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Abstract

Model ensemble has been in widespread use for
Grammatical Error Correction (GEC), boost-
ing model performance. We hypothesize
that model ensemble based on the perplexity
(PPL) computed by pre-trained language mod-
els (PLMs) should benefit the GEC system. To
this end, we explore several ensemble strate-
gies based on strong PLMs with four sophis-
ticated single models. However, the perfor-
mance does not improve but even gets worse
after the PLM-based ensemble. This surpris-
ing result sets us doing a detailed analysis on
the data and coming up with some insights on
GEC. The human references of correct sen-
tences is far from sufficient in the test data,
and the gap between a correct sentence and an
idiomatic one is worth our attention. More-
over, the PLM-based ensemble strategies pro-
vide an effective way to extend and improve
GEC benchmark data. Our source code is
available at https://github.com/JamyDon/PLM-
based-CGEC-Model-Ensemble.

1 Introduction

Grammatical Error Correction (GEC) is the task
of automatically detecting and correcting errors in
text (Bryant et al., 2022). Nowadays, there are two
mainstream GEC approaches. The first is treat-
ing GEC as a low-resource machine translation
task (Yuan and Briscoe, 2016), where sequence-to-
sequence models like BART (Lewis et al., 2020)
are used. This approach simply inputs the incorrect
text to the encoder and gets the corrected result
from the decoder. The second is treating GEC as a
sequence tagging task, where the incorrect text is
still taken as the input, but the output is edit tags
(keep, delete, add, replace, etc.) for each token.
After applying all the edits to the input text, the
corrected result is then generated. The model used
in this approach is also known as sequence-to-edit
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models and GECToR (Omelianchuk et al., 2020) is
a typical one.

However, most researches on GEC focus on En-
glish while Chinese GEC (CGEC) has just started
up. The Chinese language is different from En-
glish in many ways and its GEC is thus much
harder. Instead of word inflection in many West-
ern languages, the Chinese grammar is expressed
by function words and word order, making CGEC
more difficult and complex for that we can’t take
word form as a handle. In addition, unlike English,
we have very few datasets for training and testing
CGEC, which sets us exploring training-free meth-
ods like model ensemble to further improve the
performance of CGEC systems.

Because of the nature of GEC that corrections
can be represented as several independent edits,
model ensemble has been a popular way to im-
prove GEC systems. In CGEC, Li et al. (2018),
Liang et al. (2020) and Zhang et al. (2022) en-
semble their models by majority voting on edits
and achieve considerable improvement. Besides,
Xie et al. (2016) adopt language models to im-
prove neural language correction, following whom
Junczys-Dowmunt et al. (2018) ensemble their
GEC models using a language model probability.
Today, transformer-based (Vaswani et al., 2017)
Pre-trained Language Models (PLMs) have been
in predominant use in NLP. However, we find few
works on model ensemble using PLMs in CGEC.

In this work, we hypothesize that choosing the
best ensemble output with the help of perplexity
(PPL) computed by PLMs should boost the final
performance of CGEC. We experiment on ensem-
ble of four CGEC models, including two sequence-
to-sequence ones and two sequence-to-edit ones.
We try four ensemble strategies: traditional voting,
sentence-level ensemble, edit-level ensemble, and
edit-combination ensemble, the last three exploit-
ing the power of PLMs.

To our surprise, the results of model ensemble
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with PLMs do not exceed those of traditional voting
and are even worse than most of the single models.
To find out why a low PPL cannot lead to a better
GEC performance, we carry out a detailed analysis
on the ensemble results and get some insights on
GEC:

1) In the test data, human references are in-
sufficient, while PLM-based ensemble strategies
produce valuable candidates, after being human
checked, which may be considered as necessary
complement to human references.

2) When facing an erroneous sentence, a human
expert corrects it with the minimal effort, while
PLM-based ensemble strategies generate more nat-
ural and idiomatic text, which is of great help for
oversea language learners.

