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Abstract

We describe a novel unsupervised approach
to subtitle segmentation, based on pretrained
masked language models, where line endings
and subtitle breaks are predicted according to
the likelihood of punctuation to occur at can-
didate segmentation points. Our approach ob-
tained competitive results in terms of segmen-
tation accuracy across metrics, while also fully
preserving the original text and complying with
length constraints. Although supervised mod-
els trained on in-domain data and with access
to source audio information can provide better
segmentation accuracy, our approach is highly
portable across languages and domains and
may constitute a robust off-the-shelf solution
for subtitle segmentation.

1 Introduction

Subtitling is one of the principal means of pro-
viding accessible audiovisual content. With the
ever increasing production of audiovisual content
in multiple domains and languages, in the current
digital era, subtitle provision can benefit from au-
tomation support, via Automatic Speech Recogni-
tion and/or Machine Translation (Volk et al., 2010;
Aliprandi et al., 2014; Etchegoyhen et al., 2014;
Tardel, 2020; Bojar et al., 2021).

Subtitles are subject to specific constraints in
order to achieve adequate readability, including
layout, on-screen duration and text editing. Among
these constraints, segmentation addresses the maxi-
mum number of characters per line, the number of
lines per subtitle, and breaks at natural linguistic
frontiers. Segmentation has been shown to be an
important readability factor (Perego et al., 2010;
Rajendran et al., 2013), with improperly segmented
subtitles resulting in increased cognitive effort and
reading times for users. Thus, automated subti-
tling systems need to generate properly segmented
subtitles to achieve readability.

*These authors contributed equally to this work.

A typical baseline for subtitle segmentation, still
used in some production systems, is simple char-
acter counting, whereby line breaks are inserted
before reaching the maximum allowed number of
characters per line. Although simple and fast, this
approach does not address the need for linguisti-
cally correct segments and, therefore, falls short in
terms of readability. Several approaches have been
proposed to improve segmentation by automated
means. Álvarez et al. (2014) proposed a machine
learning method where subtitle breaks are predicted
by Support Vector Machine and Linear Regression
models trained on professionally-created subtitles.
A similar method based on Conditional Random
Fields was then shown to improve over these results
(Alvarez et al., 2017). Approaches that directly
generate subtitle breaks within Neural Machine
Translation have also been proposed in recent years
(Matusov et al., 2019; Karakanta et al., 2020a). Re-
cently, Papi et al. (2022) developed a multilingual
segmenter which generates both text and breaks
and may be trained on textual input only, or on
joint text and audio data.

Although quality subtitle segmentation may be
achieved with the aforementioned approaches, they
require supervised training on segmented subti-
tle corpora. At present, the largest subtitle cor-
pus is Open Subtitles (Lison et al., 2018), which
mainly covers entertainment material, contains sub-
titles mostly created by non-professionals or au-
tomatically translated, and does not include line
breaks. The MuST-Cinema corpus (Karakanta
et al., 2020b), on the other hand, is a multilingual
speech translation corpus that includes subtitles
breaks, but is only available for 8 languages at the
moment. Considering the vast amount of languages
and domains in audiovisual content, the lack of seg-
mented training data hinders the development of
robust automated subtitling systems.

In this work, we describe a novel unsupervised
method based on pretrained masked language mod-
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els (MLM), where line and subtitle breaks are in-
serted according to the likelihood of a segment act-
ing as an isolated unit, as approximated by the prob-
ability of a punctuation mark occurring at a given
segmentation point. In our experiments, this novel
approach obtained competitive results on most met-
rics, while also fully preserving the original text
and complying with length constraints. Our system
may thus be used as a simple yet efficient subtitle
segmenter with any pretrained masked language
model, for any language covered by the model.

2 Approach

Our approach is based on the standard view that
the more appropriate subtitle segments are those
that may function as isolated grammatical chunks.
We further hypothesise that a relevant approxima-
tion for the identification of this type of unit is the
likelihood of a punctuation mark being inserted at
the end of a candidate segment, as punctuation may
mark the closure of a syntactic unit and is often
associated with discursive pauses. To test this hy-
pothesis, we compute the likelihood of punctuation
marks at different segmentation points, as predicted
by a pretrained MLM, and select the insertion point
with the highest likelihood.1

The segmentation candidates are determined un-
der a sliding-window approach over the entire input
text. We first generate the list of all pairs <α, β>
over the unprocessed portion of the text, where
α is a segmentation candidate of length under a
specified limit K, corresponding to the maximum
number of characters per line, and β is the remain-
ing portion of the text to be segmented.

