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Abstract

Adaptive training approaches, widely used
in sequence-to-sequence models, commonly
reweigh the losses of different target tokens
based on priors, e.g. word frequency. However,
most of them do not consider the variation of
learning difficulty in different training steps,
and overly emphasize the learning of difficult
one-hot labels, making the learning determin-
istic and sub-optimal. In response, we present
Token-Level Self-Evolution Training (SE), a
simple and effective dynamic training method
to fully and wisely exploit the knowledge from
data. SE focuses on dynamically learning the
under-explored tokens for each forward pass
and adaptively regularizes the training by intro-
ducing a novel token-specific label smoothing
approach. Empirically, SE yields consistent
and significant improvements in three tasks,
i.e. machine translation, summarization, and
grammatical error correction. Encouragingly,
we achieve averaging +0.93 BLEU improve-
ment on three machine translation tasks. Anal-
yses confirm that, besides improving lexical
accuracy, SE enhances generation diversity and
model generalization.

1 Introduction

Sequence-to-sequence learning (Seq2Seq) with
neural networks (Sutskever et al., 2014) has ad-
vanced the state-of-the-art in various NLP tasks,
e.g. translation (Bahdanau et al., 2015; Vaswani
et al., 2017), summarization (Cheng and Lapata,
2016), and grammatical error correction (Yuan and
Briscoe, 2016). Generally, Seq2Seq models are
trained with the cross-entropy loss, which equally
weighs the training losses of different target tokens.

However, due to the token imbalance nature (Pi-
antadosi, 2014) and the truth that different to-
kens contribute differently to the sentence mean-
ing (Church and Hanks, 1990; Chen et al., 2020),

∗Keqin and Liang contributed equally.
†Corresponding Author.

Figure 1: An example to illustrate the changing token
difficulties in different training steps in WMT’14 En-
De. The token “abschließen/ Sache” is hard/ easy to
learn at 50K while the trend is totally reversed at 100K.

several works are developed to reweigh the token-
level training loss according to explicit (e.g. fre-
quency) or implicit (uncertainty estimated by off-
the-shelf language models) priors (Gu et al., 2020;
Xu et al., 2021; Zhang et al., 2022a). For exam-
ple, Gu et al. (2020) proposed two heuristic criteria
based on word frequency to encourage the model
to learn from larger-weight low-frequency tokens.
Zhang et al. (2022a) introduce target-context-aware
metric based on an additional target-side language
model to adjust the weight of each target token.

Despite some success, there are still limitations
in these adaptive training approaches. First, most of
them predetermine the difficult tokens and fix such
prior to guiding the training. However, in our pre-
liminary study, we find the hard-to-learn tokens are
dynamically changing during training, rather than
statically fixed. As shown in Figure 1, as the train-
ing progress goes, although the sentence-level loss
is nicely converging, the difficult token is chang-
ing from “abschließen” to “Sache” in terms of the
token-level loss. Second, these adaptive training
methods overly emphasize fitting the difficult to-
kens’ one-hot labels by reweighing the loss, which
empirically may cause overfitting and limit the gen-
eralization (Norouzi et al., 2016; Szegedy et al.,
2016; Xiao et al., 2019; Miao et al., 2021). Also,
a more recent study (Zhai et al., 2023) provides
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theoretical evidence to support that reweighting is
not that effective to improve the generalization.

Correspondingly, we design a simple and effec-
tive Token-Level Self-Evolution Training (SE) strat-
egy to encourage Seq2Seq models to learn from
difficult words that are dynamically selected by the
model itself. Specifically, SE contains two stages:
❶self-questioning and ❷self-evolution training. In
the first stage, the Seq2Seq models dynamically
select the hard-to-learn tokens based on the token-
level losses, then we encourage the Seq2Seq mod-
els to learn from them in the second stage, where,
rather than adopting reweighing, we introduce a
novel token-specific label smoothing approach to
generate easily digestible soft label, which consid-
ers both the ground truth and model’s prediction.

Experiments across tasks, language pairs, data
scales, and model sizes show that SE consis-
tently and significantly outperforms both the vanilla
Seq2Seq model and the re-implemented advanced
baselines. Analyses confirm that besides improved
lexical accuracy, SE generates diverse and human-
like generations with better model generalization.

