
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 2: Short Papers, pages 999–1007

July 9-14, 2023 ©2023 Association for Computational Linguistics

Trading Syntax Trees for Wordpieces:
Target-oriented Opinion Words Extraction with Wordpieces and Aspect

Enhancement

Samuel Mensah
Computer Science Department

University of Sheffield, UK
s.mensah@sheffield.ac.uk

Kai Sun
BDBC and SKLSDE

Beihang University, China
sunkai@buaa.edu.cn

Nikolaos Aletras
Computer Science Department

University of Sheffield, UK
n.aletras@sheffield.ac.uk

Abstract

State-of-the-art target-oriented opinion word
extraction (TOWE) models typically use BERT-
based text encoders that operate on the word
level, along with graph convolutional networks
(GCNs) that incorporate syntactic information
extracted from syntax trees. These methods
achieve limited gains with GCNs and have dif-
ficulty using BERT wordpieces. Meanwhile,
BERT wordpieces are known to be effective
at representing rare words or words with in-
sufficient context information. To address this
issue, this work trades syntax trees for BERT
wordpieces by entirely removing the GCN com-
ponent from the methods’ architectures. To en-
hance TOWE performance, we tackle the issue
of aspect representation loss during encoding.
Instead of solely utilizing a sentence as the in-
put, we use a sentence-aspect pair. Our rela-
tively simple approach achieves state-of-the-art
results on benchmark datasets and should serve
as a strong baseline for further research.

1 Introduction

Target-oriented opinion word extraction (TOWE;
Fan et al. (2019)) is a subtask in aspect-based sen-
timent analysis (ABSA; Pontiki et al. (2014b)),
which aims to identify words that express an opin-
ion about a specific target (or aspect) in a sen-
tence. For instance, in the sentence “Such an
awesome surfboard.”, a TOWE model should iden-
tify “awesome” as the opinion word for the given
aspect surfboard. TOWE provides explicit aspect-
opinion pairs which can be used to improve re-
sults in downstream tasks such as opinion summa-
rization (Kim et al., 2011) and information extrac-
tion (Pontiki et al., 2014b; Tang et al., 2016; Sun
et al., 2023).

Currently, many TOWE methods (Veyseh et al.,
2020; Chen et al., 2020; Jiang et al., 2021; Feng
et al., 2021; Mensah et al., 2021) use pretrained
BERT (Devlin et al., 2018), to encode the input

1. Sentence: Such an awesome surfboard
Wordpieces: ‘such’, ‘an’, ‘awesome’, ‘surf’,

‘##board’
2. Sentence: A great snowboard which holds edges

well when riding on snow.
Wordpieces: ‘A’, ‘great’, ‘snow’, ‘##board’, ‘which’,

‘holds’, ‘edges’, ‘well’, ‘when’, ‘riding’,
‘on’, ‘snow’.

Table 1: Sentences demonstrating contextual under-
standing through shared wordpieces. The table shows
each sentence and its corresponding BERT wordpiece
sequence. Aspect words are bold-typed and opinion
words are italicized. The shared wordpiece ’##board’
helps in decoding the meaning of “surfboard”.

sentence. BERT has the ability to effectively cap-
ture context, which can improve TOWE perfor-
mance. However, many of these methods are rather
complex, as they often incorporate syntax tree in-
formation using a graph convolutional network
(GCN) (Kipf and Welling, 2017). For instance,
Veyseh et al. (2020) uses an ordered-neuron LSTM
(Shen et al., 2018) encoder with a GCN while Jiang
et al. (2021) applies an attention-based relational
GCN on the syntax tree. Mensah et al. (2021)
applies a BiLSTM (Hochreiter and Schmidhuber,
1997) on BERT embeddings and incoporate syntax
information via a GCN.

