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Abstract

Despite the rapid development of neural-based
models, syntax still plays a crucial role in mod-
ern natural language processing. However, few
studies have incorporated syntactic informa-
tion into ancient Chinese understanding tasks
due to the lack of syntactic annotation. This
paper explores the role of syntax in ancient Chi-
nese understanding based on the noisy syntax
trees from unsupervised derivation and mod-
ern Chinese syntax parsers. On top of that,
we propose a novel syntax encoding compo-
nent – confidence-based syntax encoding net-
work (cSEN) to alleviate the side effects from
the existing noise caused by unsupervised syn-
tax derivation and the incompatibility between
ancient and modern Chinese. Experiments
on two typical ancient Chinese understanding
tasks, ancient poetry theme classification and
ancient-modern Chinese translation, demon-
strate that syntactic information can effectively
enhance the understanding of ancient Chinese
over strong baselines, and that the proposed
cSEN plays an important role in noisy scenar-
ios.

1 Introduction

Ancient Chinese literature, such as classical po-
etry, books, and records, is a highly representative
and distinctive cultural heritage that is receiving
increasing attention from the NLP academia. How-
ever, directly applying modern Chinese processing
methods to ancient texts is not appropriate due to
the differences in syntax and semantics between
ancient and modern Chinese. Chinese is one of the
oldest written languages in the world, with a his-
tory of at least 6,000 years (Norman, 1988). Over
time, the language has undergone many changes,
such as the transition from literary to vernacular
Chinese in the early 20th century (Weiping, 2017),
resulting in a significant gap between ancient and
modern Chinese.
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Figure 1: Unlabeled dependency parses from different
parsers, where red arcs indicate prediction noises.

Syntactic features has been utilized in a wide
range of NLP tasks, including coreference resolu-
tion (Fang and Fu, 2019; Trieu et al., 2019; Jiang
and Cohn, 2022), machine reading comprehension
(Zhang et al., 2020; Guo et al., 2020), and machine
translation (Currey and Heafield, 2019; Zhang et al.,
2019a; Bugliarello and Okazaki, 2020). Despite
the effectiveness of syntax in modern Chinese un-
derstanding (Li et al., 2018; Xia et al., 2019; Zhang
et al., 2020), few studies have incorporated syn-
tactic information into ancient Chinese processing.
Most works only take into account explicit features,
such as era (Chang et al., 2021) and imagery (Shen
et al., 2019), ignoring implicit syntactic features.
The main reason for this lies in two aspects: (1) the
linguistic gap between ancient and modern Chinese
makes it difficult for supervised modern Chinese
syntax parsers to correctly parse ancient Chinese
expressions; (2) training a supervised ancient Chi-
nese syntax parser from scratch can be highly costly
due to the lack of annotated data.

Unsupervised syntax parsing or directly employ-
ing modern Chinese parsers will inevitably cause
noise and performance degradation. A unlabeled
example and corresponding human annotation on
ancient Chinese sentence "可怜人似月中孀(It is
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pitiful like Chang’e in the moon)" are shown in
Figure 1. To address this challenge, we propose
a novel syntax encoding structure – confidence-
based syntax encoding network (cSEN), which al-
leviates the negative effect of noise by measuring
confidence of arcs in syntax graphs. Specifically,
confidence is calculated by performing Biaffine
transformation over the sequence representation
and the derived syntactic graph adjacency matrix.
With this obtained confidence, our model is capa-
ble of distinguishing useful syntactic features from
noise.

Moreover, compared with modern Chinese, an-
cient Chinese has more concise expressions and
thus more compact structures, each token is highly
relative to the preceding and following one. Consid-
ering such linguistic characteristic, we incorporate
another graph feature – left-right branch (LRB),
which captures local features to further improve
ancient Chinese understanding. Experiments are
conducted on two typical ancient Chinese under-
standing tasks, thematic classification of ancient
poetry and ancient-modern Chinese translation. Re-
sults show that our model achieves significant im-
provements over powerful baselines, and our pro-
posed cSEN can effectively handle the noise in the
derived syntax trees. To our best knowledge, our
proposed cSEN is the first solution that makes the
syntax practical in ancient Chinese processing. The
proposed cSEB can serve as a backbone for enrich-
ing our understanding of ancient texts, offering a
scalable and consistent solution for education, re-
search, and broadening the public’s access to these
significant cultural treasures.