2 Methodology

Preliminary Sequence-to-sequence (Seq2Seq)
learning aims to maximize the cross-entropy (CE)
loss of the log-likelihood of each target word in
y = {y1, . . . , yN}, conditioned on source x, where
the optimization treats all tokens equally:

LCE(θ) = −
N∑

j=1

log p(yj |y<j ,x; θ) (1)

However, due to the different learning difficulties
of each token, it is sub-optimal to treat all tokens
equally (Gu et al., 2020). To address this limitation,
a series of token-level adaptive training objectives
were adopted to re-weight the losses of different
target tokens (Xu et al., 2021; Zhang et al., 2022a).
The common goal of these methods is to facilitate
the model training by fully exploiting the informa-
tive but underexplored tokens.

However, our preliminary study shows that the
hard tokens are dynamically changing (see Fig-
ure 1) in different training steps (or model struc-
tures), thus it is sub-optimal to employ static token
priors (e.g. frequency) during training. Also, recent
studies (Zhai et al., 2023) in the ML community the-
oretically show that reweighting is not that effective
to improve the generalization. Based on the above

evidence, we present the self-evolution learning
(SE) mechanism to encourage the model to adap-
tively and wisely learn from the informative yet
under-explored tokens dynamically determined by
the model itself (Stage❶ in §2.1), with an easy-to-
learn label distribution (Stage❷ in §2.1). A similar
work to ours is Hahn and Choi (2019). However,
their method mainly considers the situation where
the predicted answer is incorrect but close to the
golden answer, while our method focuses on all
dynamic hard tokens.

2.1 Token-Level Self-Evolution Learning

❶ Self-questioning Stage. The goal is to select
the hard-to-learn tokens that are questioned by
the Seq2Seq model itself during training dynam-
ics. Previously, these difficult tokens are prede-
termined by external models or specific statistical
metrics. However, inspired by the finding of dy-
namic change of difficult tokens during the training
stage as shown in Figure 1 and the finding that the
trained model contains useful information (Li and
Lu, 2021), e.g. synonym, we propose to straight-
forwardly leverage the behavior of the model to
dynamically select target tokens. In practice, we
first calculate the token-level CE loss, denoted as
{l1, l2, ..., ln}, for each token for each forward pass.
Then we set a loss threshold Γ and select the to-
kens whose losses exceed Γ as the target tokens,
i.e., D = {ti|li > Γ} where i ∈ N = {1, 2, ..., n}.

❷ Self-evolution Training Stage. After select-
ing the difficult tokens, we encourage the model
to carefully learn from them. Given the theoretical
shortage (Zhai et al., 2023) and potentially caused
overfitting or overconfidence problem (Miao et al.,
2021) of reweighting and deliberately learning
from difficult tokens, we propose to strengthen
the learning from these tokens with a newly de-
signed Token-specific Label Smoothing (TLS) ap-
proach. Specifically, motivated by the effect of
label smoothing (LS) regularization (Szegedy et al.,
2016), we combine the ground truth pi and the
model’s prediction p̂i to form a new soft label p̃i
for the i-th token. Then we use p̃ to guide the diffi-
cult tokens D, while leaving label-smoothing CE
loss for the other tokens. It is worth noting that we
also apply the traditional label smoothing technique
to p̂i to activate the information in the predicted dis-
tribution. Analogous to human learning, it is often
easier for humans to grasp new things described
by their familiar knowledge (Reder et al., 2016),
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Model WMT16 En→Ro WMT14 En→De WMT14 En→Fr

Transformer (Vaswani et al., 2017) 35.11 27.08 40.65
+ Freq-Exponential (Gu et al., 2020) 35.86 (+0.75) 27.60 (+0.52) 41.05 (+0.40)
+ Freq-Chi-Square (Gu et al., 2020) 35.74 (+0.63) 27.51 (+0.43) 40.99 (+0.34)
+ D2GPo (Li et al., 2020) 35.89 (+0.78) 27.66 (+0.58) 41.05 (+0.40)
+ BMI-adaptive (Xu et al., 2021) 35.89 (+0.78) 27.65 (+0.57) 41.10 (+0.45)
+ MixCrossEntropy (Li and Lu, 2021) 35.88 (+0.74) 27.61 (+0.53) 41.07 (+0.42)
+ CBMI-adaptive (Zhang et al., 2022a) 35.90 (+0.79) 27.69 (+0.61) 41.13 (+0.48)
+ SPL (Wan et al., 2020) 35.92 (+0.81) 27.88 (+0.80) 41.30 (+0.65)
+ Self-Evolution (ours) 36.02 (+0.91)† 28.02 (+0.94)† 41.60 (+0.95)†

Table 1: BLEU scores (%) on three translation tasks spanning different data scales, i.e. 0.6M, 4.5M, 36M. “†”
indicates a statistically significant difference from the powerful Transformer baseline (p < 0.05).

