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Abstract
Advances in deep neural models for auto-
matic speech recognition (ASR) have yielded
dramatic improvements in ASR quality for
resource-rich languages, with English ASR
now achieving word error rates comparable
to that of human transcribers. The vast ma-
jority of the world’s languages, however, lack
the quantity of data necessary to approach this
level of accuracy. In this paper we use four of
the most popular ASR toolkits to train ASR
models for eleven languages with limited ASR
training resources: eleven widely spoken lan-
guages of Africa, Asia, and South America,
one endangered language of Central America,
and three critically endangered languages of
North America. We find that no single architec-
ture consistently outperforms any other. These
differences in performance so far do not ap-
pear to be related to any particular feature of
the datasets or characteristics of the languages.
These findings have important implications for
future research in ASR for under-resourced lan-
guages. ASR systems for languages with abun-
dant existing media and available speakers may
derive the most benefit simply by collecting
large amounts of additional acoustic and tex-
tual training data. Communities using ASR to
support endangered language documentation
efforts, who cannot easily collect more data,
might instead focus on exploring multiple ar-
chitectures and hyperparameterizations to op-
timize performance within the constraints of
their available data and resources.

1 Introduction

The majority of significant academic and industry
research on automatic speech recognition (ASR)
(Povey et al., 2011; Hinton et al., 2012; Amodei
et al., 2016; Watanabe et al., 2018; Baevski et al.,
2020) has been evaluated on a small set of English
language datasets (Panayotov et al., 2015; Godfrey
et al., 1992). Word error rates (WER) for English
ASR now approach those of human transcription-
ists (Baevski et al., 2020; Radford et al., 2022), and

speakers of English can now reliably use ASR for
text entry when using mobile devices. This level of
accuracy, however, is attainable only for the hand-
ful of the world’s 7000 languages that, like English,
have abundant training resources.

Most of the world’s languages, even ones spo-
ken by tens of millions of speakers, currently lack
datasets prepared specifically for training ASR
models. The datasets that do exist are typically
much smaller than English ASR datasets that have
been available for decades, with no more than a
few dozen hours of acoustic training data. As the
Common Voice project (Ardila et al., 2020) has
shown, collecting large amounts of data for widely
spoken languages is possible, but using this kind of
platform is likely to be impractical for the roughly
40% of the world’s languages that are endangered
(Eberhard et al., 2022). A similar percentage of lan-
guages – again, even many that are widely spoken –
lack an established writing system, which presents
other obstacles to building large ASR corpora.

Fortunately, existing methods for training ac-
curate ASR models for English and other high-
resource languages can be adapted to low-resource
settings. Some toolkits include recipes for smaller
datasets that require the training of fewer parame-
ters. Other approaches rely on fine-tuning acoustic
models pre-trained on massive multilingual speech
datasets. Most recent work using these approaches,
however, does not compare the performance of
multiple competitive architectures across multiple
diverse small ASR datasets. Thus, while we have
access to transformative technology that can be har-
nessed to build reasonable models for languages
with limited resources, we do not know which of
the popular architectures is “better” or whether fea-
tures of a particular dataset or language might make
one architecture more suitable than another.

In this paper we explore four different popular
ASR architectures, three of which are currently
considered state of the art, that can be used even in
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Language HH:MM # Speakers # LM tokens Audio quality Audio source

