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Abstract
In this work, we empirically show that updating
pretrained LMs (350M, 1.3B, 2.7B) with just
a few steps of Gradient Ascent Post-training
(GAP) on random, unlabeled text corpora en-
hances its zero-shot generalization capabilities
across diverse NLP tasks. Specifically, we
show that GAP can allow LMs to become com-
parable to 2-3x times larger LMs across 12 dif-
ferent NLP tasks. We also show that applying
GAP on out-of-distribution corpora leads to the
most reliable performance improvements. Our
findings indicate that GAP can be a promising
method for improving the generalization capa-
bility of LMs without any task-specific fine-
tuning 1.

1 Introduction

Recently, Language Models (LMs) pretrained on
a vast amount of text corpora have shown to be
capable of performing diverse downstream NLP
tasks in a zero-shot manner (Brown et al., 2020;
Rae et al., 2021; Chowdhery et al., 2022; Zhang
et al., 2022) or through in-context learning (Brown
et al., 2020; Min et al., 2022) without any gradi-
ent updates. This paradigm has been preferred
over task-specific fine-tuning (Devlin et al., 2019),
which requires considerable amount of labeled data
for the given target task.

Motivated by the positive effect of gradient as-
cent during fine-tuning (Foret et al., 2021), in this
work, we explore whether adapting pretrained LMs
with Gradient Ascent Post-training (GAP) on ran-
dom, unlabeled text corpora can bring any benefits
in terms of enhancing its generalization capabilities
of performing diverse downstream NLP tasks in a
zero-shot or few-shot manner without the need for
task-specific training data.

Specifically, we apply just a few steps of gradi-
ent ascent to OPT LMs (Zhang et al., 2022) using
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1Code and full results for individual GAP runs are avail-

able at https://github.com/kaist-lklab/GAP
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Figure 1: Average validation F1-score measured on
four dialogue datasets. A single dot represents a single
GAP run, each with random text samples (total of 300
runs per LM size). The dashed horizontal lines indicate
performance of OPT LMs (baseline) of the same size.
For reference we also show the performance of 6.7B-
OPT baseline with a solid line.

randomly sampled text sequences from 3 different
corpora from the Pile (Gao et al., 2021) with vary-
ing degree of familiarity between the LM and the
corpus. Experimental results show that this sim-
ple approach achieves performance gains across
12 downstream NLP tasks: 4 dialogue tasks and 8
classification tasks. We observe that applying GAP
with out-of-distribution data, specifically code data
that OPT was not explicitly trained on, results in
the most reliable performance gain.

Our main contributions can be summarized into
two folds:

• We empirically show that GAP is a promising
generalization enhancement technique as it is
(1) effective, as evidenced by multiple bench-
mark results; (2) simple & efficient, requiring
maximum 15 steps of parameter update; (3)
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versatile, as it can be applied easily to any
pretrained LMs and does not necessitate task-
specific fine-tuning.

• We show analysis of what makes GAP work
by splitting the corpora into three groups ac-
cording to the LMs’ degree of familiarity with
the data. We observe that performing GAP
with the most unfamiliar (out-of-distribution)
data results in the most reliable performance
gain.

2 Related Works

Task-Specific Gradient Ascent Deep neural net-
work models exhibiting poor generalization due to
converging at sharp local minima is a well-known
phenomenon in literature (Keskar et al., 2017; Iz-
mailov et al., 2018; Cha et al., 2021; Chen et al.,
2022). To address this issue, Foret et al. (2021)
introduce Sharpness-Aware Minimization (SAM),
an algorithm that performs both gradient ascent
as well as gradient descent during task-specific
fine-tuning to avoid sharp local minima, improving
performance. The effectiveness of SAM has mo-
tivated several studies to apply them to LMs and
report meaningful improvements in performance.

Bahri et al. (2022) have shown that apply-
ing SAM when fine-tuning various scales of T5
LMs (Raffel et al., 2020) on multiple downstream
tasks results in a substantial performance gains.
Similarly, Kaddour et al. (2022) also explore SAM
across computer vision, natural language process-
ing, and graph representation learning tasks, further
bolstering its efficiency.