3) With the powerful ability, PLM-based models
try to generate fluent sentences but sometimes ig-
nore the original meaning of the source sentence, re-
sulting in over-correction that should be addressed
in future work.

2 Basic Models

2.1 Single CGEC Models
We implement four single models as baselines, with
two seq2seq models and two seq2edit ones. All the
models use the Lang-8 1 dataset for training.

Sequence to Sequence Models. The two seq2seq
models are both based on BART-base-Chinese
(Shao et al., 2021), and are implemented using
fairseq 2(Ott et al., 2019). Besides Lang-8, the HSK
data 3 is also used for training. One seq2seq model
adopts the "dropout-src" strategy, where each token
in input sentences is replaced with "[PAD]" with
a probability of 10%. The other one is pre-trained
on the synthetic data constrcted on THUCNews 4

(Sun et al., 2016) before the normal training.

Sequence to Edit Models. We apply GECToR-
Chinese 5 (Zhang et al., 2022) as our seq2edit mod-
els, with the pre-trained Structbert-large-Chinese 6

(Wang et al., 2019) as backbone. Our two seq2edit
models only differ in random seeds.

2.2 Pre-trained Language Models
We adopt three PLMs to carry out model ensemble.

1http://tcci.ccf.org.cn/conference/2018/taskdata.php
2https://github.com/facebookresearch/fairseq
3https://github.com/shibing624/pycorrector
4http://thuctc.thunlp.org
5https://github.com/HillZhang1999/MuCGEC
6https://huggingface.co/bayartsogt/structbert-large

BERT-base-Chinese 7. It is pre-trained on two
tasks: Masked Language Model (MLM) and Next
Sentence Prediction (NSP). In MLM, each to-
ken has a chance of 15% to be replaced with a
"[MASK]" (80%), a random word (10%), or it-
self (10%). Please refer to Devlin et al. (2019) for
details.

MacBERT-base-Chinese 8. It is similar to
BERT, but employs whole word masking, N-gram
masking and similar word replacing in MLM.
Besides, Sentence-Order Prediction (SOP) is ex-
ploited instead of NSP. Please refer to Cui et al.
(2020) for details.

GPT2-Chinese 9. It is an unofficial Chinese ver-
sion of GPT-2 (Radford et al., 2019). It employs
generative pre-training, by predicting the next word
in a sentence with only previous words provided.

3 Ensemble Strategy

With the source sentence and the outputs of four
single models as the input, we present four en-
semble strategies. The diagram of our PLM-based
ensamble strategies is shown in Figure 1.

3.1 Traditional Voting
Different models vote for the final results. For each
sentence, we consider edit operations suggested
by no less than T models as the correct one. In
our work, we experiment on T from 2 to 4. We
implement the original code provided by Zhang
et al. (2022) to carry out this voting strategy.

3.2 Sentence-level Ensemble
Using different PLMs, we compute the perplexi-
ties (PPLs) of the source sentence and the outputs
of four single models. Specifically, given a sen-
tence S = (w1, w2, ..., wn) and the probability of
the word wi computed by a PLM denoted as pi,
then PPL = (

∏n
i=1

1
pi
)1/n. The sentence with the

lowest PPL is chosen to be the final output.

3.3 Edit-level Ensemble
Given a source sentence S, all the edits suggested
by single models constitute a candidate set A, and
the number of edit spans is denoted as m. An edit
span means the start-end pair of an edit’s position
in the sentence. The set of all the edits (from differ-
ent single models) on the i-th edit span (including

7https://huggingface.co/bert-base-chinese
8https://huggingface.co/hfl/chinese-macbert-base
9https://github.com/Morizeyao/GPT2-Chinese

894



Figure 1: Diagram of our PLM-based ensemble strategies.

"noop") is denoted as Ai. Thus, we can divide A =⋃m
i=1Ai, where Ai = {eij | j = 1, 2, ..., |Ai|}, and

eij means the j-th edit on the i-th edit span.
For each edit span (Ai in A), we generate |Ai|

new sentences, each corresponding to a single edit
in Ai. Then we consult PLMs about PPLs of these
new sentences and accept the edit corresponding
to the sentence with the lowest PPL, which we
mark as eibest. In other words, eibest is the best edit
(decided by PLMs) in Ai, or on span i.