Bemba
train
test

17:17
02:00

8
2

96K variable read speech

Wolof
train
test

16:49
00:55

14
2

600K high read speech

Swahili
train
test

10:00
01:45

N/A
N/A

3M variable
read speech and
broadcast news

Seneca
train
test

09:57
02:04

11
11

76K variable fieldwork

Fongbe
train
test

07:35
01:45

25
4

990K high read speech

Iban
train
test

07:00
01:00

17
6

200K high broadcast news

Hupa
train
test

06:06
01:31

1
1

41K variable fieldwork

Oneida
train
test

03:23
00:51

7
4

18K variable fieldwork

Quechua
train
test

03:00
00:45

N/A
N/A

8.1K variable conversations

Bribri
train
test

00:29
00:11

N/A
N/A

4K variable fieldwork

Guarani
train
test

00:19
00:07

N/A
N/A

1.2K variable read speech

Table 1: Characteristics of the eleven datasets. The datasets for Bemba, Fongbe, Wolof, and Iban were partitioned by
holding one or more speakers out to serve as test data. Information about the exact number of speakers for Swahili,
Quechua, Bribri, and Guarani, and about whether any speaker is represented in both the test set and training set was
not explicitly provided in the dataset or the accompanying paper. Train/test partitioning for the Hupa, Seneca, and
Oneida datasets was done randomly; some or all speakers are represented in both the training and test sets. We note
that for some of these datasets, very long and very short utterances had to be removed due to the training constraints
of one or more of the ASR architectures. For this reason, the audio times and token counts reported here may differ
from those reported in the associated papers or those that would be derived directly from the unfiltered data.

low-resource settings: a hybrid DNN (Veselỳ et al.,
2013); two approaches for fine-tuning from a multi-
lingual pre-trained acoustic model (Conneau et al.,
2020; Radford et al., 2022); and an end-to-end ap-
proach designed specifically for small datasets (Shi
et al., 2021). We train models for eleven datasets
for under-resourced languages, which are diverse
in their linguistic properties, mechanisms for col-
lection, relative sizes, and recording quality.

We find that no single approach to training ASR
models in low-resource settings consistently out-
performs any other, with the most outdated method
turning out to be the most accurate surprisingly
often. While unsatisfying in some ways, these re-
sults can help guide ASR researchers and language
community members to select the architecture that
is most compatible with their objectives and that
can be feasibly supported with their available finan-
cial and personnel resources. For widely spoken

languages, where the goal of developing an ASR
system is likely to be to support a voice-based app
or a personal digital assistant, the best use of finan-
cial resources might be to collect large amounts of
additional data in order to take advantage of state-
of-the-art high-resource architectures. Linguists
and members of endangered language communi-
ties hoping to use ASR to document and preserve
their language cannot easily gather more data, and
thus might see more benefit from carefully experi-
menting with multiple architectures to identify the
approach that provides the best results for their
particular language or existing dataset.

2 Related Work

Although most of the notable advances in ASR
have focused on English and a few other languages
with abundant data, there has been substantial inter-
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Language
Name

Language
Family

Language
Status

Morphological
Properties

Tonal
(Y/N)

Number
of Phones

Bemba Niger-Congo education (4) agglutinative Y 27

Wolof Niger-Congo
wider
communication (3)

agglutinative N 41

Swahili Niger-Congo national (1) agglutinative N 37
Seneca Iroquoian endangered (8a) polysynthetic N 23

Fongbe Niger-Congo
wider
communication (3)

isolating Y 33

Iban Austronesian
wider
communication (3)

agglutinative N 25

Hupa Eyak-Athabaskan endangered (8b) polysynthetic N 44
Oneida Iroquoian endangered (8a) polysynthetic N 17

Quechua Quechuan
wider
communication (3)

agglutinative N 33

Bribri Chibchan endangered (6b) agglutinative Y 32
Guarani Tupian national (1) polysynthetic N 31

Table 2: Linguistic properties of the eleven languages explored here. Language status is the EGIDS reported in
Ethnologue (Eberhard et al., 2022). Phone counts are taken from Ethnologue, Glottolog (Hammarström et al.,
2022), or the paper reporting the dataset. All eleven languages are written primarily using the Roman alphabet with
diacritics to indicate features such as nasality, vowel length, and tone.