We then score all segmentation candidates α
with one of the LM scoring variants described be-
low. A segmentation marker, either end-of-line
(<eol>), or end-of-block indicating the end of a
subtitle (<eob>), is then appended to the best scor-
ing candidate, and β becomes the input text to be
segmented in a recursive iteration of the process.

Since our method does not rely on any additional
information, such as an audio source, to determine
the segmentation type, an <eob> tag is inserted
every even segment or when β is empty; otherwise,
an <eol> tag is inserted. We thus generate subtitles
with a maximum of two lines, following a standard
recommendation in subtitling. We also define a
minimal number of characters (min) in α for the

1Throughout our experiments, we used the following punc-
tuation marks: ’.’, ’,’, ’?’, ’!’, ’:’ and ’;’.

segmentation process to apply, and do not segment
lines that are under the specified character limit.

We evaluated three approaches to compute seg-
mentation scores over each candidate pair <α, β>:

• Substitution: The last token of α is masked
and the score is the highest MLM probability
among punctuation marks on this mask.

• Insertion: A mask is appended to α and the
score is the highest MLM probability among
punctuation marks on this mask.

• LM-Score: The score is the average of the
perplexity of α and β, as derived from the
MLM probabilities for each token in the cor-
responding sequence.

The first two methods are variants of our core ap-
proach. The third method, while also based on the
same pretrained MLM, relies instead on the pseudo-
perplexity of the sequences according to the MLM,
computed following Salazar et al. (2020). We in-
cluded this latter variant to measure the potential
of using LM scoring directly, without resorting to
the likelihood of punctuation marks.

3 Experimental Setup

Corpora. For all experiments, we used the
MustST-Cinema corpus (Karakanta et al., 2020b),
which is derived from TED talks and contains both
line and subtitle break markers. In addition to be-
ing publicly available, it also allows for a direct
comparison with the supervised models of Papi
et al. (2022). We report results of our approach
on the 6 MuST-Cinema datasets for which com-
parative results were available, directly predicting
segmentation on the test sets without any training.2

Methods. For our approach, we tested the three
variants described in Section 2. We used BERT
(Devlin et al., 2019) as our MLM for all lan-
guages.3. Additionally, we included a variant called
overt clueing (OC), where an overt punctuation
mark at the end of a candidate segment increments
the mask score by 1. We then compared the results
of the best LM-based variant with those obtained
by alternative approaches. In all cases, our results
were computed with min = 15, as this value ob-
tained the best results overall over the development

2Our results on all remaining languages of the MuST-
Cinema datasets are presented in Appendix B.

3Specifically bert-base-uncased as available on Huggin-
Face (https://huggingface.co/), accessed on November 2022.
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English Spanish German

Method Sigma EOL EOB Sigma EOL EOB Sigma EOL EOB

Substitution 71.65 +19.86 -10.96 69.34 +12.36 -5.74 69.31 +19.05 -7.05

Insertion 76.77 +19.18 -9.91 73.47 +12.98 -4.91 70.85 +18.53 -7.96

LM-Score 69.97 +21.40 -8.66 67.70 +13.29 -5.37 64.07 +16.45 -6.51

Table 1: Sigma and break coverage test set results for LM-based segmentation variants

sets, although the differences were minor with the
other values we tested (1, 10 and 20).4

We used the simple character counting approach
(hereafter, CountChars) as baseline, and, as rep-
resentative supervised methods on the selected
datasets, the models described by (Papi et al., 2022).
Their core supervised approach is based on a Trans-
former (Vaswani et al., 2017) architecture with 3
encoder layers and 3 decoder layers, trained on
textual MuST-Cinema input only (MC.Text), or
on complementary audio data as well via an ad-
ditional speech encoder with 12 encoder layers
(MC.Multi). They trained each variant on either
monolingual data alone (mono), or in a multilin-
gual setting (multi). Finally, they also report results
for a variant (OS.Text) trained on the Open Subti-
tles corpus (Lison et al., 2018) for their zero-shot
experiments.