While SAM was proposed as a robust fine-tuning
methodology that targets convergence on super-
vised dataset, we instead explore the benefits gradi-
ent ascent can bring without task-specific labeled
data for generic LMs.

Task-Agnostic Gradient Ascent In a recent
study, Jang et al. (2022) investigate the use of gra-
dient ascent for addressing privacy risks in LMs.
The main objective of the work is utilizing gradient
ascent to unlearn specific token sequences; surpris-
ingly, they report unexpected performance gains in
some cases. Our work can be seen as a direct exten-
sion of this phenomenon where our main objective
is to enhance the generalization capabilities instead
of forgetting specific data to ensure privacy.

3 Gradient Ascent Post-training (GAP)

In this section, we give a formal definition of GAP.
Specifically, given an LM with parameters w and
a sequence of tokens x = (x1, ..., xN ), GAP is
defined as:

wt+1 = wt + α∇fwt(x) (1)

fwt(x) = −
N∑

n=1

log(pwt(xn|x<n)) (2)

where t represents the gradient ascent iteration,
α denotes the learning rate, x<n indicates the to-
ken sequence (x1, ..., xn−1) and pwt(xn|x<n) rep-
resents the likelihood of predicting the next token,
xn, given the previous token sequence as an input
to an LM with parameter wt.

Markedly, GAP solely utilizes gradient ascent
and does not actively facilitate convergence, as
it updates the model parameters to maximize (1)
the language modeling loss function (2). We pro-
pose GAP as an unsupervised methodology that
can bring significant performance gains even with-
out curated fine-tuning data.

4 Experiments

4.1 Experimental Setup
Baseline Models and Evaluation Datasets We
use OPT (350M, 1.3B, 2.7B, 6.7B) LMs (Zhang
et al., 2022) as the baseline LMs. We observe
the effect GAP has on their generalization capa-
bilities which is measured via evaluation on 12
different downstream NLP tasks; we use Wizard
of Wikipedia (Dinan et al., 2019), Empathetic
Dialogues (Rashkin et al., 2019), Blended Skill
Talk (Smith et al., 2020) and WizInt (Komeili
et al., 2022) to evaluate generative capabili-
ties, Hellaswag (Zellers et al., 2019) to assess
linguistic reasoning abilities, Winogrande (Sak-
aguchi et al., 2021) and COPA (Brassard et al.,
2022) to measure commonsense reasoning abil-
ities, and ARC-Easy (Clark et al., 2018), ARC-
Challenge (Clark et al., 2018), PIQA (Bisk et al.,
2020), MathQA (Amini et al., 2019) and Pub-
medQA (Jin et al., 2019) to measure the scientific
reasoning abilities. The exact prompts used for
each task are provided in Appendix A.

Random Unlabeled Data We apply GAP on text
snippets from three different corpora, which all
originate from the Pile (Gao et al., 2021) train-
ing set: (1) Training Data Extraction Challenge
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(TDEC)2, (2) Common Crawl (CC) and (3) Github
(Git.). We choose these corpora in order to observe
the effect of the LMs’ degree of familiarity with the
data. Training Data Extraction Challenge includes
examples from the Pile that are identified to be
easy-to-extract from GPT-Neo LMs (Black et al.,
2022), mainly due to high levels of duplication. We
assume these examples are also relatively easier-to-
extract from OPT LMs as they were also pretrained
on subset of the Pile, indicating the highest level
of familiarity / memorization. We consider OPT
LMs to be familiar (in-domain) to Common Crawl,
as it was included in their pretraining corpora. As
OPT LMs were not explicitly trained on the Github
corpora we consider OPT to be unfamiliar (out-of-
distribution) with Github. Examples of the random
unlabeled data are provided in Appendix D.

