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Abstract

One noticeable trend in metaphor detection is
the embrace of linguistic theories such as the
metaphor identification procedure (MIP) for
model architecture design. While MIP clearly
defines that the metaphoricity of a lexical unit
is determined based on the contrast between its
contextual meaning and its basic meaning, ex-
isting work does not strictly follow this princi-
ple, typically using the aggregated meaning to
approximate the basic meaning of target words.
In this paper, we propose a novel metaphor de-
tection method, which models the basic mean-
ing of the word based on literal annotation from
the training set, and then compares this with
the contextual meaning in a target sentence
to identify metaphors. Empirical results show
that our method outperforms the state-of-the-
art method significantly by 1.0% in F1 score.
Moreover, our performance even reaches the
theoretical upper bound on the VUA18 bench-
mark for targets with basic annotations, which
demonstrates the importance of modelling ba-
sic meanings for metaphor detection.

1 Introduction

Metaphors are widely used in daily life for effective
communication and vivid description. Due to their
unusual and creative usage, further processes are
required for machines to understand metaphors,
which results in Computational Metaphor Pro-
cessing (CMP), an active research direction in
NLP (Rai and Chakraverty, 2020). Recent stud-
ies demonstrate that CMP can benefit a wide range
of NLP tasks including creative language gener-
ation (Chakrabarty et al., 2020; Li et al., 2022b),
sentiment analysis (Li et al., 2022a), and machine
translation (Mao et al., 2018). Metaphor identifica-
tion, aiming to detect words used metaphorically,
is the very first stage in CMP. For example, target
words ‘attack’ or ‘defend’ in the context sentence
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“He attacks/defends her point.” do not literally in-
volve physical engagement, so they are supposed
to be identified in metaphor detection for further
process (Steen et al., 2010).

Linguists, philosophers and psychologists pro-
pose various ways to define metaphors, including
substitution view (Winner, 1997), comparison view
(Gentner, 1983), class inclusion view (Davidson,
1978), and conceptual metaphor theory (Lakoff
and Johnson, 2008). In contrast to these theories
which are relatively complex in nature, Pragglejaz
(2007) propose a simple and effective linguistic the-
ory called Metaphor Identification Process (MIP)
which can identify metaphors in unrestricted tex-
tual corpora. MIP gains increasing popularity as
it detects metaphorical terms regardless of specific
conceptual mapping or comparison among source
and target domain, which makes the identification
operational and straightforward.

According to MIP, a word is tagged as a
metaphor if its contextual meaning contrast with its
“more basic meaning”. The basic meaning here is
defined as “more concrete; related to bodily action;
more precise (as opposed to vague); historically
older” guided by dictionaries1. For example, in the
sentence “This project is such a headache!”, the
target headache here is metaphorical since its con-
textual meaning is “a thing or person that causes
worry or trouble; a problem”, which contrasts with
the more basic meaning “a continuous pain in the
head”2.

Existing deep learning methods for metaphor
identification usually depend on MIP in their model
design (Mao et al., 2019; Choi et al., 2021; Song
et al., 2021; Li et al., 2023; Wang et al., 2023).
However, existing works usually ignore basic mean-
ing modelling and instead use aggregated meaning
to contrast with contextual meaning in MIP. We

1MIP defines basic meanings based on Macmillan and
Longman Dictionary

2ldoceonline.com/dictionary/headache

91

ldoceonline.com/dictionary/headache


Figure 1: Comparison of the AMIP implementation in (Mao et al., 2019; Choi et al., 2021) and our BasicMIP.

call the MIP in these implementations ‘Aggregated
MIP’ (AMIP). For example, Mao et al. (2019) and
Li et al. (2023) implement MIP by contrasting con-
textual meaning representation with GloVe embed-
ding and Decontextualised3 RoBERTa embedding,
respectively. However, aggregated meaning rep-
resentations, such as GloVe and decontextualised
embeddings, are not the same as basic meanings
in general. They usually represent a frequency-
based weighted average of multiple word mean-
ings. In cases where the basic meaning is the most
frequent, then the aggregated meaning can be a rea-
sonable approximation to basic meaning. However,
it is very common that metaphorical meanings are
more frequent so that using aggregated meaning
violates the fundamental rule of MIP. For exam-
ple ‘back’ means ‘the rear surface of the human
body’ as basic meaning, but its non-basic senses,
e.g. ‘going back’, ‘back up’, ‘back in 1960’, are
more frequently used in corpora. This makes the
aggregated representation of back diverge from its
basic sense, so that metaphor cannot be identified
via measuring contrast with contextual meaning.