Evaluation. We use the subtitle-oriented metric
Sigma (Karakanta et al., 2022), which computes the
ratio of achieved BLEU (Papineni et al., 2002) over
an approximated upper-bound BLEU score, on text
that includes line and subtitle breaks. Sigma is
meant to support the evaluation of imperfect texts,
i.e. text that differs from the reference when breaks
are omitted. Although our approach does not pro-
duce imperfect text, achieving perfect BLEU scores
when breaks are ignored, we used this metric for
comparison purposes. We also report break cover-
age results (Papi et al., 2022), defined as the ratio
of predicted breaks over reference breaks, which
we computed separately for the EOL and EOB
breaks. Finally, we include length conformity re-
sults (CPL), measured as the percentage of subtitle
lines whose length is under the maximum number
of characters defined by the subtitle guidelines (42
in the TED guidelines5).

4See Appendix C for results with different values of the
min parameter.

5https://www.ted.com/participate/translate/subtitling-tips

4 LM-based Segmentation Variants

We first compared the three methods described in
Section 2 on the English, Spanish and German
datasets, with the results described in Table 1. In
terms of Sigma, the Insertion method obtained the
best results in all cases. It also obtained the best
scores in terms of coverage for the EOL marker, ex-
cept in Spanish, although all three variants tend to
overgenerate end-of-line markers to similar extents.
The LM-Score variant obtained the worst results in
terms of Sigma, but outperformed the alternatives
in terms of EOB coverage, a metric on which the
three variants performed markedly better than on
EOL coverage. Considering the overall results, we
selected the Insertion variant as the most balanced
one for all remaining experiments reported below.

5 Comparative Results

In Table 2, we present the results obtained by the
selected approaches on the languages for which re-
sults were available with supervised models trained
on in-domain data. Overall, our approach outper-
formed the CountChars baseline across the board,
and was in turn outperformed by the supervised
variants in terms of Sigma scores. Although it is
clear from these results that training segmentation
models on in-domain data, with or without audio
data, provides clear advantages in terms of sub-
title segmentation, it is worth noting that Sigma
does not, by design, reflect the actual BLEU score
without breaks, i.e. the generation of imperfect
text, which is a by-product of the above supervised
approaches and non-existent in ours.6 In terms
of CPL, all supervised models generate subtitle
lines that overflow the limit, to a significant degree,
whereas the selected unsupervised models trivially
respect the length constraint.

6The results indicated in Table 3 on unseen data seem to
indicate that their MC.Multi model can reach BLEU scores
close to 100, thereby limiting the negative impact of imperfect
text generation in these cases.
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English French German Italian

Method Training Sigma CPL Sigma CPL Sigma CPL Sigma CPL

CountChars N/A 63.71 100% 62.87 100% 62.34 100% 61.49 100%

MC.Text
mono 84.87 96.6% 83.68 96.7% 83.62 90.9% 82.22 90.0%

multi 85.98 88.5% 84.56 94.3% 84.02 90.9% 83.04 91.2%

MC.Multi
mono 85.76 94.8% 84.25 93.9% 84.22 91.4% 82.62 89.9%

multi 87.44 95.0% 86.49 94.1% 86.40 89.9% 85.33 90.0%

MLM N/A 76.77 100% 73.78 100% 70.85 100% 71.38 100%

MLM+OC N/A 77.89 100% 76.07 100% 75.63 100% 74.20 100%

Table 2: Comparative results between unsupervised methods and supervised approaches trained on in-domain data