Configurations For each of the 3 LM sizes
[350M, 1.3B, 2.7B], we sample a total of 300 text
samples (each 200 token lengths long) for apply-
ing GAP, with 100 samples taken from each of the
three corpora. For each run, a single text sam-
ple is used, ultimately resulting in 300 runs of
GAP per LM size. Therefore, a single epoch of a
GAP run comprises of a single gradient ascent step
with batch size set to 1. The number of maximum
epochs is set to 15 and we report the validation
score from the best-performing epoch, as prelimi-
nary experiments showed gradient ascent past 15
steps mostly resulted in performance degradation.
Due to computational constraints we sample the
validation data to a maximum of 320 samples per
dataset for all of the 12 evaluation datasets. For
further exploration of GAP as a methodology, we
use the checkpoints with the best validation scores
and evaluate the LMs on the test datasets for the 4
dialogue tasks. We do not separately report the test
evaluation results for classification datasets since
most of them require direct submission to the task
website. For a single run, we use one Nvidia 40GB
A100 GPU. Further details regarding the experi-
mental configurations (e.g. optimizer, learning rate,
etc.) are provided in Appendix B.

4.2 Dialogue Tasks

Main Results As shown in Figure 1 in Section
1, GAP substantially enhances the average vali-
dation performance on the 4 dialogue tasks, with
median F1-score of 1.3B LMs outperforming the

2https://github.com/google-research/lm-extraction-
benchmark

Model F1 MAUVE Diversity Length

350M 11.4 44.3 74.0 11.8
+ GAP 12.5 67.2 87.3 14.4

1.3B 13.5 48.2 82.8 11.4
+ GAP 14.0 69.5 86.7 13.8

2.7B 13.8 51.3 86.9 11.3
+ GAP 14.7 73.0 93.1 14.5

6.7B 14.5 51.1 88.3 11.9

Table 1: Average test scores on dialogue datasets. We
evaluate OPT baselines and our best-performing check-
points excluding outliers. Individual results are provided
in Appendix C.

Comparison Metric Win Loss Tie

Ours vs. Baseline
C 43%† 17% 40%
F 36%† 15% 49%
I 40%† 17% 43%

Ours vs. Human
C 41% 37% 22%
F 33% 30% 37%
I 23% 50%† 27%

Table 2: Human evaluation results from dialogue gen-
eration task, WizInt (Komeili et al., 2022). The C, F,
and I indicate coherence, fluency, and informativeness,
respectively. † indicates the significance with p-value
lower than 0.1 by bootstrap test between pairs.

2.7B LM baseline, and some 1.3B LMs even able
to match the performance of the 6.7B LM base-
line 3. We report the average test F1 score as well
as MAUVE (Pillutla et al., 2021), diversity (Su
et al., 2022), and generation length of our best vali-
dation checkpoints for each model size (excluding
outliers) in comparison to the baseline LMs in Ta-
ble 1 4.

Results show a substantial improvement in all
of the metrics, F1 Score, MAUVE, and generation
length, with our 1.3B and 2.7B LM checkpoints
even outperforming the larger LM baselines. This
result is significant considering that no task-specific
dataset is used. Examples of text generation for the
dialogue tasks are provided in Appendix E.

Human Evaluation We also evaluate and com-
pare the qualitative quality of generated responses
of the baseline LMs and the LMs adapted with GAP

3Detailed numerical data for the median values is available
in C.

4Explanation of how MAUVE and diversity is measured is
provided in Appendix B.
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Figure 2: Average validation accuracy measured on 8
classification tasks. A single dot represents a single
GAP run, total of 300 runs per LM size. The dashed
horizontal lines indicate performance of baseline LMs
with same size.

side-by-side. For this, we sample 100 contexts
from the WizInt (Komeili et al., 2022) dataset and
generate the corresponding responses with the 2.7B
LM baseline and 2.7B LM + GAP denoted as Ours.
Then, we compare the generated response pairs
from the LMs from the perspective of three met-
rics: coherence, fluency, and informativeness (Su
et al., 2022). We ask human evaluators to select the
better response from each pair with respect to each
metrics 5. We find our GAP-enhanced LM shows
significant strengths in all the metrics compared to
its baseline (Table 2). Moreover, our LM shows
comparable performance to human upper bounds
(gold response) except for informativeness.