Overall, the contributions of this paper can be
concluded in four folds:

• This study fills the research gap of exploring
the role of syntax in ancient Chinese under-
standing. Our work demonstrates that syntac-
tic information, even noisy parses from unsu-
pervised derivation, can benefit ancient Chi-
nese understanding substantially.

• We propose a novel architecture – confidence-
based syntax encoding network (cSEN),
which alleviates the negative effect of noise in
syntax parses, thus making it practical to uti-
lize derived syntactic information to enhance
ancient Chinese understanding.

• The effectiveness of cSEN is evaluated on
two typical ancient Chinese understanding

tasks, ancient poetry thematic classification
and ancient-modern Chinese translation. Re-
sults show that our model yields significantly
better performance in noisy scenarios over
powerful baselines.

• We create a new dataset for the thematic
classification of ancient Chinese poetry, with
22,360 poems divided into 10 theme cate-
gories. This dataset offers a data foundation
for related research and helps to eliminate the
lack of available ancient Chinese annotated
corpora.

2 Related Work

2.1 Syntax Role in Modern Chinese
Understanding

As syntax is highly correlated with semantics, syn-
tactic features, including constituent and depen-
dency structures, have been utilized in many mod-
ern Chinese understanding tasks and have been
shown to be helpful clues. Li et al. (2018) explored
the effect of syntax on semantic role labeling (SRL)
and confirmed that high-quality syntactic pars-
ing can effectively enhance syntactically-driven
SRL. Xia et al. (2019) designed a syntax-aware
multi-task learning framework for Chinese SRL
by extracting implicit syntactic representations as
external inputs for the SRL model. Jiang et al.
(2018) incorporated syntactic features to expand
identified triplets for improving Chinese entity re-
lation extraction. Zhang et al. (2020) proposed a
syntax-aware approach for solving machine read-
ing comprehension, which incorporates explicit
syntactic constraints into the attention mechanism
for better linguistically motivated word representa-
tions. Sun et al. (2022) utilized syntactic features,
which capture depth-level structure information, in-
cluding non-consecutive words and their relations,
to enhance recognition of Chinese implicit inter-
sentence relations. Zhu et al. (2022) incorporated
syntactic dependency information to determine en-
tity boundaries for improving Chinese named entity
recognition. Despite the increasing attention that
syntax is receiving in modern Chinese understand-
ing, few studies have attempted to utilize syntactic
features for ancient Chinese understanding.

2.2 Ancient-Modern Chinese Translation

Unlike bilingual translation tasks, such as Chinese-
English, ancient and modern Chinese are written
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using the same characters. Despite that, translat-
ing between ancient and modern Chinese can still
be challenging for native speakers. This is due
to two factors: (1) the syntactical structure and
grammatical order of ancient Chinese are differ-
ent from those of modern Chinese, making ancient
Chinese expressions more concise yet also more
confusing; (2) ancient Chinese frequently employs
allusion, metaphor, and symbolic imagery to im-
plicitly evoke sensory and emotional experiences,
which increases the complexity of disambiguating
the intended message.

In recent years, advancements in deep learning
have led to significant progress in neural machine
translation. For example, Zhang et al. (2019b) pro-
posed an unsupervised algorithm that constructs
sentence-aligned ancient-modern pairs, and an end-
to-end neural model with copying mechanism and
local attention to translate between ancient and
modern Chinese. Liu et al. (2019) applied RNN-
based (Bahdanau et al., 2014) and Transformer-
based (Vaswani et al., 2017) machine translation
models to this task. Considering the monolingual
nature of this task, Yang et al. (2021) utilized pre-
trained model UNILM (Dong et al., 2019) and an
ancient Chinese pre-trained model Guwen-BERT
to enhance performance. Over time, the Chinese
language has evolved a lot, resulting in different
characteristics of ancient Chinese in different eras.
To address this, Chang et al. (2021) proposed a
time-aware translation method, where the model
predicts both the translation results and its particu-
lar era, and uses the predicted chronological feature
as auxiliary information to bridge the linguistic gap
between Chinese language in different eras.