A further pitfall of previous works is that the
aggregated representations used are static rather
than contextualised. For example, aggregated rep-
resentation GloVe and Decontextualised RoBERTa
embeddings used by Mao et al. (2019) and Li et al.
(2023) are both static embedding, which are not
compatible with the contextual meaning they com-
pared to and has been shown to have worse repre-
sentational quality (Bommasani et al., 2020).

In this paper, we propose a novel metaphor iden-
tification mechanism, BasicMIP, which implements
MIP via direct basic meaning modelling of targets.
BasicMIP explicitly leverages basic annotations
from training set, where basic meaning of words
are labeled as literal according to MIP theory.
First, it samples literal instances for each tar-

3which means feed the single word to pretrained language
model and use the outputted vector as the representation.

get. Then, the basic meaning representation of
target is obtained by summing up the target embed-
dings of sampled literal instances. Finally, the
basic representations are contrasted with their con-
textual meaning representation in target sentences
to identify metaphors. We also present our novel
metaphor detection model, BasicBERT, which not
only uses BasicMIP but also inherits the AMIP
module and SPV (Selectional Preference Violation
Wilks, 1975, 1978) theory from prior works.

Extensive experiments conducted on two
metaphor benchmarks show that BasicBERT sig-
nificantly outperforms current SOTAs. In the
VUA20 benchmark, our model exceeds MelBERT
by 1% in F1 score. In the VUA18 bench-
mark, our performance even reaches the theoret-
ical upper bound for the targets with literal
annotations in the training set. Our code and
data can be found at https://github.com/
liyucheng09/BasicBERT.

2 Method

BasicBERT model consists of three main compo-
nents: BasicMIP, AMIP, and SPV. We include both
AMIP and BasicMIP as some words do not have
literal annotations in training set, so AMIP is an
useful augmented component for these cases.

2.1 BasicMIP

BasicMIP, as shown in Figure 1, is based on MIP,
in which a target word’s contextualised meaning in
the current context is compared with its more basic
meaning. First, the contextual meaning representa-
tion is produced by feeding the current sentence to
the RoBERTa network (Liu et al., 2019). Formally,
given a sentence S = (w1, ..., wt, ..., wn), where
wt is the target word, we obtain representations as
follows:

H = RoBERTa(embcls, ..., embt, ..., embn)
(1)
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Here CLS is a special token indicating the start of
an input; embi is the input embedding for word wi;
and H = (hcls, ..., ht, ..., hn) represents the output
hidden states. We denote the contextual meaning
embedding of wt as vS,t = ht .

Second, to contrast the contextual meaning with
the basic meaning, our model learns the basic mean-
ing representation of the target from the training
annotations. According to MIP (Steen et al., 2010),
we consider targets with literal label to repre-
sent their basic meaning. Therefore, we sample
literal examples of the target wt from the train-
ing set denoted as Sb = (..., wt, ...) ∈ U , where U
is training set and Sb stands for the context sentence
containing a basic usage of wt. Our model obtains
the basic meaning embedding of wt by feeding Sb

to a RoBERTa encoder similar to Equation 1 and
get the t-th output hidden state ht. The final con-
textualised basic representation of wt is averaged
among multiple literal instances, and is formulated
as vB,t, which is intrinsically different to the aggre-
gated representation of frequent meaning used in
prior works.

At last, we compute a hidden vector hBMIP for-
BasicMIP, by concatenating vS,t and vB,t.

hBMIP = f0([vS,t, vB,t]) (2)

where f0(·) denotes a linear layer to learn semantic
difference between vS,t and vB,t.

2.2 AMIP and SPV

The AMIP implementation of MIP theory is in-
herited by our model, where contextual meaning
and aggregated meaning of the target are compared.
Here the contextual target meaning embedding of
wt is vS,t, the same as in Equation 2. Then, we feed
the single target word wt to the RoBERTa network
to derive the decontextualised vector representing
the aggregated meanings of wt (Choi et al., 2021):
vF,t = RoBERTa(embt).

The SPV theory is also employed which mea-
sures the incongruity between the contextual mean-
ing of the target and its context. Similarly, the
contextual target meaning embedding is vS,t, and
the context sentence meaning is produced by the
CLS embedding denoted as vS , where vS = hcls.

Finally, we compute AMIP (hAMIP) from the
contextual and aggregated target embedding, and
SPV (hSPV) from the contextual target meaning

embedding and the sentence embedding.

hSPV = f1([vS , vS,t]) (3)

hAMIP = f2([vS,t, vF,t]) (4)

where f1(·) and f2(·) denote a linear layer to learn
the contrast between two features.

2.3 Prediction
Finally, we combine three hidden vectors hAMIP,
hSPV and hBMIP to compute a prediction score ŷ,
and use binary cross entropy loss to train the overall
framework for metaphor prediction.