4.3 Classification Tasks

The average validation performances of the 8 clas-
sification tasks when performing GAP on the OPT
LMs are shown in Figure 2. While GAP fails to
provide consistent improvements for 350M LMs
and 2.7B LMs, mostly resulting in a degradation of
performance as shown by the median performance
underperforming the baselines, the LMs show con-
siderable performance gains in some cases for the
larger LMs. This result suggests that although GAP
does not show steady improvement of generaliza-
tion for the classification tasks unlike the dialogue

5Further study details are in Appendix F.

0.12 0.13
Average F1 Score

Git.
CC
TDEC

Figure 3: Average validation F1 score improvements for
350M-LMs measured on four dialogue datasets. Each
symbol represents a single GAP run, with 100 runs per
corpus and a total of 300 runs. The dashed vertical line
indicates the performance of 350M-OPT LM.

Model All Git. CC TDEC

350M 12.3 12.6 11.9 12.3

1.3B 13.7 13.8 13.6 13.5

2.7B 14.1 14.3 14.2 13.9

Table 3: Average validation F1 score measured on four
dialogue datasets, split into the origin of the unlabeled
data. The values for Git., CC, TDEC are the median
value of the 100 runs for each corpus. The value for All
is the median value of the 300 total GAP runs.

tasks, it does show some potential for improvement
considering that some runs did result in substantial
improvements. We leave choosing the right text
samples to perform GAP on for a consistent per-
formance enhancement on classification tasks for
future work.

4.4 Analysis of GAP

Figure 3 shows the average performance of the 300
GAP runs for the 350M LMs (zoomed-in version of
Figure 1). To observe the effect of LMs’ familiarity
to the unlabeled data, we plot the dots with differ-
ent symbols with respect to the corpus. Interest-
ingly, samples from the unfamiliar corpus (Github)
results in significant improvements, mostly achiev-
ing higher scores than the median score. Consistent
findings are also evident in Table 3, with Github
achieving the highest median F1 scores across all
model sizes. This suggests that future applications
of GAP can be applied more efficiently by mostly
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using unfamiliar (out-of-distribution) text. Addi-
tional figures for other LM sizes are available in
Appendix C.

5 Conclusion

In this work, we introduce GAP, a novel method
of improving the generalization capability of LMs
without any task-specifc data by sampling random
text and performing gradient ascent for a few steps.
We show that our approach is (1) simple to use,
(2) effective in making more robust LMs, and (3)
has much room for improvements for future work
when scaling the number of GAP runs (e.g. >300)
and choosing specific text samples (e.g. out-of-
distribution text) to perform GAP on. Thus, we
urge the community to consider GAP when prompt-
ing off-the-shelf pretrained LMs for performing
diverse downstream NLP tasks.

Limitations

While we show that applying GAP can result in a
significant improvement in the generalization capa-
bility of LMs, especially for dialogue tasks, we are
only able to show 300 GAP runs for each LM size
in this work. We leave scaling the number of GAP
runs, as well as selecting specific text samples to
perform GAP on for future work. Furthermore, a
separate validation set of the tasks at interest are
needed in order to choose the best checkpoint when
performing GAP. Future work may look for other
task-agonostic cues such as language modeling loss
to determine the best checkpoint to use for infer-
ence.
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A Task Prompts

Table 4 shows the prompts we use for each of the
12 benchmark dataset to enable zero-shot/few-shot
learning. For dialogue tasks (Wizard of Wikipedia,
Blended Skill Talks, Empathetic Dialogues, Wiz-
Int), we use the prompts used by Zhang et al.
(2022).

B Details of Experimental Configurations

In this section, we give further details of our main
experimental setting of performing GAP. We use
Adam optimizer (Kingma and Ba, 2014) with a
constant learning rate of 5e-5 with no weight decay
and no dropout.