2.3 Classification of Ancient Chinese Poetry

Classification of ancient Chinese poetry provides
a basis for higher-level tasks, such as sentiment or
style controllable poetry generation (Yang et al.,
2018; Chen et al., 2019; Shao et al., 2021). In the
past, statistical features and machine learning al-
gorithms were commonly used. For example, Hou
and Frank (2015) proposed a weakly supervised
sentiment classification approach, which created a
sentiment lexicon based on Weighted Personalized
PageRank (WPPR). Shen et al. (2019) incorpo-
rated imagery features for analyzing the sentiment
of Tang Poetry. In recent years, neural classifiers
have been introduced to the task and made remark-
able progress in performance. For instance, Xuan

et al. (2018) designed a poetry style recognition
model by stacking a genetic algorithm with CNN,
and Tang et al. (2020) combined CNN with a gated
GRU for solving poetry sentiment classification.

3 Model

In this section, we describe architecture of the pro-
posed cSEN. We first present a basic GAT encoder,
then introduce our cSEN. The overview of cSEN
is shown in Figure 2.

3.1 Vanilla GAT

GAT is often applied over a sentence encoder to ex-
tract graph-based representations of the input text.
Given input token sequence T = {t1, t2, . . . , tl},
l denotes the sequence length. The output of the
sentence encoder is denoted as matrix H ∈ Rl×n,
where each row hi ∈ Rn is the representation of
token ti.

With dependency structure of the input sequence
from a syntax parser, we construct a dependency
graph G = (V, E), where V is the set of tokens
and E is the set of arcs. In the graph encoding, we
employ the form of adjacency matrix to describe
the graph, in which the positions with arcs and
diagonal are assigned to ones, denoted as M(dep).
Linear transformation is performed by multiplying
the sentence representation H with a matrix W ∈
Rn×n′

for feature extraction, where n′ denotes the
transformed feature dimension:

Z = HW.

Then, a pair-wise attention operation is performed.
For every pair ti, tj ∈ V , it concatenates corre-
sponding representations zi and zj , then takes the
dot product with vector a ∈ R2n′

and applies a
LeakyReLU activation function:

S(raw)[i, j] = LeakyReLU([zi ⊕ zj ]
T a),

where ⊕ represents the concatenation operation,
and S(raw) is a score matrix with the size of (l × l)
that captures inter-node relations. To integrate the
graph structure, the adjacency matrix M(dep) is
used to constrain the function scope before a regu-
lar Softmax operation is performed. By doing this,
each token can only attend to its head tokens and
itself. The obtained attention weights matrix then
is used for scaling the transformed sentence rep-
resentation Z and calculating the final attentional
output:

W(attn) = Softmax(S(raw) ×M(dep)).

H(attn) = W(attn)Z.
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Figure 2: Architecture of the proposed cSEN. ⊕ and G© represents the concatenation operation and the gated
mechanism, respectively. We present M(dep) in the form of graph where arcs are pointing from heads to dependencies.
The cells in M(lrb) are colored to highlight the local dependencies, and darker color indicates higher correlation.

3.2 Confidence-based GAT

As discussed above, GAT guides the encoding pro-
cess by constraining the scope of the attention com-
putation. Therefore, the presence of noise in the
graph will inevitably impact the encoding output.
To alleviate the negative effects of noise on the
model’s performance, we propose a confidence-
based GAT, which measures the confidence of the
graph adjacency matrix, helping the model distin-
guish reliable syntactic information from noise.

Similar to vanilla GAT, we first model the pair-
wise relationships. Two separate linear transfor-
mations are performed over the sentence represen-
tation H to obtain the role-aware representations.
The outputs are denoted as H(d) and H(h) respec-
tively, both of which have the size of (l × n′):

H(d) = HW(d);H(h) = HW(h).