While incorporating syntax information through
GCNs has been shown to provide some perfor-
mance gains in TOWE, these are usually lim-
ited (Mensah et al., 2021). Moreover, modeling
subword tokens with a GCN can be challenging
because the syntax tree consists of whole words
rather than subword tokens like wordpieces (Schus-
ter and Nakajima, 2012; Devlin et al., 2018). Mod-
els based on subword tokens strike a good balance
between character- and word-based encoders. They
are able to effectively learn representations of rare
words or words with insufficient context informa-
tion. Consider the example in Table 1. The context
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information for “surfboard” is limited, making it
difficult to understand its meaning without addi-
tional context. However, both aspects share the
wordpiece “##board”, which allows the meaning
of “surfboard” to be partially understood by using
information from the context of “snowboard”. In
this case, “riding” is related to both aspects through
the shared wordpiece, enabling the representation
of “surfboard” to be improved.

In this paper, we propose a substantial simplifica-
tion for syntax-aware TOWE models (Veyseh et al.,
2020; Jiang et al., 2021; Mensah et al., 2021) by
replacing the syntax tree with subword information
while maintaining good prediction performance.
This is accomplished by removing the GCN from
these architectures and using BERT wordpieces in-
stead. Additionally, we address the issue of aspect
representation degradation during encoding. This
degradation negatively affects TOWE performance
by reducing the availability of semantic informa-
tion about the aspect for determining the opinion
words to extract. To solve this problem, we propose
using a sentence-aspect pair as input rather than just
a sentence, similar to the approach used by Tian
et al. (2021) for aspect-based sentiment classifica-
tion. Through extensive experimentation, we found
that our simple approach achieves state-of-the-art
(SOTA) results by outperforming the method pro-
posed by Mensah et al. (2021) without the need of
a GCN component.

2 Task Formalization

The TOWE task aims to identify an opinion word
in a sentence S = {w1, . . . , wns} with respect to
an aspect wa ∈ S. The sentence is typically tok-
enized into a sequence of tokens at different levels
of granularity (e.g. subwords or whole words),
T = {t1, . . . , tnt}, with ta ∈ T denoting a sub-
sequence of the aspect wa and ns ≤ nt. The goal
is to assign one of three tags (I, O, or B) to each
token using the IOB format (Ramshaw and Marcus,
1995), which indicates whether the word is at the
Inside, Outside or Beginning of the opinion word
relative to the aspect.

3 Syntax-aware Approaches to TOWE

Typically, syntax-aware approaches to TOWE (Vey-
seh et al., 2020; Jiang et al., 2021; Mensah et al.,
2021) employ a text encoder that utilizes pre-
trained BERT (Devlin et al., 2018) and position
embeddings (Zeng et al., 2014) (or category em-

beddings (Jiang et al., 2021)) to learn whole word
representations that are aware of the aspect’s loca-
tion in text. These approaches also include a GCN
that operates on a syntax tree in order to incorporate
syntactic information into the model.

Ordered-Neuron LSTM GCN (ONG): Veyseh
et al. (2020) combine an ordered neuron LSTM
(ON-LSTM; Shen et al. (2018)) and a GCN for
TOWE. The ON-LSTM layer is an LSTM variant
that considers the order of elements in the input
sequence (including BERT and position embed-
dings) when modeling dependencies between them.
The GCN encodes syntactic structural information
into the representations obtained by the ON-LSTM
layer.

BERT+BiLSTM+GCN: Mensah et al. (2021)
replaces the ON-LSTM of the ONG model with a
BiLSTM to better capture short-term dependencies
between aspect and opinion words.

Attention-based Relational GCN (ARGCN):
Jiang et al. (2021) combine contextualized embed-
ding obtained using BERT with a category em-
bedding (i.e., IOB tag embedding) to incorporate
aspect information. They subsequently use a re-
lational GCN (Schlichtkrull et al., 2018) and BiL-
STM to respectively incorporate syntactic and se-
quential information for TOWE classification.

4 Trading Syntax Trees for Wordpieces

Mensah et al. (2021) have recently demonstrated
that the use of a GCN to incorporate syntax tree
information has little impact in TOWE model per-
formance. Meanwhile, the GCN presents chal-
lenges when using subword tokens, as previously
mentioned. Therefore, we propose a simplified
version of the TOWE model that omits the GCN
component from syntax-aware approaches and in-
stead uses subword tokens as the input to the BERT
component. In this work, we use BERT’s Word-
pieces (Devlin et al., 2018) as the subword rep-
resentation because they are highly informative,
having been derived from the BERT pretraining
process. However, methods such as Byte-Pair En-
coding (BPE) (Sennrich et al., 2016) can also be
used, as we will see later in the experiments.