ŷ = σ(W⊤[hBMIP;hAMIP;hSPV] + b) (5)

L = −
N∑

i=1

[yi log ŷi + (1− yi) log(1− ŷi)] (6)

3 Experiments

Dataset. We conduct experiments on two public
bench datasets: VUA18 (Leong et al., 2018) and
VUA20 (Leong et al., 2020), which are the most
popular metaphor detection benchmarks, released
in the figurative language workshops of ACL in
2018 and 2020. VUA20 is an extended version of
VUA18 which contains more annotations.
Baselines. RNN_ELMo (Gao et al., 2018) com-
bined ELMo and BiLSTM as a backbone model.
RNN_MHCA (Mao et al., 2019) introduced MIP
and SPV into RNN_ELMo and capture the con-
textual feature within window size by multi-head
attention. RoBERTa_SEQ (Leong et al., 2020)
is a fine-tuned RoBERTa model in the sequence
labeling setting for metaphor detection. MelBERT
(Choi et al., 2021) realize MIP and SPV theories
via a RoBERTa based model. MrBERT (Song
et al., 2021) is the SOTA on verb metaphor detec-
tion based on BERT with verb relation encoded.
FrameBERT (Li et al., 2023) uses frame classes
from FrameNet in metaphor detection and achieves
SOTA performance on both VUA18 and VUA20.
Implementation details. For target words which
have no literal annotations in the training set,
we return the decontextualised target representa-
tion as the basic meaning vector in the BasicMIP
module. Therefore, the BasicMIP, in this situation,
will degenerate to the AMIP implementation.

4 Results and Analysis

Overall results. Table 1 shows a comparison of
the performance of our model against the baseline
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Models
VUA18 VUA20

Prec Rec F1 Prec Rec F1

RNN_ELMo 71.6 73.6 72.6 - - -
RNN_MHCA 73.0 75.7 74.3 - - -
RoBERTa_SEQ 80.1 74.4 77.1 75.1 67.1 70.9
MrBERT 82.7 72.5 77.2 - - -
MelBERT 80.1 76.9 78.5 75.9 69.0 72.3
FrameBERT 82.7 75.3 78.8 79.1 67.7 73.0

BasicBERT 79.5 78.5 79.0* 73.3 73.2 73.3*
w/o BasicMIP 81.7 75.1 78.3 74.8 69.8 72.2

Table 1: Performance comparison on VUA datasets
(best results in bold). NB: * denotes our model out-
performs the competing model with p < 0.05 for a
two-tailed t-test.

Models Annotation #sample #target F1 Acc

V
U

A
20 w/ BMIP

has literal 18060 4076 74.7 91.2
no literal 4136 2539 68.2 86.9

w/o BMIP
has literal 18060 4076 73.3 91.0
no literal 4136 2539 68.2 87.6

V
U

A
18 w/ BMIP

has literal 38825 3874 81.1 94.7
no literal 5122 2915 67.3 87.4

w/o BMIP
has literal 38825 3874 80.7 94.8
no literal 5122 2915 66.5 88.0

Table 2: Breakdown results of BasicMIP. has literal in-
dicates targets have literal annotations in the train-
ing set, and no literal indicates they have not.

models on VUA18 and VUA20. BasicBERT out-
performs all baselines on both VUA18 and VUA20,
including the SOTA model MelBERT by 0.5% and
1.0% in F1 score, respectively. A two-tailed t-test
was conducted based on 10 paired results (with
different random seeds) between BasicBERT and
the strongest baseline MelBERT on both VUA18
(p = 0.022) and VUA20 (p = 0.006).
Ablation test. We also perform an ablation exper-
iment to test the benefit of the basic modelling. As
shown in Table 1, the performance of BasicBERT
drops substantially when removing basic meaning
modelling (w/o BasicMIP) by 0.7% on VUA18 and
1.1% on VUA20, respectively.

Target with and without basic annotation Some
target words in the test set might not have
literal annotations in the training set. To bet-
ter understand the mechanism of basic meaning

Modules Metaphor Literal

Contextual vs. Frequent 0.516 0.642
Contextual vs. Basic -0.082 0.809

Table 3: Contrast of features within AMIP and Ba-
sicMIP. The experiment is conducted on VUA20.

modelling, we test the performance of BasicBERT
on targets has and has not basic meaning anno-
tations in the training data. As shown in Table
2, there are 13% of samples in the VUA18 test
set for which we cannot find a corresponding ba-
sic meaning annotation from training set. This
number increases to 22% for VUA20. We find Ba-
sicBERT gains significant improvement on targets
with literal annotations from VUA20 via basic
meaning modelling by 1.4% in F1 score. For these
targets with literal annotations in the VUA18
benchmark, BasicBERT gives 81.1% in F1 score,
which reaches the theoretical upper bound since the
Inter-annotator agreement (IAA) value of VUA18
is around 0.8 (Leong et al., 2018) (which means
further improvement might lead to overfitting).