Then, Biaffine attention (Dozat and Manning,
2016) are calculated on the role-aware represen-
tations for pair-wise relationship scoring:

S(bi) = H(d)UH(h)T ,

where U is an intermediate matrix with the size
of (n′ × n′). Confidence scores are calculated by
concatenating the pair-wise relationship scores and
the adjacency matrix and passing them through
processing as follows,

S(fuse) = ReLU(FFNN(fuse)(
[
S(bi) ⊕M(dep)

]
)),

S(conf) = Sigmoid(FFNN(proj)(S(fuse))).

where FFNN(fuse) performs a linear transformation

to fuse the two feature spaces along with an ReLU
activation, and FFNN(proj) is used to reduce the
dimension from 2l to l, so that Sigmoid can be
applied to project the confidence features to the
same magnitude as the attention scores. With this
obtained confidence scores S(conf), we can remedy
the original attention restrain process:

W(conf) = Softmax(W(attn) + S(conf)),

H(conf) = W(conf)Z.

In summary, cSEN alleviates the negative effect
of noise in graphs through a two-fold process. First,
cSEN measures the confidence of the derived syn-
tax parses. This confidence score is then used to
soft-mask noisy arcs and highlight previously un-
detected ones. Second, considering the linguistic
characteristics of ancient Chinese, the Left-Right
Branch feature is incorporated to broaden the scope
of syntax graph encoding and smooth out noise
and incompatibility. The combined effect of these
aspects helps alleviate performance degradation
caused by noise.

3.3 Left-Right Branch Feature

Inspired by the ubiquity of local dependencies in
ancient Chinese, we introduce a novel straightfor-
ward and effective feature, left-right branch, to fur-
ther improve the GAT encoding. To model local
inter-token relations, we populate a matrix M(lrb)

of the same size as M(dep) following

M(lrb)[i, j] =

{
1, if j ∈ {i− 1, i+ 1}
0, otherwise.
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This indicates that there exist arcs in the graph con-
necting the node and its close left and right neigh-
bors. The left-right branch features are encoded
using another GAT component, yielding a sequence
representation Z(lrb) and a positional-information-
introduced attention weight matrix W(lrb). The out-
puts from M(dep) and M(lrb) are combined with a
gated mechanism to produce the final output:

H(lrb) = W(lrb)Z(lrb).

g = Sigmoid(FFNN(gate)(
[
H(conf) ⊕H(lrb)

]
)),

H(output) = g ×H(conf) + (1− g)×H(lrb).

4 Experiments

We evaluate the effectiveness of cSEN module
using two typical ancient Chinese understanding
tasks: Thematic classification of ancient poetry and
ancient-modern Chinese translation. We build our
model by incorporating the cSEN module into exist-
ing solid baselines. For the classification task, we
follow the work of (Vaibhav et al., 2019) which has
a BERT-GAT-BiLSTM backbone architecture. And
for the translation task, our model is based on (Jin
et al., 2020) where dependency graphs are incor-
porated into neural sequence-to-sequence models
with a pointer network.

4.1 Data

To address the scarcity of annotated data for
thematic classification, we constructed a novel
dataset1. Two graduate students specializing in
Chinese literature study annotated 22,360 poems,
categorizing them into one of ten distinct themes
under the guidance of an experienced ancient Chi-
nese linguist. This meticulous process ensured
high-quality, reliable annotations. Any conflicted
labelling between the two annotators was resolved
through consultation with the supervisor, guarantee-
ing a consistent annotation standard. The dataset is
then randomly divided into a training set (20,360),
a development set (800), and a test set (1,200). The
distribution of themes in the dataset is detailed in
Table 1.

For the ancient-modern Chinese translation, we
adopt the ancient-modern Chinese parallel corpus
contributed by the open source NiuTrans project2.
The corpus contains 967,255 sentence pairs ex-
tracted from ancient Chinese books. We divided

1Upon publication of this paper, this dataset will be made
available for research purposes.