Dutch

Method BLEU Sigma CPL EOL EOB

CountChars 100 63.2 100% -21.2 -7.1

OS.Text 89.5 64.4 71.2% -31.4 -51.3

MC.Text 61.3 74.4 77.8% -23.4 -9.9
MC.Multi 99.9 80.3 91.4% -27.2 0.4

MLM 100 68.7 100% +20.4 -10.0
MLM+OC 100 73.9 100% +21.2 -10.0

Spanish

Method BLEU Sigma CPL EOL EOB

CountChars 100 63.2 100% -24.6 -4.4

OS.Text 92.6 64.1 71.2% -32.3 -45.4

MC.Text 69.6 75.8 70.1% -47.6 -19.3
MC.Multi 99.6 78.7 91.8% -22.4 4.7

MLM 100 73.5 100% +13.0 -4.9
MLM+OC 100 75.6 100% +13.4 -4.6

Table 3: Comparative results between unsupervised
methods and zero-short supervised approaches

In Table 3, we show the comparative results be-
tween the selected unsupervised methods and the
supervised variants, in languages where zero-shot
results were available for the latter approaches. In
this scenario, in terms of Sigma our approach ob-
tained results on a par with the supervised MC.Text
models trained on in-domain MuST-Cinema data,
outperformed the OS.Text models trained on Open
Subtitles data, and was surpassed by the MC.Multi
model, which exploits additional audio information,

by 3.1 and 6.4 points. In terms of break coverage, in
most cases our unsupervised method outperformed
the supervised variants, to a significant degree com-
pared to the text-based OS.Text and MC.Text mod-
els. Regarding BLEU scores without breaks, only
the MC.Multi model reaches a score close to the
perfect one achieved by the unsupervised models,
whereas the MC.Text model is outperformed by
38.7 and 31.4 points in Dutch and Spanish, respec-
tively. In all cases, the CPL scores indicate that
none of the supervised approaches fully meet the
length constraint, leading to overflowing lines in
8.2% of the cases at best and 29.9% at worst. In
this scenario as well, the unsupervised approaches
fully meet the length constraint, by design.

Overall, overt clueing improved over our core
method by an average of 3.12 Sigma points, indi-
cating that some likely punctuation configurations
were not properly captured by our MLM approxi-
mation. In general, our approach tends to overgen-
erate EOL markers, whereas the opposite is true
for the selected supervised models. Determining
which of these tendencies leads to better subtitle
readability would require a specific human evalua-
tion which we leave for future research.

Although the zero-shot Sigma results obtained
by the supervised MC.Multi method show the po-
tential of this approach to provide pretrained mod-
els applicable to other languages, two important
aspects are worth considering. First, the available
zero-shot results were obtained on datasets in the
same domain as the data seen to train the super-
vised models. A more complete assessment of the
capabilities of these models in zero-shot settings,
which would be the most frequent scenario consid-
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ering the lack of training data across domains and
languages, would require specific evaluations in
other domains. Secondly, although segmentation is
a key aspect for subtitle readability, length confor-
mity is an equally important constraint, if not more
so considering that subtitles with lines over the
CPL limit are considered invalid in subtitling. Our
proposed unsupervised method can thus be seen
as a pragmatic approach which guarantees valid
subtitles while also providing quality segmentation
across the board.7

6 Conclusions

We described an unsupervised approach to subti-
tle segmentation, based on pretrained masked lan-
guage models, where line or subtitle breaks are
inserted according to the likelihood of punctuation
occurring at candidate segmentation points.

Although supervised models, trained on in-
domain data with audio support, were shown to
perform better that this simple textual approach in
terms of the Sigma metric, they tend to generate
imperfect text to varying degrees, while also failing
to fully meet length constraints that are essential
for subtitling.

In contrast, our LM-based textual approach out-
performed supervised models in most cases in
terms of break generation coverage, while also fully
preserving the original text, complying with length
constraints, and obtaining competitive results in
terms of Sigma. This simple approach may thus
provide a highly portable complementary solution
for subtitle segmentation across languages and do-
mains.

7 Limitations

The first clear limitation of our approach is its text-
based nature. This prevents important audio infor-
mation, typically silences in speech patterns, from
being exploited to generate subtitle breaks. A more
complete system could be devised though, for in-
stance by associating our text-based approach with
the information provided by a forced alignment
toolkit, whenever audio information is available.
A simple method along these lines could be the
following: 1. Apply our MLM-based segmenta-
tion but only generating a unique segmentation
tag SEG; 2. Insert EOB markers wherever the

7Examples of segmented subtitles can be found in Ap-
pendix A.

silence between two aligned words is above a spec-
ified threshold; 3. Traverse the text sequentially
and replace SEG with EOL if there exists a previ-
ous marker of type EOB, otherwise replace with
EOB. We left this use of our method in combi-
nation with audio information for future research,
as audio alignment for subtitles typically involves
additional factors such as non-literal transcriptions.

