum.

Finally, to get the left-corner expectations, we then need to calculate the Kleene closure over the
matrix P ,7 that is, we want to find P ∗ =

⊕∞
k=0 P

k. To compute the Kleene closure over the transition
matrix we can use an efficient algorithm by Lehmann (1977) which is a generalization of the well-known
shortest-path algorithm usually attributed to Floyd (1962) and Warshall (1962), but introduced previously
by Roy (1959). The algorithm works under the condition that the Kleene closure of all individual matrix
entries from semiringW exists, which is true for our case since we assumedW to be complete. The
algorithm is shown in Algorithm 4.

Algorithm 4 Lehmann’s algorithm for computing the Kleene closure over a transition matrix

1: def Lehmann(M):
2: d←− dim(M) ▷ M is a d× d matrix over a complete semiring

3: M (0) ←−M
4: for j = 1, . . . , d :
5: for i = 1, . . . , d :
6: for k = 1, . . . , d :
7: M

(j)
ik ←−M

(j−1)
ik ⊕M

(j−1)
ij ⊗

(
M

(j−1)
jj

)∗
⊗M

(j−1)
jk

8: return I⊕M (d)

With this, we can now generalize our prefix probability algorithm to semirings, as shown in Algorithm 5.

Proposition 4. The semiring-weighted version of our algorithm runs in O(N2|N |3 +N3|N |2).

Proof. Lehmann’s algorithm, as presented in Algorithm 4, has three nested for loops of d iterations each,
where d is the dimension of the input matrix. In our case, d is the number of non-terminals, |N |. Assuming

7Note that the Kleene closure exists since matrices with elements from a complete semiring are complete.

66

Algorithm 5 Faster prefix probability algorithm over semirings

1: def FastSemiringJL(w = w1 · · ·wN ,G):
2: β ←− CKY(w) ▷ Precompute β with Algorithm 1

3: P ∗ ←− Lehmann(P) ▷ Precompute P ∗ with Algorithm 4

4: for Xi,Xj ∈ N : ▷ Precompute Elc(Xj | Xi)

5: Elc(Xj | Xi)←− (P ∗)ij
6: for i, j = 1, . . . , N :
7: for X,Z ∈ N : ▷ Precompute γ by Eq. (15e)

8: γij(X,Z)←−
⊕

Y∈N
p(X−→YZ)⊗ β(i, j | Y)

9: for X,Z ∈ N : ▷ Precompute δ by Eq. (15f)

10: δij(X,Z)←−
⊕

Y∈N
Elc(Y | X)⊗ γij(Y,Z)

11: for k ∈ 1, . . . , N :
12: for X ∈ N : ▷ Base case

13: pπ(k, k | X)←− ⊕
Y∈N

Elc(Y | X)⊗ p(Y−→wk)

14: for ℓ ∈ 2 . . . N :
15: for i ∈ 1 . . . N − ℓ+ 1 :
16: k ←− i+ ℓ− 1
17: for X,Z ∈ N : ▷ Recursively compute pπ

18: pπ(i, k | X)←− pπ(i, k | X)⊕
k−1⊕
j=i

δij(X,Z)⊗ pπ(j+1, k | Z)

19: return pπ

the Kleene closure of elements inW can be evaluated in O(1), this means that computing the left corner
expectations in lines 3-5 of Algorithm 5 takes O(|N |3), as before. Hence, the complexity of the overall
algorithm remains unchanged, that is, we can compute the prefix probabilities under a semiring-weighted,
locally normalized CFG G in O(N2|N |3 +N3|N |2). ■

67

ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

7

�7 A2. Did you discuss any potential risks of your work?
As this is a theoretical result about a runtime improvement of an algorithm, we were unable to
identify any risks from this work.

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
1

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B �7 Did you use or create scientific artifacts?
Left blank.

� B1. Did you cite the creators of artifacts you used?
No response.

� B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
No response.

� B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
No response.

� B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
No response.

� B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
No response.

� B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
No response.

C �7 Did you run computational experiments?
Left blank.

� C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
No response.

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

68

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/

� C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
No response.

� C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
No response.

� C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
No response.

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
No response.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
No response.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.

69