2https://github.com/NiuTrans/Classical-Modern

Train Dev Test

#Object-chanting 1129 47 66
#Landscape 1097 44 47

#Persons 2403 91 129
#History 1087 40 76

#Homesickness 9013 357 522
#Mourning 503 18 31

#War 1746 62 115
#Pastoral 1219 47 84
#Farewell 1460 60 83

#Boudoir-plaint 703 34 47

Total 20360 800 1200

Table 1: Data statistics of the ancient Chinese poetry
thematic classification dataset

the corpus into training, validation, and test sets
with corresponding sizes of 900,000, 60,000, and
7,255.

4.2 Syntax Parsing

We experiment with two settings – modern su-
pervised parsers and ancient unsupervised syntax
derivation. For modern supervised parsing, we
adopt the Biaffine dependency parse (Dozat and
Manning, 2016) and train it on CTB7 (Xue et al.,
2010). For unsupervised syntax derivation, we fol-
low the work of Wu et al. (2020), which utilizes
linguistic knowledge gained from pre-trained lan-
guage model BERT to infer syntactic dependency
structure without direct supervison. We attempt
two variants of BERT for syntax derivation and
backbone sentence encoder, BERT-wwm-ext (Cui
et al., 2021) and Anchi-BERT (Tian et al., 2021).
BERT-wwm-ext is trained on the modern Chinese
corpus containing 5.4B words, while Anchi-BERT
is trained upon a ancient Chinese corpus with the
size of 39.5M tokens. In addition, we treat the
left-right branch as a special kind of syntax parses.
Anchi-BERT is trained on a smaller ancient Chi-
nese corpus (39.5M tokens), while BERT-wwm-ext
is trained on a larger modern Chinese corpus (5.4B
tokens). We also treat left-right branch features as
a distinct class of syntax parses.

For clarity, the syntactic parses from the Biaffine
parser, BERT-wwm derivation, and Anchi-BERT
derivation are denoted as BiAF, WWMD, ANCD
respectively, in the following part.

4.3 Implementation and Hyper-parameters

For the thematic classification, our model is built by
stacking BERT, a graph encoder, and a single-layer
LSTM. For the baseline, we do not incorporate syn-
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BERT-wwm Anchi-BERT

Methods Parses Micro F1 Macro F1 Micro F1 Macro F1

Baseline None 91.7 89.2 92.4 90.4

LRB 91.5 88.9 93.3 91.4
BiAF 92.3 89.7 93.3 91.2

WWMD 91.4 88.8 92.7 90.8
GAT ANCD 91.8 89.2 93.2 91.0

BiAF+LRB 92.7 90.4 93.3 91.2
WWMD+LRB 91.7 89.6 93.2 91.2
ANCD+LRB 90.8 88.2 92.8 90.7

BiAF+ANCD+LRB 91.7 88.8 92.6 90.6

BiAF+LRB 91.4 89.2 93.3 91.6
WWMD+LRB 92.8 90.7 93.6 91.9

cSEN ANCD+LRB 91.3 89.1 93.2 91.3
BiAF+ANCD+LRB 91.0 89.1 93.8 91.9

Table 2: Comparison with baseline model and syntax-aware methods on the thematic classification task.

Methods Parses BLEU RG-1 F-score RG-2 F-score RG-L F-score

Baseline None 37.14 69.71 46.24 67.62

LRB 37.42 69.86 46.36 67.72
BiAF 37.45 70.23 46.93 68.21

WWMD 37.46 70.20 46.89 68.14
GAT ANCD 37.55 69.90 46.53 67.85

BiAF+ANCD+LRB 34.62 69.20 45.15 67.15

cSEN BiAF+ANDC+LRB 37.73 70.27 47.09 68.23

Table 3: Experimental Results of the ancient and modern Chinese translation task.

tax parses, rendering the graph encoder ineffective
in shaping the attention scope. The graph encoder’s
node embedding dimension is set to 128, and the
hidden size in LSTM is set to 100. We adopt the
Adam optimizer with ρ = 5e− 5 and ε = 1e− 8,
using a batch size of 32. All classifiers are trained
for 10 epochs on the train set by default.