Ro-En XSUM GEC

BLEU RG-1 RG-2 RG-L Prec. Recall F0.5

Baseline 37.3 43.2 19.8 34.0 59.1 39.8 53.9
+ SE 37.7† 43.8 20.4 34.7† 58.9 46.2 55.8†

Table 2: Performance on more tasks including trans-
lation, summarization, and grammar error correction,
upon larger model BART (Lewis et al., 2020).

therefore the new soft label fused both accurate
ground truth and model’s self-distribution is easily
digestible. Mathematically, for difficult tokens ti,
p̃i is formulated as:

p̃i = (pi + p̂i)/2. (2)

Then we calculate the losses of difficult tokens and
the others, and combine the two losses:

L = −(
∑

i

p̃i · log(p̂i) +
∑

j

pj · log(p̂j)), (3)

where i ∈ D and j ∈ N \D.

3 Evaluation

Machine Translation on three widely-used bench-
marks (Ding et al., 2020, 2021c, 2022): small-
scale WMT16 English-Romanian (En-Ro; 0.6M),
medium-scale WMT14 English-German (En-De;
4.5M), and large-scale WMT14 English-French
(En-Fr; 36.0M). We implement the baselines and
our approach under Transformer-base settings. We
follow the previous adaptive training approach (Gu
et al., 2020) to pretrain with the cross-entropy loss
with N steps, and further finetune the same steps
with different adaptive training objectives, includ-
ing Freq-Exponential (Gu et al., 2020), Freq-Chi-
Square (Gu et al., 2020), D2GPo (Li et al., 2020),

BMI-adaptive (Xu et al., 2021), MixCrossEn-
tropy (Li and Lu, 2021), CBMI-adaptive (Zhang
et al., 2022a), and SPL (Wan et al., 2020). For N ,
we adopt 100K and 30K for larger datasets, e.g.
En-De and En-Fr, and small dataset, i.e. En-Ro,
respectively. We empirically adopt 32K tokens per
batch for large datasets, the learning rate warms
up to 1e-7 for 10K steps, and then decays 90K,
while for small dataset En-Ro, The learning rate
warms up to 1e-7 for 4K steps, and then decays
26K steps. All the experiments are conducted on 4
NVIDIA Tesla A100 GPUs. The SacreBLEU (Post,
2018) was used for evaluation. Besides translation,
we also follow previous works (Liu et al., 2021b;
Zhong et al., 2022; Zhang et al., 2022b) to validate
the universality of our method on more sequence-
to-sequence learning tasks, e.g., summarization and
grammatical error correction.
Text Summarization on XSUM corpus (0.2M).
We follow fairseq (Ott et al., 2019) to prepro-
cess the data and train the model, then finetune
them for the same steps. We evaluated with the
ROUGE (Lin, 2004), i.e. R-1, R-2, and R-L.
Grammatical Error Correction on CoNLL14
(1.4M). We follow Chollampatt and Ng (2018) to
preprocess the data and train the model, then fine-
tune them for the same steps. The MaxMatch (M2)
scores (Dahlmeier and Ng, 2012) were used for
evaluation with precision, recall, and F0.5 values.

3.1 Main Results

SE brings gains across language pairs and scales.
Results on machine translation across different
data sizes ranging from 0.6M to 36M in Table 1
show that our SE-equipped Transformer “+ Self-
Evolution (ours)” 1) considerably improves the per-
formance by averaging +0.92 BLEU points; 2) out-
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Valid Loss Scale
0-1 1-2 2-3 >3

Transformer 63.3 10.5 6.7 19.5
+ SE 65.6 9.5 5.8 19.1

Table 3: The token distribution (%) on different loss
scales. Shadowed areas mean accurate token predic-
tion estimated with lower cross-entropy loss, i.e. “0-1”.

Method WMT22 De⇒En

BLEU ∆ COMET ∆

Transformer 29.98 - 45.1
+SE 30.38 +0.4 46.3 +1.2

Table 4: Performance on extremely large dataset
WMT22 De-En (236M).

performs previous competitive method “+ CBMI-
adaptive” by up to +0.47 BLEU points on large
dataset WMT14 En-Fr. These results demonstrate
the effectiveness and universality of our SE.

SE brings gains across tasks and backbone sizes.
Table 2 lists the performance on more tasks, in-
cluding translation, summarization, and grammar
error correction, upon large pretrained backbone -
BART (Lewis et al., 2020), which has above 600M
parameters. Compared to a stronger baseline, our
SE significantly and incrementally improves the
generation quality in all tasks, i.e. +0.4 BLEU, +
0.7 RG-L, and + 1.9 F0.5, respectively, showing our
SE is robustly applicable to general scenarios.