For the dialogue tasks, we adopt the settings
of Zhang et al. (2022) and prompt the LM with
alternating "User 1:" and "User 2:" lines of dia-
logue (examples shown in Appendix A). To gen-
erate tokens, we employ greedy decoding method
and set a maximum generation length of 32 tokens.
For the classification tasks, we use a verbalizer
method by selecting the output option with higher
log-likelihood following Brown et al. (2020); Sanh
et al. (2021). We use unigram F1 score as our
main metric for the dialogue generation tasks and
accuracy for the classification tasks.

For the diverse metrics used for evaluation on
the test sets of the 4 dialogue tasks, MAUVE (Pil-
lutla et al., 2021) compares the text representation
of the LM generated-response to human-written
text, higher values indicate greater similarity to
human-written text. Diversity metric (Su et al.,
2022) measures token-level repetition, with higher
values indicating greater diversity and less repeti-
tion in the generated text.

C Full Results

Tables 5 and 6 show the median validation score
of all 300 GAP runs. For classification tasks, the

median values do not show significant improve-
ments. However for dialogue tasks, GAP shows
considerable improvements across all tasks.

Tables 7, 8, 9 and 10 show the individual test
performance for each dialogue dataset. The four
dialogue datasets are: Blended Skill Talks (BST),
Empathetic Dialogues (ED), Wizard of Wikipedia
(WoW) and WizInt. Our models demonstrate su-
perior performance compared to their same sized
baselines on every metrics in all four task.

Figures 4 and 5 represent the familiarity anal-
ysis results for 1.3B and 2.7B sized models, re-
spectively. For both 1.3B and 2.7B models, data
sampled from the out-of-domain corpora (Github)
results in reliable performance gains. For the big-
ger sized models, in-domain corpora (CC) also re-
sults in competitive performance gains, suggesting
larger sized morels are more robust to GAP data
selection.

D Examples of Random Data

Table 11 shows examples of the random data we
use to apply GAP to OPT LMs. Specifically, they
are the best performing data for each model size.

E Examples of Dialogue Generation
Outputs

Table 12 shows some examples of text generated
by baseline models and our models trained with
GAP. Notice that our models generate diverse and
interesting text while also maintaining coherence
to the given dialogue history.

F Details of Human Evaluation

We conduct the human evaluation on Amazon Me-
chanical Turk (AMT). An example of the inter-
face shown to the workers is shown in Figure 6.
Specifically, we recruit three different annotators
for each comparison pair with a compensation of
1$ per instance. We include brief instructions on
the evaluation including descriptions of three met-
rics. Then, we ask the workers to compare each
generated (or ground-truth for human baseline) re-
sponse pair with the given dialogue context. We
evaluate 200 samples in total, including 100 for
the OPT baseline and 100 for the human upper
bounds. The Fleiss kappa among the workers is
calculated as 0.36, which indicates moderate-level
agreements. We also test the significance between
the comparing systems via a bootstrap test with
100,000 samplings.
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Table 4: Full list of the prompts used for the 12 evaluation datasets.

Dataset Prompt

PIQA {goal} [option]

ARC-Easy/Challenge {question} [option]

COPA {premise} [option]

HellaSwag {input} [option]

Winogrande {sentence} [option]

MathQA {problem} [option]

PubmedQA Question: {problem} \nAnswer: [option]

Wizard of Wikipedia, Blended Skill Talks,
Empathetic Dialogues, WizInt

User 1: {turn}\nUser 2: {turn}\nUser 1: {turn}\n ... User 2:

Model Avg. BST ED WoW WizInt

350M 11.77 11.88 10.17 12.05 13.00
+ GAP 12.31 12.45 10.64 12.37 13.78

1.3B 12.98 14.04 12.35 11.68 13.85
+ GAP 13.60 14.45 12.58 12.37 15.02

2.7B 13.54 13.18 12.42 12.86 15.69
+ GAP 14.09 13.90 13.03 13.76 15.65

6.7B 14.51 14.93 13.71 14.24 15.18

Table 5: Validation F1-score of OPT baselines and median validation F1-score of all GAP runs, measured on
four dialogue datasets: Blended Skill Talks (BST), Empathetic Dialogues (ED), Wizard of Wikipedia (WoW) and
WizInt.