est in ASR for languages with minimal training re-
sources for quite some time (Besacier et al., 2014).
Much of the work from the 2010s focused on the
languages of the IARPA Babel project (Thomas
et al., 2013; Miao et al., 2013; Cui et al., 2014;
Grézl et al., 2014). Research initiated with the Ba-
bel datasets on methods of transfer learning and
data augmentation in low-resource settings has con-
tinued apace (Khare et al., 2021; Vanderreydt et al.,
2022; Guillaume et al., 2022b). With the success of
the Kaldi toolkit, researchers began to collect and
freely distribute their own Kaldi-ready datasets for
under-resourced and endangered languages, sev-
eral of which are explored in this paper (Gauthier
et al., 2016; Laleye et al., 2016; Gelas et al., 2012;
Juan et al., 2015; Pulugundla et al., 2018). More
recent work has explored training monolingual end-
to-end models with substantially larger datasets
than those used here (Shi et al., 2021), as well as
transfer learning and fine-tuning from pretrained
multilingual (Guillaume et al., 2022a; Sikasote and
Anastasopoulos, 2022) or English models (Thai
et al., 2020).

3 Datasets

Five of the datasets explored here are freely avail-
able datasets built by researchers, sometimes in col-
laboration with speech communities, specifically

for training ASR models for widely spoken but
under-resourced languages of the global South: Be-
mba (Sikasote and Anastasopoulos, 2022), Fongbe
(Laleye et al., 2016), Wolof (Gauthier et al., 2016),
Swahili (Gelas et al., 2012), and Iban (Juan et al.,
2014, 2015). Three datasets (Quechua, Bribri,
Guarani) were created from existing recordings for
the 2022 AmericasNLP Workshop Shared Task 1.
The remaining datasets for three endangered lan-
guages of North America (Hupa, Oneida, and
Seneca) were created using existing linguistic and
community fieldwork recordings available to the
authors through the affiliation of one of the authors
with one of these communities and the generosity
of the community elders.

While nearly any recorded speech can be tran-
scribed and used to train an ASR system, a com-
mon approach for building a new ASR dataset is
to ask speakers of the language to read aloud pro-
vided texts, which obviates the laborious task of
transcription. With this strategy, speakers are often
recorded in a studio or similarly controlled environ-
ment, resulting in more consistent recording quality.
Alternatively, datasets can be created from existing
audio data such as radio broadcasts or linguistic
fieldwork recordings. Such recordings are often
already transcribed but need to be segmented and

1http://turing.iimas.unam.mx/americasnlp/2022_st.html
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time-aligned with the transcripts, which must often
be done by hand. Table 1 provides details about
these sorts of characteristics of the datasets, as well
as information about the quantity of the training
data for the acoustic and language models.

Information about the linguistic characteristics
of the eleven languages is provided in Table 2.
Seven of these languages are widely spoken by
millions of people, and some have institutional or
government recognition; one is endangered with
around 7,000 speakers; and three are critically en-
dangered with very few (perhaps only one, in the
case of Hupa) first-language speakers and no more
than a hundred second language learners. A diverse
set of morphological, phonological, and phonetic
features and properties are represented among these
languages, and we note that they are all quite dif-
ferent typologically from most high-resource lan-
guages, including not only English and Chinese but
also the major European languages.

4 ASR Architectures

The goal of this work is to explore whether any
one of several popular and state-of-the-art ASR
architectures is especially well suited for building
models with small amounts of training data. We
train models on the the eleven datasets described
in Section 3 using four different architectures:

• A hybrid DNN (Veselỳ et al., 2013) imple-
mented within the Kaldi toolkit (Povey et al.,
2011), following Karel’s DNN recipe2 which
uses a variety of feature optimizations includ-
ing RMB pretraining, frame cross-entropy
training, and MBR sequence-discriminative
training. Decoding was performed with a tri-
gram language model.

• A transducer-based end-to-end model for
small datasets within ESPnet2 (Watanabe
et al., 2018), following the recipe for Yoloxo-
chitl Mixtec (Shi et al., 2021).