4.1 Formatting BERT Input

Given sentence S, the BERT wordpiece tokenizer
segments S into a sequence of wordpieces T =
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Models Granularity Lap14 Res14 Res15 Res16 Avg
ONG word 75.77 82.33 78.81 86.01 80.73
ONG w/o GCN word 74.17 84.10 78.33 84.87 80.37
ONG(S) w/o GCN wordpiece 79.79 86.63 80.72 88.30 83.86
ONG(S,A) w/o GCN wordpiece 81.70 88.70 82.55 91.18 86.03
ARGCN word 76.36 85.42 78.24 86.69 81.68
ARGCN w/o R-GCN word 76.38 84.36 78.41 84.61 80.94
ARGCN(S) w/o R-GCN wordpiece 80.08 85.92 81.36 89.72 84.27
ARGCN(S,A) w/o R-GCN wordpiece 81.37 88.18 82.49 90.82 85.72
BERT+BiLSTM+GCN word 78.82 85.74 80.54 87.35 83.11
BERT+BiLSTM word 78.25 85.60 80.41 86.94 82.80
BERT+BiLSTM(S) wordpiece 80.45 86.27 80.89 89.80 84.35
BERT+BiLSTM(S,A) wordpiece 82.59 88.60 82.37 91.25 86.20

Table 2: F1 performance of syntax-aware methods and their variants. "Avg" refers to the average F1 score calculated
across all of the datasets. “Granularity” highlights the level of granularity at which input tokens are represented.

{t1, t2, . . . , tnt}. The BERT input for S is then
formatted as follows:

T (S) = {[CLS], T, [SEP]} (1)

where [CLS] and [SEP] are special tokens that
mark the boundaries of the sentence.

While this format may be adequate for some
NLP tasks, it can be problematic for learning good
aspect representations in aspect-based sentiment
classifica- tion (Tian et al., 2021). To mitigate this
issue, we adopt the approach of Tian et al. (2021)
and reformat the BERT input by using a sentence-
aspect pair T (S,A), which combines T (S) and ta
(i.e. the aspect subsequence) along with special
tokens.

T (S,A) = {[CLS], T, [SEP], ta, [SEP]} (2)

4.2 Classification and Optimization
The input T (S,A) consists of two parts: T (S) and
ta. Since ta only serves to enhance the aspect rep-
resentation in T (S), sequence labeling is done on
T (S) only. During sequence labeling, we follow the
common approach of predicting based on the first
wordpiece representation of a word. For instance,
given the word “surfboard” that consists of the
wordpieces “surf” and “##board” which both are
learned during encoding, only the representation
of “surf” is fed to a softmax classifier to predict the
tag for the whole word. The cross-entropy function
is minimized for each word in the training set.

5 Experiments and Results

We experiment with the following baselines:
ARGCN, BERT+BiLSTM+GCN and ONG. We

use the suffixes (S) or (S,A) to indicate whether the
modified versions of these methods uses a word-
piece sentence or wordpiece sentence-aspect pair as
input, respectively. We used the publicly available
code and optimal hyperparameter settings from the
authors of ARGCN1 and BERT+BiLSTM+GCN.2

We have implemented ONG model variants our-
selves using the suggested hyperparameter configu-
rations from the authors.3 Following previous work
(Fan et al., 2019), we use the same experimental
setup and evaluate on the Laptop dataset (Lap14)
and the Restaurant datasets (Res14, Res15, Res16)
(Pontiki et al., 2014a, 2015, 2016). The result re-
ported for each dataset is the average over Micro F1
scores obtained from five different runs. Each run
uses a different random seed to ensure the stability
of our results.