Model Avg. ARC-
Chall.

ARC-
Easy

Hella-
swag

MathQA PIQA Pubmed-
QA

COPA Wino-
grande

350M 45.76 11.64 45.63 35.94 21.88 67.50 54.37 69.00 53.13
+ GAP 45.84 19.32 45.63 36.88 21.25 67.50 53.75 69.00 53.44

1.3B 50.63 24.07 56.25 39.38 22.81 69.38 58.44 76.00 58.75
+ GAP 50.91 24.75 56.25 40.00 23.13 70.00 58.44 76.00 58.75

2.7B 51.77 26.78 57.50 41.87 21.25 72.50 58.44 78.00 57.81
+ GAP 51.73 26.78 57.50 41.87 21.25 72.19 58.44 78.00 57.81

6.7B 54.39 32.20 61.87 45.63 21.25 75.94 58.44 77.00 62.81

Table 6: Validation accuracy of OPT baselines and median validation accuracy of all GAP runs, measured on
classification datasets.
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Model BST ED WoW WizInt

350M 11.18 10.43 13.24 10.92
+ GAP 12.68 11.38 13.89 12.13

1.3B 14.26 12.51 14.38 13.01
+ GAP 14.83 12.74 15.18 13.37

2.7B 14.00 13.09 14.40 13.58
+ GAP 15.12 13.71 15.40 14.45

6.7B 15.04 13.79 15.19 13.92

Table 7: Test F1-score of our best performing GAP
models and OPT baselines on each dialogue datasets.

Model BST ED WoW WizInt

350M 48.73 31.01 53.58 43.91
+ GAP 74.87 62.29 82.37 82.55

1.3B 52.6 53.0 40.8 46.2
+ GAP 74.7 54.5 76.4 72.44

2.7B 59.8 49.4 55.4 40.6
+ GAP 82.2 51.3 86.7 71.5

6.7B 55.7 43.4 56.3 48.8

Table 8: Test MAUVE of our best performing GAP
models and OPT baselines on each dialogue datasets.

Model BST ED WoW WizInt

350M 69.29 85.01 62.64 79.34
+ GAP 83.22 91.79 82.96 91.09

1.3B 82.62 84.43 81.07 83.23
+ GAP 86.78 88.99 84.33 86.64

2.7B 85.36 91.09 82.04 89.26
+ GAP 93.99 96.22 89.73 92.38

6.7B 86.95 92.29 81.28 92.67

Table 9: Test diversity of our best performing GAP
models and OPT baselines on each dialogue datasets.

Model BST ED WoW WizInt

350M 10.91 10.65 13.4 12.23
+ GAP 13.23 13.26 15.86 15.35

1.3B 10.69 11.18 11.95 11.72
+ GAP 12.89 12.49 15.05 14.8

2.7B 10.4 10.72 12.39 11.58
+ GAP 13.09 13.98 15.83 15.21

6.7B 11.25 10.89 13.36 12.22

Table 10: Test generation length of our best perform-
ing GAP models and OPT baselines on each dialogue
datasets.

0.13 0.14
Average F1 Score

Git.
CC
TDEC

Figure 4: Analysis of average validation F1 score im-
provements for 1.3B-LMs measured on four dialogue
datasets.

0.14 0.15
Average F1 Score

Git.
CC
TDEC

Figure 5: Analysis of average validation F1 score im-
provements for 2.7B-LMs measured on four dialogue
datasets.
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Model Text
350M + GAP "metadata": ,\n "source": [\n "Canary rollouts are used to release new models safely

to only a small subset of users such as 5%. They are useful if you want to test in live
production without affecting the entire user base. Since the majority of traffic goes to
the existing model, the cluster size of the canary model can be relatively small since
it’s only receiving 5% traffic."\n ]\n },\n {\n "cell_type": "markdown",\n "metadata":
{},\n "source": [\n "Instead of ‘deploy()‘, we can create an ‘Endpoint Configuration‘
with multiple variants for canary rollouts and A/B testing."\n ]\n },\n {\n "cell_type":
"code",\n "execution_count": null,\n