• Fine-tuning from a multilingual acoustic
model using Wav2Vec2 XLSR-53 (Conneau
et al., 2020), decoding both with and without
a trigram language model and using the pa-
rameterizations specified in the Hugging Face
Wav2Vec XLSR-53 tutorial.3

2https://kaldi-asr.org/doc/dnn1.html
3https://huggingface.co/blog/fine-tune-xlsr-wav2vec2

• Fine-tuning from the medium multilingual
acoustic model with Whisper (Radford et al.,
2022), using the parameterizations specified
in the Hugging Face Whisper tutorial.4

Training and testing were carried out on a univer-
sity high-performance computing cluster. Training
times ranged between 2 and 24 hours depending
on the architecture and dataset.

5 Results

Figure 1 shows the word error rates (WER) for
four of the five approaches (Kaldi DNN, Wav2Vec
XLSR with and without a language model (LM),
and Whisper) when trained and tested on each of
the eleven datasets. Note that prior baselines re-
ported in the papers associated with the datasets
for Wolof, Swahili, Fongbe, Hupa, and Iban, us-
ing non-s.o.t.a. architectures, and Bemba, using a
slightly different configuration of Wav2Vec XLSR,
are lower than the best reported architecture here.
No prior WER results have been reported for the
Oneida, Quechua, Bribri, and Guarani datasets.

We observe a large variation in WER across lan-
guages, which should not be surprising given the
great variability in the quantity of training data,
the type and audio quality of data collected, and
the linguistic features of these languages. Datasets
of less than 3 hours had consistently high WERs,
but across the other datasets, there does not appear
to be a clear relationship between amount of au-
dio training data and WER. Though not shown in
Figure 1, ESPnet yielded the worst performance
by far for all languages, with only Wolof, the sec-
ond largest dataset, achieving a WER below 65%.
Again, this is not surprising given that this ESPnet
recipe (Shi et al., 2021) was proposed for a much
larger 60-hour indigenous language dataset.

More interestingly, we see no consistent rank-
ing of the remaining four approaches across the
eleven datasets. Using an LM during decoding with
Wav2Vec XLSR always yields some improvement
in WER over not using an LM, but the differences
are often quite small. Notably, Swahili, which has
the largest LM, sees only a tiny reduction in WER
when that LM is used during decoding. The Kaldi
hybrid DNN, despite being outdated, outperforms
more than one of its state of the art rivals for Seneca,
Fongbe, Iban, and Quechua. Whisper is dramati-
cally better than other models for Wolof and Hupa,

4https://huggingface.co/blog/fine-tune-whisper
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Figure 1: Word error rates (WER) for each dataset under each architecture. A lower WER indicates fewer errors
and higher accuracy. There is no clear winner among the other models, with even the Kaldi hybrid DNN often
outperforming more recent state of the art fine-tuning approaches. Where WER has been previously reported, one
or all of these models outperform the reported baselines in the published papers for these datasets.

but substantially worse for Fongbe and Quechua.
Though closely related and typologically similar,
Seneca and Oneida show very different patterns, as
do Fongbe and Wolof, two related languages with
datasets recorded under similar conditions. The
WER for Swahili is relatively stable across archi-
tectures, while WER is quite variable for Wolof,
Hupa, Fongbe, and Oneida.

The rankings do not appear to be related to the
method of speech collection (read vs. spontaneous)
or the consistency of audio quality. In addition,
whether or not a language is tonal, like Bemba,
Fongbe, and Bribri, does not appear to predict the
relative rankings of the four architectures.

We do note, however, two potential patterns,
which merit further investigation with a larger set
of languages. First, Fongbe, the only language
of the eleven with isolating morphology (i.e., lim-
ited affixation) is one of only two languages where
Whisper yielded the highest WER of the four sys-
tems. Second, the three languages with the largest
phonesets, Wolof, Swahili, and Hupa, yielded the
same relative ranking, with Whisper performing
the best and Kaldi the worst. Although there is cer-
tainly not enough information here to draw conclu-
sions, it is plausible that the design of a particular
training architecture or the content of the pretrained
models could render a system more appropriate for
a language with a particular linguistic property.