Additionally, our method is limited in its adapt-
ability to specific segmentation guidelines, which
may be company-specific. The main adaptable
parameters of our methods are the minimum and
maximum parameters of the segmentation window,
and the set of predefined punctuation marks over
which masking is computed, neither of which could
fully model idiosyncratic segmentation guidelines.
However, in our experience at least, segmentation
in real professional data tends to display varying de-
grees of consistency with respect to guidelines, and
natural linguistic breaks seem to be the dominant
factor for subtitle segmentation. A specific evalua-
tion would be needed on data from varied profes-
sional datasets to determine the extent to which our
method might deviate from specific guidelines.

Finally, other aspects of subtitling, such as the
recommendation in some guidelines for subtitles to
appear in a pyramidal view, i.e. with the first line
shorter than the second line, have not been taken
into consideration in this work. Our aim was to
evaluate our core LM-based approach without addi-
tional variables that can vary across guidelines and
may also have led to results that are more difficult
to interpret overall. Our approach could nonethe-
less be easily augmented with constraints on rela-
tive line lengths within subtitles, by incrementing
the scores of segmentation candidates that respect
this surface-level constraint.

8 Ethical Considerations

Our approach involves the use of large pretrained
language models, whose computational perfor-
mance is typically higher when deployed in more
powerful environments with GPUs. Under such
usage, electric consumption and associated carbon
footprint are likely to increase and users of our
method under these conditions should be aware
of this type of impact. However, subtitle segmen-
tation is often performed offline, where efficient
processing is less of a concern, and lower-cost CPU
deployments are an entirely viable option. All our
results were obtained with a single large LM de-

775



ployed on CPU, with the aim of reducing energy
consumption at inference time.

Additionally, our method requires no training
for the task at hand and thus removes the cost of
model training associated with the supervised meth-
ods with which we compare our results. For in-
stance, Papi et al. (2022) indicate that they use four
K80 GPUs to train their models, which we took as
comparison points, with 1 day of training for their
text-only models and 1 week for their multimodal
segmenters. Therefore, given the large number of
potential language pairs and domains in need of
segmented subtitle content, our approach can pro-
vide competitive results with a comparatively lesser
impact on energy resource consumption.
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A Segmentation Examples

Table 4 provides examples of subtitles in the MuST-
Cinema test sets segmented with either the charac-
ter counting baseline or our LM-based approach,
in its insertion variant without resorting to overt
punctuation clueing.

In these examples, the MLM approach generates
end-of-line and end-of-subtitle breaks that are over-
all in line with natural linguistic breaks, contrary
to the character counting baseline. As such, on ei-
ther short, medium or longer input, the readability
of the generated subtitles is significantly enhanced
with our approach.

B Extended Results

The results presented in Section 5 were limited to
the subset of languages and metrics for which pub-
lished comparative results were available on the
MuST-Cinema datasets. In Table 5, we present the
complete list of results obtained with our method,
for all languages and metrics. The selected variant
of our method is the insertion masking approach,
which was selected for the main results in our paper,
with a segmentation window starting at 15 charac-
ters and ending at 42. We do not include BLEU
scores computed over text that includes segmen-
tation breaks, as the results are identical to those
obtained with the Sigma metric for our approach,
which does not generate imperfect text.

Across languages, the results are relatively uni-
form, with the best Sigma scores obtained in En-
glish and the lowest in Dutch, for a difference of
4.1 points between the two languages. In terms of
break coverage, the best results were obtained for
Spanish and the worst for Romanian, although re-
sults were also relatively uniform across languages.
In all cases, overt clueing, where overt punctuation
marks raised the LM score by 1, improved Sigma
scores, although it had less of an impact on break
coverage results, where both variants performed
similarly overall.