SE works well on extremely large dataset. To
further verify the effectiveness of SE on extremely
large dataset, we conducted an experiment on
WMT22 De-En processed by Zan et al. (2022b),
which contains 236M training examples. The re-
sults in Table 4 show that our method can achieve
+0.4 and +1.2 improvement in BLEU and COMET
respectively, which proves that our SE also works
on extremely large datasets.

3.2 Analysis

We provide some insights to better understand the
effectiveness of our approach. The ablation of im-
portant modules and parameters is in Appendix A.

SE learns better token representation. To ver-
ify whether our method helps learn better tokens
representation, we conduct analysis on WMT14 En-
De from learning loss and fine-grained generation

Figure 2: Fine-grained translation quality across
word frequencies and sentence lengths.

perspectives, respectively.
First, we count the token ratios distributed in

different cross-entropy loss scales in Table 3 fol-
lowing Zan et al. (2022a). Cross-entropy is a good
indicator to quantify the distance between the pre-
dicted distribution and the ground truth in the valid
dataset, and a lower value means a more similar
distribution. As shown, our method improves the
low-loss token ratios by +2.3%, indicating SE helps
the model learn better token representations by
reducing the token uncertainty. In addition, we
follow Ding et al. (2021a); Liu et al. (2021a) to
break the translation down into different granulari-
ties and measure their fined-grained performance.
In particular, we calculate1 the F-measure of words
by different frequency buckets and BLEU scores
of buckets of different lengths in Figure 2. We see
SE achieves better performance in all frequencies
and sentence buckets, demonstrating our method
can improve the performance of different granu-
larities.

SE encourages diverse generations. Lacking
generation diversity is a notorious problem for
Seq2Seq learning tasks (Sun et al., 2020; Lin
et al., 2022). Benefiting from better exploring the
model’s prediction with corrected soft labels, SE
is expected to improve generation diversity. We
follow Wang et al. (2022) to examine this by ana-
lyzing the performance in an additional multiple-
reference test of WMT’14 En-De (Ott et al., 2018).
We choose additional references for each of the
500 test sentences taken from the original test. Ta-
ble 5 shows SE consistently outperforms the base-
line with the average improvement being 0.9/1.0
BLEU, which indicates that our SE can effectively
generate diverse results.

SE enhances model generalization. Benefiting
from better hard token exploration, SE-equipped
Transformers are expected to own better general-
izations. We examine it by testing on domain shift

1Using compare-mt (Neubig et al., 2019).
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Ref. Avg. Top

Transformer +SE Transformer +SE

#1 42.5 43.7 (+1.2) 44.9 45.7 (+0.8)
#2 28.6 29.3 (+0.7) 30.2 31.2 (+1.0)
#3 31.2 32.1 (+0.9) 33.2 34.4 (+1.2)
#4 28.1 28.8 (+0.7) 29.6 30.5 (+0.9)

Mean 32.6 33.5 (+0.9) 34.5 35.5 (+1.0)

Table 5: Multi-reference performance. ‘Avg./ Top”
means the averaging/ most-matching performance.

Model Law Med. Kor. Sub. Avg.

Transformer 41.2 30.9 7.4 14.5 23.5
+SE 42.6† 32.3† 7.8† 15.0† 24.4

Table 6: Performance on domain shift setting. Models
are trained on the news but evaluated on out-of-domain
test sets, including law, medicine, koran, and subtitle.
“†” indicates statistically significance (p < 0.05).

scenarios following Ding et al. (2021b). In par-
ticular, we evaluate WMT14 En-De models over
four out-of-domain test sets (Müller et al., 2020) in
Table 6 and find that SE improves the translation
by averaging +0.9 BLEU points, showing a better
lexical generalization ability.

SE encourages human-like generations. We de-
sign two types of evaluation on WMT14 En-Fr:
1) AUTOMATIC EVALUATION with COMET (Rei
et al., 2020) and BLEURT (Sellam et al., 2020),
which have a high-level correlation with human
judgments. 2) HUMAN EVALUATION with three
near-native French annotators who hold DALF C2
certificate2. Specifically, for human evaluation, we
randomly sample 50 sentences from the test set
to evaluate the translation adequacy and fluency,
scoring 1∼5. For adequacy, 1 represents irrelevant
to the source while 5 means semantically equal.
For fluency, 1 means unintelligible while 5 means
fluent and native. Table 7 shows the automatic and
human evaluation results, where we find that our
SE indeed achieves human-like translation.