6 Conclusions

Under-resourced language communities, whether
large or small, need to know how to invest their lim-

ited resources when developing an ASR system for
their language. Our findings suggest, unfortunately,
that there are no obvious or simple guidelines to
follow. Our future work will expand the set of
languages explored here in order to establish con-
nections between expected model performance and
linguistic features and dataset characteristics. We
also plan to explore the impact of language model
size and domain on ASR accuracy and the relation-
ship between language model and morphology.

Limitations

One limitation of this work is that we have included
results for only eleven languages. Training ASR
models, even on small datasets, requires significant
computing and financial resources. Second, there
are not that many freely available and well prepared
ASR datasets that are readily compatible with all
four ASR architectures. We sought to select a di-
verse set of languages and datasets with varying
features in order to provide, we hope, a reasonable
snapshot of how the state of the art performs in
low-resource settings.

Ethics Statement

The Hupa, Oneida, and Seneca datasets were
recorded with the approval of participating uni-
versities’ IRBs and with the enthusiastic coopera-
tion of the elders and other linguistic consultants.
The datasets for the remaining languages were
downloaded from public Web pages. The Bribri
dataset, like those of other endangered languages,
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was created using linguistic fieldwork recordings.
Of the others, some were collected by recruiting
participants to read text (Wolof, Fongbe, Bemba,
Guarani); others consist of transcribed radio and
television broadcasts (Iban, Quechua); and the
Swahili dataset includes both types of data. While
the participants who provided recordings by read-
ing text presumably gave consent for their voices
to be used for ASR research, it is unlikely that
speakers recorded in the course of a radio or televi-
sion broadcast provided consent explicitly for their
voices to be used in an ASR dataset. We expect,
however, given that members of the speech commu-
nity participated in these data collection projects,
that ethical concerns were carefully considered.
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Burget, and Jan Cernockỳ. 2018. BUT System for
Low Resource Indian Language ASR. In The Annual
Conference of the International Speech Communica-
tion Association (Interspeech), pages 3182–3186.

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brock-
man, Christine McLeavey, and Ilya Sutskever. 2022.
Robust speech recognition via large-scale weak su-
pervision. arXiv preprint arXiv:2212.04356.

Jiatong Shi, Jonathan D. Amith, Rey Castillo García,
Esteban Guadalupe Sierra, Kevin Duh, and Shinji
Watanabe. 2021. Leveraging end-to-end ASR for
endangered language documentation: An empirical
study on yolóxochitl Mixtec. In Proceedings of the
16th Conference of the European Chapter of the Asso-
ciation for Computational Linguistics: Main Volume,
pages 1134–1145, Online. Association for Computa-
tional Linguistics.

Claytone Sikasote and Antonios Anastasopoulos. 2022.
BembaSpeech: A speech recognition corpus for the
Bemba language. In Proceedings of the Thirteenth
Language Resources and Evaluation Conference,
pages 7277–7283, Marseille, France. European Lan-
guage Resources Association.

Bao Thai, Robert Jimerson, Raymond Ptucha, and
Emily Prud’hommeaux. 2020. Fully convolutional
asr for less-resourced endangered languages. In Pro-
ceedings of the 1st Joint Workshop on Spoken Lan-
guage Technologies for Under-resourced languages
(SLTU) and Collaboration and Computing for Under-
Resourced Languages (CCURL), pages 126–130.

Samuel Thomas, Michael L Seltzer, Kenneth Church,
and Hynek Hermansky. 2013. Deep neural network
features and semi-supervised training for low re-
source speech recognition. In Acoustics, Speech
and Signal Processing (ICASSP), 2013 IEEE Inter-
national Conference on, pages 6704–6708. IEEE.

Geoffroy Vanderreydt, François REMY, and Kris De-
muynck. 2022. Transfer Learning from Multi-
Lingual Speech Translation Benefits Low-Resource
Speech Recognition. In Proc. Interspeech 2022,
pages 3053–3057.
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