With each span’s best edit, the final edit set
Efinal combines these best edits, described as:

Efinal = {eibest | i ∈ {1, 2, ...,m}}, (1)

The final hypothesis sentence is then produced on
the basis of Efinal.

3.4 Edit-combination Ensemble

One source sentence may contain more than one
errors. For each sentence, this strategy applies
all edit combinations to the source sentence and
generates many new sentences.

To be specific, given a source sentence S, the
edit candidates A are still divided as A =

⋃m
i=1Ai,

and then we get all possible edit-combinations by:

U = {{e1j1 , e2j2 , ..., emjm} | ji ∈ {1, 2, ..., |Ai|}}.
(2)

Thus we generate (
∏m

i=1 |Ai|) new sentences, each
corresponding to an edit-combination in U . The

sentence with the lowest PPL will be accepted as
the final output.

Taking the computational complexity into con-
sideration, we only apply this strategy on sentences
whose number of edit-combinations is no more
than 300. Such simple sentences make up 95.15%
of MuCGEC-test and 98.90% of NLPCC-test. We
do nothing to the left not-so-simple sentences.

4 Experiments

4.1 Dataset and Evaluation Metrics

We carry out experiments on MuCGEC test data
(Zhang et al., 2022) and NLPCC test data (Zhao
et al., 2018). MuCGEC contains 7063 sentences
and each have at most three references, but is not
available at present. NLPCC contains 2000 sen-
tences, each with one or two references, and about
1.1 references on average. We carry out analysis
on NLPCC test data.

On MuCGEC, we submit the results of our
systems to the public evaluation website 10. On
NLPCC, we implement the tools provided by
Zhang et al. (2022) to compute the P (Precision),
R (Recall), and F0.5 of the output on char-level.
Also, we report word-level results on NLPCC-test
for reference with previous works.

10https://tianchi.aliyun.com/dataset/131328
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Strategy MuCGEC-test NLPCC-test NLPCC-test (word-level)

P R F0.5 P R F0.5 P R F0.5

Single Models

seq2seq-1 55.00 28.32 46.28 43.93 28.21 39.52 46.17 29.51 41.48
seq2seq-2 50.62 30.40 44.68 40.79 29.59 37.92 43.40 31.29 40.28
seq2edit-1 45.80 28.41 40.81 38.42 26.79 35.35 43.08 30.05 39.64
seq2edit-2 45.45 30.45 41.37 36.19 28.15 34.24 41.41 31.58 38.98

Average of 4 49.22 29.40 43.29 39.83 28.19 36.76 43.52 30.61 40.10

Traditional Voting

T = 2 52.58 33.61 47.25 42.71 32.62 40.22 45.58 34.66 42.88
T = 3 69.10 21.68 48.07 60.81 21.00 44.09 58.39 21.55 43.52
T = 4 76.13 15.35 42.48 67.33 14.96 39.61 64.51 15.35 39.32

Sentence-level

BERT-base-Chinese 48.56 24.33 40.50 37.71 22.80 33.35 41.38 24.55 36.39
MacBERT-base-Chinese 46.83 33.35 43.33 37.62 31.30 36.16 42.24 34.15 40.33
GPT2-Chinese 47.36 35.01 44.24 37.75 33.20 36.74 41.94 36.13 40.63
Edit-level

BERT-base-Chinese 41.31 21.79 35.04 33.19 20.59 29.57 36.69 23.24 32.89
MacBERT-base-Chinese 43.40 29.19 39.55 35.38 28.42 33.73 40.07 32.87 38.39
GPT2-Chinese 43.93 33.36 41.31 35.04 31.60 34.29 39.44 36.07 38.71
Edit-combination

BERT-base-Chinese 42.90 20.18 35.01 34.25 21.56 30.64 37.56 23.94 33.72
MacBERT-base-Chinese 45.18 28.73 40.54 36.35 30.69 35.05 40.11 33.62 38.62
GPT2-Chinese 46.07 31.92 42.32 36.23 33.29 35.60 40.50 36.44 39.62

Table 1: Experimental results on MuCGEC-test and NLPCC-test. The relatively best results in a group are reported
in bold, and the best results of all are listed in underlined bold.