4 Conclusion

In this paper, we propose a self-evolution learn-
ing mechanism to improve seq2seq learning, by
exploiting the informative-yet-underexplored to-
kens dynamically. SE follows two stages, i.e. self-
questioning and self-evolution training, and can be
used to evolve any pretrained models with a sim-

2http://www.delfdalf.fr/dalf-c2-en.html

AUTOMATIC EVAL. HUMAN EVAL.

COMET BLEURT Adequacy Fluency

Transformer 61.6 68.6 4.32 4.58
+ SE 63.7 69.5 4.50 4.68

Table 7: Human evaluation on WMT14 En-Fr.

ple recipe: continue train with SE. We empirically
demonstrated the effectiveness and universality of
SE on a series of widely-used benchmarks, cover-
ing low, medium, high, and extremely-high data
volumes.

In the future, besides generation tasks, we would
like to verify the effectiveness of SE on language
understanding tasks (Wu et al., 2020; Zhong et al.,
2023). Also, it will be interesting to design SE-
inspired instruction tuning or prompting strategy
like Lu et al. (2023) to enhance the performance
of large language models, e.g. ChatGPT3, which
after all have already been fully validated on lots
of conditional generation tasks (Hendy et al., 2023;
Jiao et al., 2023; Peng et al., 2023; Wu et al., 2023).

Limitations

Our work has several potential limitations. First,
we determine the threshold Γ by manual selection,
which may limit the performance of Seq2Seq mod-
els, it will make our work more effective and ele-
gant if we dynamically select the threshold. Sec-
ond, besides the improvement on three widely used
tasks, we believe that there are still other abilities,
like code generation, of Seq2Seq models that can
be improved by our method, which are not fully
explored in this work.
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We take ethical considerations very seriously and
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ings and conclusions of this paper are reported
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A Appendix

Parameter Analysis on Γ As stated in §2.1,
we use the loss threshold Γ to dynamically se-
lect the hard-to-learn tokens. Here, we analyze
the influence of different Γ in detail. In practice,
we train the Transformer models with different Γ
(in {3,4,5,6}) and evaluate the performance of the
WMT14 En-De test set. Table 8 lists the perfor-
mance of different Γ. The results of Table 8 show
that SE is stable and insensitive to Γ within a cer-
tain range. Noting that we select Γ = 5 for all
experiment settings based on the results in Table 8.

Γ=3 Γ=4 Γ=5 Γ=6

BLEU 27.7 27.8 28.0 27.8

Table 8: Parameter analysis of Γ on WMT14 En-De.
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Ablation Study

Metric. In this work, we use the loss-based
metric to dynamically select the hard-to-learn to-
kens. To validate the effectiveness of the metric, we
use a simple adaptive training method (“+ ADD”)
that adds 1 to the weighting term of loss of the
hard-to-learn tokens. The results on WMT16 En-
Ro are shown in Table 9, the simple Add method
can achieve +0.3 BLEU improvement compared to
the baseline model, which proves that our proposed
self-questioning stage indeed mines informative
difficult tokens. Also, we can observe that learning
these dynamic difficult tokens with our SE frame-
work (“+ SE”) could outperform “+ ADD” by +0.6
BLUE points, demonstrating the superiority of our
token-specific label smoothing approach.

Baseline + ADD + SE

BLEU 35.1 35.4 36.0

Table 9: Ablation performance of our SE. on Metric.

Learning objective. As stated in §2.1, our
learning objective is the combination of the ground
truth and the model’s prediction. To validate the ef-
fectiveness of predicted distribution, we conduct ab-
lation experiments on WMT16 En-Ro and WMT14
En-De. The results in Table 10 show that adding
the predicted distribution will consistently improve
the model’s performance, which proves the effec-
tiveness of the predicted distribution.

Method BLEU

EN⇒DE EN⇒Ro

Transformer 27.08 35.11

SE 28.02 36.02
-w/o predicted results 27.89 35.71

Table 10: Ablation performance of our SE. on learning
objective.

848



ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

The last section of the paper.

�7 A2. Did you discuss any potential risks of your work?
Left blank.

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
The abstract and the introduction section.

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B �7 Did you use or create scientific artifacts?
Left blank.

� B1. Did you cite the creators of artifacts you used?
No response.

� B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
No response.

� B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
No response.

� B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
No response.

� B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
No response.

� B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
No response.

C �7 Did you run computational experiments?
Left blank.

� C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
No response.

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

849

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/


� C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
No response.

� C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
No response.

� C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
No response.

D �3 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Section 3.2

�7 D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
Left blank.

�7 D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
Left blank.

�7 D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
Left blank.

�7 D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
Left blank.

�7 D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
Left blank.

850