Contrast measuring. To better compare our
BasicMIP with AMIP, we conduct an experiment
to directly measure the contrast between features
within BasicMIP and AMIP, i.e., the contrast be-
tween the contextual and the basic meaning for
BasicMIP, and the contrast between the contextual
and the most frequent meaning for AMIP. Intu-
itively, we expect the contrast to be obvious for
metaphor cases and to be slight for literal cases.
Cosine distance is used to compute the contrast
between two features. The contrast will fall into
(−1, 1), smaller numbers meaning more contrast-
ing, larger numbers meaning less contrasting.

The results (see Table 3) show that the contrast
of BasicMIP features is much more obvious for
metaphorical samples, and there is less contrast for
literal samples compared with AMIP. Moreover,
AMIP only shows a minor gap of 0.13 contrast
between metaphor and literal cases. However, a
significant gap of 0.89 is captured by BasicMIP
between metaphor and literal cases, which demon-
strates that BasicMIP learns the difference between
metaphorical and literal expressions well. In sum-
mary, the results show the effectiveness of basic
meaning modelling in metaphor detection.

Case study. We perform an exploratory analysis
on metaphors where BasicMIP succeeds to detect
but fails without it. Prior methods might find very
simple targets difficult to classify, such as see, back,
hot. This is mainly because their metaphorical
meanings are more frequent than their basic mean-
ings, which leads the aggregated representations
dominate by metaphorical semantics. For example,
see means look basically. But, I see why you are an-
gry and this place has seen the war are even more
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frequent in language corpus. Therefore, the con-
trast with contextual meaning tends not to indicate
metaphors anymore. On the contrary, basic mean-
ing modelling learns their basic representation by
focusing literal annotations directly, which enables
BasicMIP to tackle them with high accuracy (see
Appendix A for examples).

5 Conclusion

We proposed BasicBERT, a simple but effective
approach for metaphor detection. The key feature
of our method is the basic meaning modelling for
metaphors from training annotations. Extensive
experiments show that our model achieves best re-
sults on two benchmarks against SOTA baselines
and also reaches the theoretical upper bound for
instances with basic annotation. We believe our ap-
proach can be extended to other creative language
with minor updates. In future, we will try apply
our approach to identify other types of creative
language, such as humour and sarcasm.

6 Limitations

This paper mainly focuses on modelling basic
meaning to identify metaphors, typically learning
basic meanings from literal annotations of the VUA
dataset. However, our analysis reveals that the lit-
eral annotations of the VUA dataset are incomplete,
which means that some words in VUA have no lit-
eral instances annotated. Although we propose
using contextual word embeddings as a backup in
this paper, another promising solution for this issue
might be using external resources such as dictionar-
ies. Leveraging dictionaries is commonly used to
assist manual metaphor detection, so it could also
help our BasicMIP mechanism to generalise. We
leave this for future work.
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A Examples of targets get and back

Table 4 shows cases where previous methods fails
but ours successes. Corresponding sentences with
basic usage of target from training set are also in-
cluded. We also show word senses illustration in
Figure 2 and Figure 3. The figure is drawn via
RoBERTa embedding and PCA techniques. We
can see the most frequent meaning of back is ‘for-
mer location’ and ‘travel backward’ instead of the
basic meaning ‘human body’. And the meanings
of get are almost equally frequent.
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Figure 2: Senses of back from word sense disambiguation dataset Semcor.

Figure 3: Senses of get from word sense disambiguation dataset Semcor.

97



Target Cases Basic Examples

get
we will , i ’m just saying we do wan na get into
cocktail

where do you get your carrots from ?

they ’re watching neighbours come on , get up you
lazy bugger !

and you ’ll get a separate room

oh we did n’t get much further on there , what we
started with this morning.

i ’m gon na get some cleaning , i ’ll get some cleaning
fluid this week .

back
why ca n’t they take it through the back door and up
the stair ?

within 10 minutes i had turned my back on the cor-
duroy battalions of trees and was striding under a
still.

they are unlikely to find a place to do so which is not
in somebody ’s back yard .

on the edge of the lawn with his back to the cedar
tree .

Table 4: Cases study of targets get and back

Hardware TITAN RTX

Runtime/epoch 50 min

Parameters 252,839,426

Table 5: Experiment details
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