4.2 Results

Table 1 shows the experimental results. The tra-
ditional voting strategy achieves the best perfor-
mance, with a 44.09 F0.5 score on char level that
is significantly higher than the best single model.
With the threshold T increasing, the precision rises
while the recall drops. When T = 3, F0.5 score
reaches the peak, in line with the finding of Tar-
navskyi et al. (2022).

However, the PLM-based ensemble strategies
get much worse performance than the simple voting
strategy, and are even lower than most of single
models. In terms of precision and recall, traditional
voting achieves higher precision but lower recall
than single models while PLM-based strategies are
on the contrary. Among three ensemble strategies,
the sentence-level one performs best.

Among different PLMs, GPT2-Chinese achieves
the best results in all three ensemble strategies.
This may be because BERT-based models are nat-
urally good at mask prediction rather than com-
puting PPLs for whole sentences. Later, we base
GPT2-Chinese to make further analysis.

5 Analysis and Discussion

We design three ensemble strategies to choose the
sequence with the lowest PPL as the final output,
but why does F0.5 score drop? In our work, all
single models are made up of their own PLMs,
which means ensembling them exploiting another
PLM is just like using PLMs to judge PLMs, so
the performance may benefit little. This is in line
with the work of Junczys-Dowmunt et al. (2018),
where pre-trained single models gain little and even
have worse performance after PLM-based ensem-
ble while other simple single models benefit a lot.
Besides this, are there any other reasons?

5.1 Statistical Results

In order to find out the cause of the poor per-
formance of PLM-based ensemble strategies, on
NLPCC test data, we randomly select 200 samples
from the results of all the three strategies along
with the best single model (seq2seq-1) for com-
parison, and ask two graduate students to analyze
the output sentences with a double-blind manner.
After that, a third expert arbitrates for the inconsis-
tency. Instructions for human annotators are shown
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in Appendix A.
According to human judgement, four types are

summarized. Exact (E): the output is fluent and
correct, in line with the reference. Good (G): the
output is fluent and correct but different with the
reference, which indicates that the references are
not sufficient enough. Over-corrected (O): the out-
put is fluent but doesn’t meet the original meaning
of the source sentence. Wrong (W): the output has
other problems that we don’t care in this work.

The result of human annotation is reported in
Table 2, and some examples of G and O are shown
in Table 3.

E G O W
seq2seq-1 (best single) 38 42 9 111

Sentence-level 36 53 23 88
Edit-level 32 45 20 103
Edit-combination 32 59 21 88

Table 2: Human annotation of generated outputs.

G

src: 我的家附近有很多考式补习班。
out: 我家附近有很多考试补习班。
ref: 我的家附近有很多考试补习班。

There are many cram schools near my home.

G

src: 我低幼儿童的时候很想养狗。
out: 我小时候很想养狗。
ref: 我小的时候很想养狗。

I really wanted a dog when I was young.

G

src: 可它的表情是从来没看过的。
out: 可它的表情是我从来没见过的。
ref: 可它的表情是我从来没看过的。

But it has a look I have never seen before.

O

src: 我班里有很漂亮的女同学，我一见钟情。
out: 我班里有个很漂亮的女同学，
她对我一见钟情。
There was a beautiful girl in my class.
She fell in love with me at first sight.

ref: 我班里有位很漂亮的女同学，
我对她一见钟情。
There was a beautiful girl in my class.
I fell in love with her at first sight.

Table 3: Three examples for G and one for O. Label
"src", "out" and "ref" means the source sentence, the
output of one of our PLM-based ensemble strategies
and the reference, respectively.