5.1 F1 Performance Comparison

The results, shown in Table 2, indicate that remov-
ing the GCN component from syntax-aware ap-
proaches does not substantially impact their per-
formance, with average decreases in performance
of 0.36, 0.74, and 0.31, respectively. However,
we observed a large improvement in model per-
formance when using wordpieces, as indicated by
the models with the (S) suffix. It is possible that
BERT captures enough syntax information already
(Clark et al., 2019) and, therefore, using GCNs to
exploit syntax trees does not substantially improve

1https://github.com/samensah/encoders_
towe_emnlp2021

2https://github.com/wcwowwwww/
towe-eacl

3https://github.com/samensah/
Towe-TradeSyntax4WP
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Model Lap14 Res14 Res15 Res16 Avg
BERT-BiLSTM(S) 80.45 86.27 80.89 89.80 84.35
-Mask Aspect 80.01 86.11 80.42 88.59 83.78

Table 3: F1 performance of BERT-BiLSTM(S) with and
without aspect masking.

performance on the task. This suggests that it may
be beneficial to prioritize wordpieces over syntax
trees to allow BERT to fully utilize rare and out-of-
vocabulary words. We also discovered that using
a sentence-aspect pair as input resulted in better
performance than using only the sentence for the
models, as indicated by the results of models with
the (S,A) suffix. We believe that this may be due to
the aspect information being lost or degraded dur-
ing the encoding process for models with the (S)
suffix. Among the methods, BERT+BiLSTM(S,A)
had the highest average F1 score of 86.2.

5.2 Influence of Aspect Representation

To determine if the aspect representation
is degraded during encoding, we evaluate
BERT+BiLSTM(S) with and without aspect
masking. The results, shown in Table 3, show
that masking the aspect representation had only a
minimal impact on performance, with a decrease
in performance of 0.44 (Lap14), 0.16 (Res14),
0.47 (Res15), and 1.2 (Res16). These findings
suggest that the aspect information has limited
contribution and requires enhancement to improve
performance, as demonstrated by the improved
results of BERT+BiLSTM(S,A).

5.3 Qualitative Analysis

We examined the performance of BERT+BiLSTM,
BERT+BiLSTM(S), and BERT+BiLSTM(S,A)
on three case examples, as shown in Table 4.
The results show that the BERT+BiLSTM and
BERT+BiLSTM(S) models struggled to identify
opinion words that were farther away from the
aspect, particularly in the first and second cases
where the opinion words “beautiful” and “fresh”
were missed. Upon further investigation, we dis-
covered that these opinion words were closer to
the aspect’s co-referential term “it”. The model
struggled to determine what “it” referred to due to
degradation of the aspect representation, leading
to the missed identification of the opinion words.
However, BERT+BiLSTM(S,A) was able to re-
cover these opinion words due to its ability to
enhance the aspect representation. In the third

case example, the use of wordpieces was beneficial
as the opinion word “minimally” was not present
in the training set, but its wordpiece “##ly,” was
associated with 15 opinion words in the training
set. BERT+BiLSTM(S) and BERT+BiLSTM(S,A)
were able to identify the opinion word “minimally”
in the test set by leveraging the context of “##ly,”.

6 Impact of BPE Subword
Representations

We previously examined the use of wordpiece rep-
resentations derived from pretrained BERT for
TOWE models. In this section, we look into using
Byte Pair Encoding (BPE) (Sennrich et al., 2016)
as an alternative method for subword representa-
tion, which is inspired by data compression tech-
niques (Gage, 1994). It is worth noting that BPE
representations are generally not obtained from
pretrained BERT. However, since RoBERTa is pre-
trained using BPE, and RoBERTa is a variant of
BERT, we can still explore the impact of using BPE
representations in TOWE models. To do this, we
replace the BERT component in our best model,
BERT+BiLSTM(S,A), with RoBERTa, developing
the model RoBERTa+BiLSTM(S,A). The results
of RoBERTa+BiLSTM(S,A) and its variations are
shown in Table 5.