C Results With Different min Parameters

As noted in Section 3, considering preliminary re-
sults over the development set we selected a default
value of 15 for the min parameter, which indicates
the number of characters after which the segmenta-
tion process applies. In Table 6, we present com-
parative results on the test sets with different min
values. In terms of Sigma, values of 15 and 20 led
to rather similar results; values of 1 and 10 resulted
in slightly lower results, with the lowest results
achieved with the former.

In terms of <eol> and <eob> coverage, the for-
mer increases with larger min values, which is ex-
pected given the more restricted space to insert
these end-of-line markers as the value increases;
for <eob>, the restricted insertion space results in
increased under-generation, which in turn results in
better scores for lower values of the min parameter.
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CountChars MLM

They’re things you access through your <eol> They’re things you access <eol>
computer. <eob> through your computer. <eob>

Every row of data is a life whose story <eol> Every row of data is a life <eol>
deserves to be told with dignity. <eob> whose story deserves to be told <eob>

with dignity. <eob>

During the winter, struggling to get <eol> During the winter, struggling to get warm, <eol>
warm, my neighbors would have no choice <eob> my neighbors would have no choice <eob>
but to bypass the meter after their heat <eol> but to bypass the meter <eol>
was shut off, just to keep their family <eob> after their heat was shut off, <eob>
comfortable for one more day. <eob> just to keep their family comfortable <eol>

for one more day. <eob>

Table 4: Examples of subtitles segmented via character counting and MLM-based mask insertion

Language Method BLEU Sigma EOL EOB CPL

DE
MLM 100 70.85 18.53 -7.96 100%
MLM+OC 100 75.63 19.81 -7.78 100%

EN
MLM 100 76.77 19.18 -9.91 100%
MLM+OC 100 77.89 19.86 -9.73 100%

ES
MLM 100 73.47 12.98 -4.91 100%
MLM+OC 100 75.59 13.45 -4.63 100%

FR
MLM 100 73.78 16.51 -6.58 100%
MLM+OC 100 76.07 17.47 -6.12 100%

IT
MLM 100 71.38 18.49 -9.55 100%
MLM+OC 100 74.20 20.34 -8.57 100%

NL
MLM 100 68.71 20.37 -9.96 100%
MLM+OC 100 73.88 21.22 -9.96 100%

PT
MLM 100 71.59 20.03 -10.81 100%
MLM+OC 100 75.50 19.87 -10.02 100%

RO
MLM 100 69.45 23.37 -10.44 100%
MLM+OC 100 74.13 23.37 -10.09 100%

Table 5: Complete results with MLM mask insertion on the MuST-Cinema test sets (min=15)
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Language min BLEU Sigma EOL EOB

DE

1 100 72.31 28.75 -0.18
10 100 73.96 22.68 -4.43
15 100 75.63 19.81 -7.78
20 100 75.28 14.54 -11.21

EN

1 100 74.30 37.33 -0.98
10 100 77.14 24.49 -7.77
15 100 77.89 19.86 -9.73
20 100 77.16 15.24 -12.68

ES

1 100 73.00 20.87 0.28
10 100 74.32 18.24 -2.04
15 100 75.59 13.45 -4.63
20 100 75.83 8.66 -7.87

FR

1 100 73.89 24.68 -0.73
10 100 75.26 20.83 -3.93
15 100 76.07 17.47 -6.12
20 100 76.75 12.5 -10.05

IT

1 100 72.01 29.75 -3.66
10 100 73.75 24.71 -6.61
15 100 74.20 20.34 -8.57
20 100 73.66 14.62 -11.61

NL

1 100 72.16 26.83 -5.47
10 100 73.56 23.26 -8.47
15 100 73.88 21.22 -9.96
20 100 74.40 16.81 -12.43

PT

1 100 72.87 26.38 -6.24
10 100 74.53 22.15 -8.08
15 100 75.50 19.87 -10.02
20 100 74.98 14.17 -13.36

RO

1 100 72.05 32.3 -4.51
10 100 73.76 26.98 -7.52
15 100 74.13 23.37 -10.09
20 100 74.89 17.53 -12.83

Table 6: Test set results with the MLM+OC method and different values of the min parameter
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