@inproceedings{stammbach-etal-2023-environmental,
title = "Environmental Claim Detection",
author = "Stammbach, Dominik and
Webersinke, Nicolas and
Bingler, Julia and
Kraus, Mathias and
Leippold, Markus",
editor = "Rogers, Anna and
Boyd-Graber, Jordan and
Okazaki, Naoaki",
booktitle = "Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)",
month = jul,
year = "2023",
address = "Toronto, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.acl-short.91",
doi = "10.18653/v1/2023.acl-short.91",
pages = "1051--1066",
abstract = "To transition to a green economy, environmental claims made by companies must be reliable, comparable, and verifiable. To analyze such claims at scale, automated methods are needed to detect them in the first place. However, there exist no datasets or models for this. Thus, this paper introduces the task of environmental claim detection. To accompany the task, we release an expert-annotated dataset and models trained on this dataset. We preview one potential application of such models: We detect environmental claims made in quarterly earning calls and find that the number of environmental claims has steadily increased since the Paris Agreement in 2015.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="stammbach-etal-2023-environmental">
<titleInfo>
<title>Environmental Claim Detection</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dominik</namePart>
<namePart type="family">Stammbach</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nicolas</namePart>
<namePart type="family">Webersinke</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Julia</namePart>
<namePart type="family">Bingler</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mathias</namePart>
<namePart type="family">Kraus</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Markus</namePart>
<namePart type="family">Leippold</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Rogers</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jordan</namePart>
<namePart type="family">Boyd-Graber</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Naoaki</namePart>
<namePart type="family">Okazaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Toronto, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>To transition to a green economy, environmental claims made by companies must be reliable, comparable, and verifiable. To analyze such claims at scale, automated methods are needed to detect them in the first place. However, there exist no datasets or models for this. Thus, this paper introduces the task of environmental claim detection. To accompany the task, we release an expert-annotated dataset and models trained on this dataset. We preview one potential application of such models: We detect environmental claims made in quarterly earning calls and find that the number of environmental claims has steadily increased since the Paris Agreement in 2015.</abstract>
<identifier type="citekey">stammbach-etal-2023-environmental</identifier>
<identifier type="doi">10.18653/v1/2023.acl-short.91</identifier>
<location>
<url>https://aclanthology.org/2023.acl-short.91</url>
</location>
<part>
<date>2023-07</date>
<extent unit="page">
<start>1051</start>
<end>1066</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Environmental Claim Detection
%A Stammbach, Dominik
%A Webersinke, Nicolas
%A Bingler, Julia
%A Kraus, Mathias
%A Leippold, Markus
%Y Rogers, Anna
%Y Boyd-Graber, Jordan
%Y Okazaki, Naoaki
%S Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)
%D 2023
%8 July
%I Association for Computational Linguistics
%C Toronto, Canada
%F stammbach-etal-2023-environmental
%X To transition to a green economy, environmental claims made by companies must be reliable, comparable, and verifiable. To analyze such claims at scale, automated methods are needed to detect them in the first place. However, there exist no datasets or models for this. Thus, this paper introduces the task of environmental claim detection. To accompany the task, we release an expert-annotated dataset and models trained on this dataset. We preview one potential application of such models: We detect environmental claims made in quarterly earning calls and find that the number of environmental claims has steadily increased since the Paris Agreement in 2015.
%R 10.18653/v1/2023.acl-short.91
%U https://aclanthology.org/2023.acl-short.91
%U https://doi.org/10.18653/v1/2023.acl-short.91
%P 1051-1066
Markdown (Informal)
[Environmental Claim Detection](https://aclanthology.org/2023.acl-short.91) (Stammbach et al., ACL 2023)
ACL
- Dominik Stammbach, Nicolas Webersinke, Julia Bingler, Mathias Kraus, and Markus Leippold. 2023. Environmental Claim Detection. In Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages 1051–1066, Toronto, Canada. Association for Computational Linguistics.