Note, while RoBERTa+BiLSTM(S,A) and
RoBERTa+BiLSTM(S) use BPE subword token
representations as input, RoBERTa+BiLSTM and
RoBERTa+BiLSTM+GCN operate on the word-
level. Our findings support the notion that GCNs
have a limited impact on performance, as demon-
strated by a relatively small decrease in average F1
score when comparing RoBERTa+BiLSTM+GCN
to RoBERTa+BiLSTM. On the other hand, using
BPE representations instead of GCN resulted in
a substantial improvement in model performance
of +5.27 when comparing RoBERTa+BiLSTM and
RoBERTa+BiLSTM(S). The results indicate that
syntax trees via GCNs may not be necessary and
can be replaced by subword representations such
as BPE for better performance in TOWE. Addition-
ally, the performance of RoBERTa+BiLSTM(S)
can be further improved by using BPE-based
sentence-aspect pairs, as seen by the +1.75 per-
formance gain in RoBERTa+BiLSTM(S,A).

6.1 State-of-the-art Models

Finally, we compare the performance of
BERT+BiLSTM(S,A) with recent methods,
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Sentence BERT+BiLSTM BERT+BiLSTM(S) BERT+BiLSTM(S,A)
The OS is fast and fluid, everything is orga-
nized and it’s just beautiful.

fast, fluid fast, fluid fast, fluid, beautiful

Certainly not the best sushi in new york,
however, it is always fresh, and the place is
very clean, sterile.

fresh not the best not the best, fresh

Although somewhat load, the noise was min-
imally intrusive

loud, intrusive loud, minimally in-
trusive

loud, minimally in-
trusive.

Table 4: Case Study: Evaluating the model performance on different case examples. Aspect words are bold-typed
and opinion words are italicized.

Model Lap14 Res14 Res15 Res16 Avg
RoBERTa-BiLSTM(S,A) 82.77 88.27 83.84 91.06 86.49
RoBERTa-BiLSTM(S) 81.10 86.95 82.21 88.70 84.74
RoBERTa-BiLSTM 75.87 81.38 75.94 84.70 79.47
RoBERTa-BiLSTM+GCN 77.57 82.09 77.85 85.37 80.72

Table 5: F1 Performance of RoBERTa models to inves-
tigate the use of BPE subword representations.

Model Lap14 Res14 Res15 Res16 Avg
IOG 71.35 80.02 73.25 81.69 76.58
LOTN 72.02 82.21 73.29 83.62 77.79
SDRN+BERT* 73.69 83.10 76.38 85.40 79.64
ONG 75.77 82.33 78.81 86.01 80.73
ARGCN 76.36 85.42 78.24 86.69 81.68
BERT+BiLSTM+GCN 78.82 85.74 80.54 87.35 83.11
QD-OWSE 80.35 87.23 80.71 88.14 84.11
TSMSA 82.18 86.37 81.64 89.20 84.85

BERT-BiLSTM (S,A) 82.59 88.60 82.37 91.25 86.20

Table 6: Performance of TOWE methods. Results for
the method marked “*” are from (Jiang et al., 2021).

including IOG (Fan et al., 2019), LOTN (Wu
et al., 2020), SDRN+BERT (Chen et al., 2020),
BERT+BiLSTM+GCN (Mensah et al., 2021),
QD-OWSE (Gao et al., 2021), TSMSA (Feng
et al., 2021). The results of this comparison are
shown in Table 6. Among these methods, the
recent proposed methods QD-OWSE and TSMSA,
which both use BERT as a basis for their approach,
achieved competitive results with ours. QD-OWSE
uses a generated question-answer pair as BERT
input, while TSMSA uses multi-head attention to
identify opinion words. These methods go on to
demonstrate that BERT can capture sufficient syn-
tax information for this task, even without the use
of syntax trees. However, BERT+BiLSTM(S,A)
achieved the best results, with F1 scores 82.59
(Lap14), 88.6 (Res14), 82.37 (Res15) and 91.25
(Res16), setting a new SOTA for the task.

7 Conclusion

We demonstrated that replacing GCNs with BERT
wordpieces while enhancing the aspect representa-
tion achieves SOTA results in syntax-aware TOWE
approaches. The aspect enhancement method
serves as a “prompt” for the model. We intend
to explore prompt-based learning (Brown et al.,
2020) to further improve the aspect representation.

8 Limitations

Currently, our approach does not effectively lever-
age syntax tree information via GCNs, a commonly
used method for incorporating syntax trees in this
task. Further research is required to determine the
most effective way to integrate syntax tree informa-
tion into TOWE models.
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