5.2 Discussion
The insufficiency of GEC references. In the out-
puts of PLM-based ensemble strategies, about 1/4
("G") are automatically judged to be wrong accord-
ing to the golden references, but indeed correct
after human check. Actually, if we assume class G
is also correct, the number of sentences corrected
by PLM-based ensemble strategies (except edit-

level ensemble) exceeds that by seq2seq-1, the best
single model.

This indicates that GEC references are not suf-
ficient enough, even though datasets like NLPCC
provide multi-references. Since artificially generat-
ing a correct sentence is much harder than judging
a machine-generated sequence correct or not, con-
tinuously adding human checked results of PLM-
ensemble systems to the references may be a good
solution to improve the quality and diversity of the
GEC test data.

The goal of GEC. This is a significant issue. Is it
enough to just get a sentence rid of errors? Taking
coding into example, can we say a piece of code
"good" when all the "errors" are clear but pages of
"warnings" are flashing? In "Good" samples, we
compare the human references and automatically
generated sentences, and find many of references
are only correct but not so idiomatic. On the
other hand, many output sentences of PLM-based
ensemble strategies are more natural and like native
speakers. If a GEC system is aimed at helping
overseas students with their language learning, for
example, then idiomaticity should be taken into
consideration.

The over-correction of PLM-based models.
About 1/10 of sentences generated in PLM-based
ensemble ("O") are over-corrected, i.e., the model
corrects a correct token and thus produces a wrong
sentence. PLMs always choose the most fluent
sentence with the lowest PPL, sometimes ignoring
the original meaning of the source sentence. The
over-correction of PLM-based generative models
should be addressed in future work.

6 Conclusion

This paper introduces novel ensemble strategies
for the GEC task by leveraging the power of pre-
trained language models (PLMs). We compare
different strategies of model ensemble in CGEC.
Surprisingly, PLM-based ensemble strategies do
not benefit the system. This suggests that PPL and
F0.5 have diverging goals. According to our analy-
sis, the insufficiency of references in GEC remains
a major problem, which should be continuously
improved in future work.
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Limitations

First, we don’t use any single models without
PLMs in their structures to carry out comparative
experiments, even though few advanced models
nowadays can get rid of PLMs. Second, because
of the wrapping of fairseq, we don’t have access
to all the output probabilities of the single mod-
els and thus cannot apply the strategy of using the
weighted sum of single models and PLMs used
in Junczys-Dowmunt et al. (2018). Third, while
BERT-based PLMs are good at mask prediction,
we haven’t found a strategy to make use of that
capacity without being embarrassed by conditional
probability. Fourth, we carry out our experiments
only on Chinese.

Ethics Statement

About Scientific Artifacts. Since we focus on
CGEC, all the code and tools are for the Chinese
language and all data is in Chinese. All the scien-
tific artifacts are used for GEC only. The artifacts
provided by Zhang et al. (2022) are publicly avail-
able based on the Apache-2.0 license, on which we
base our own codes and models.

About Computational Budget. We run all the
experiments of model ensemble on an Intel®

Xeon® Gold 5218 CPU. Processing times are
shown in table 4.

Strategy MuCGEC-test NLPCC-test
Traditional Voting 1~2s <1s
Sentence-level 25min 6min
Edit-level 56min 12min
Edit-combination 2.5h 25min

Table 4: Processing times of different ensemble strate-
gies.

About Reproducibility. All the experiments of
model ensemble is completely reproducible when
the PLMs are frozen (i.e., no matter how many
times we run the experiments, the results are just
the same).

About Human Annotators. Each of the annota-
tors is paid $20 per hour, above the legal minimum
wage. The instructions are shown in Appendix A.
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4. To be specific, you should choose from the
following four types. Exact (E): the output is fluent
and correct, in line with the reference. Good (G):
the output is fluent and correct but different with
the reference, which indicates that the references
are not sufficient enough. Over-corrected (O): the
output is fluent but doesn’t meet the original mean-
ing of the source sentence. Wrong (W): the output
has other problems that we don’t care in this work.

5. Thank you for your contributions!
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