1.3B + GAP \n\tld d, 08\n\tld a, 10\n\tld b, 11\nlfill_vram:\n\tld(hl++), a\n\tadd a, b\n\tdec
d\n\tjrnz lfill_vram\n\tld a, 90\n\tldff(45), a\n\tld a, 40\n\tldff(41), a\n\txor a,
a\n\tldff(0f), a\n\tld a, 02\n\tldff(ff), a\n\tei\n\thalt\n\n.text@7000\nlprint4:\n\tld b,
90\n\tcall lwaitly_b\n\txor a, a\n\tldff(40), a\n\tld bc, 7a00\n\tld hl, 8000\n\tld d,
00\nlprint_copytiles:\n\tld a, (bc)\n\tinc bc

2.7B + GAP crafts of Jharkhand. The people of the state who belong to the different ethnic groups
in the state are mainly engaged in this form of craft.\n\nThe Jharkhand bamboo crafts
that the tribal people of Jharkhand are engaged in show a great deal of intricate and
fascinating hand work, which is quite unique to the state of India. The major articles
that are made out of bamboo in Jharkhand include baskets and accessories used for
fishing and hunting.\n\nThe bamboo crafts in Jharkhand that the ethnic people of
the state of Jharkhand make are mostly carved out of the bamboos available locally.
The variety of bamboo produced by the bamboo grooves of the state is not very
thick. However, these bamboos are suitable for the different kinds of bamboo crafts
at Jharkhand, since they are not weak and yet can be twisted and turned to a great
extent.\n\nMetal Works of Jharkhand\n\nMetal

Table 11: Example of the best performing random data for each model size.
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Model Generation
User 1: I know absolutely nothing about archery, but would be interested in your views on it.
User 2: It is really very fun. It can be considered a sport or a skill where a bow is used to
propel arrows.
User 1: Hmm. Do you go to classes? It sound like such fun - I’ve seen it in movies but not
really thought much about it.
User 2: I do not. It used to be mainly for hunting and fighting, but not anymore.
User 1: Perhaps I should give it a go, not for hunting but for sport.My husband does bow hunt,
if that’s a similar sort of thing. He seems to be quite good at it.
User 2: It is an increasingly popular competitive sport and recreational activity.
User 1: Interesting. Do many countries participate? It would be fun to see the ways countries
differentiate.
User 2:

1.3B There are many countries that participate.

+ GAP There are many countries that participate in the sport. Some countries have national
competitions, while others have regional competitions.

User 1: My friend bought a big house and I’m happy for her but at the same time I’m a little
bit jealous.
User 2: Big houses are a pain in the neck to keep clean.
User 1: True, but there is so much space for her kid to run and play at and I live in a
tiny apartment with my son.
User 2:

2.7B I’m sure she’ll be happy with her new house.

+ GAP I know what you mean. My house is so small that I can’t even fit my son’s toys in
the living room.

User 1: I am an accountant. What is your profession.
User 2: pacioli established accounting in 1494 if I remember correctly ha. I work in healthcare.
User 1: What is your role in healthcare. I have been an accountant for 5 years.
User 2: I have an administrative role at a non-profit hospital.
User 1: That is interesting. What other things will you like to tell me about your profession.
User 2: I work in obtaining funding for the hospital. What type of accounting do you do
User 1: I do general accounting.
User 2: Lee had major impacts in the field of cost accounting.
User 1: That is interesting to know. Who is lee.
User 2:

2.7B Lee was a pioneer in cost accounting.

+ GAP Lee was a famous American accountant. He was the founder of the American
Institute of Certified Public Accountants (AICPA).

Table 12: Examples of texts generated by baseline OPT models and our GAP applied models, given dialogue
histories as prompts.
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Figure 6: An example of the Mturk interface used for the human evaluation of the dialogue response generation
quality.
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