We mostly follow the parameter settings from
(Jin et al., 2020) for the ancient-modern Chinese
translation. The Adam optimizer is configured with
ρ = 1e − 4 and ε = 1e − 8. And all models are
trained for 50 epochs with a batch size of 108.

4.4 Results

4.4.1 Ancient Poetry Thematic Classification
Table 2 presents the results of ancient poetry the-
matic classification. We report the results in Micro-
F1 and Macro-F1 scores. The table is divided into
three blocks, showing the results of the baseline
model, vanilla GAT, and the proposed cSEN. The
baseline model achieves 92.4 in Micro F1 and 90.4
in Macro F1, showing strong performance.

From the results in the first two blocks, it can be
found that incorporating syntactic trees with GAT
encoder brings substantial improvement, proving

the value of syntactic information for enhancing an-
cient Chinese understanding. Through comparing
the results of employing Anchi-Bert as the sentence
encoder and those obtained employing Bert-wwm,
we can see that Anchi-Bert outperforms BERT-
wwm with a significant lead in all cases. Recall
that Anchi-Bert was pre-trained on a much smaller
corpus. Also, the performance of syntactic trees
derived by BERT-wwm is inferior to the other three.
This once more indicates the linguistic gap and syn-
tactic incompatibility between ancient and modern
Chinese.

Unsupervised syntax trees derived by Anchi-
BERT performs roughly the same as those pro-
duced by the Biaffine parser. Additionally, LRB
is the best-performing syntax parse among all, im-
proving the performance by 0.9 in Micro F1 and
1.0 in Macro F1. It can be partially explained by
the fact that ancient poems are comprised by a few
brief sentences, which are highly concise and struc-
turally compact. This results in fewer long-range
dependencies, and each token is closely dependent
on the immediate preceding or succeeding token.

From the third block, it can be seen that when us-
ing Anchi-BERT as sentence encoder, cSEN brings

88



Variants Micro F1 Macro F1

cSEN 93.8 91.9
w/o Confidence 92.8 91.1
w/o Gate 93.0 91.0

Table 4: Ablation study results.

Syntax Trees Micro F1 Macro F1

[ANCD] + (LRB) 93.2 91.3
[BiAF] + (LRB) 93.3 91.6

[BiAF + LRB] + (ANCD) 92.8 90.9
[ANCD + LRB] + (BiAF) 92.8 90.5
[BiAF + ANCD] + (LRB) 93.8 91.9

Table 5: Comparison of different combination config-
urations on syntactic parses. Parses in square brackets
are merged onto a single adjacency matrix and parses in
parentheses are incorporated by the gated mechanism

performance gains across all syntax trees setups,
raising the top Micro and Macro F1 scores to 93.8
and 91.9, respectively. This demonstrates that: (1)
cSEN’s denoising capability is effective for utiliz-
ing noisy syntactic information to improve ancient
Chinese understanding; (2) cSEN can handle noise
introduced by different parses, whether it is from a
supervised modern Chinese parser or unsupervised
derivation.

4.4.2 Ancient-Modern Chinese Translation

Results of the ancient-modern Chinese translation
are shown in Table 3. We use BLEU (Papineni
et al., 2002) and ROUGE (Lin, 2004) scores for
performance evaluation. The baseline model with-
out syntax parses achieves 37.14 in BLEU score
and F-scores of 69.71, 46.24, 67.62 in ROUGE-
1, ROUGE-2, and ROUGE-L respectively. With
single syntactic parses incorporated, all models
achieve better performance in all metrics, prov-
ing that syntax can effectively improve ancient-
modern Chinese translation. LRB is relatively the
weakest one, slightly increasing BLEU score by
0.28, and ROUGE f-scores by 0.15, 0.12, 0.10.
This might be caused by that sentences from the
ancient books have more long-distance dependen-
cies and more complicated syntactic structures that
left right branch can not recover. Anchi-BERT de-
rived syntax parses have better performance with
an improvement of 0.41 in BLEU score, and 0.19,
0.29, and 0.23 in ROUGE scores. BERT-wwm de-
rived syntax trees and trees generated by Biaffine
parser have similar results. In contrast to Anchi-
BERT derived trees, their performance are inferior

in BLEU scores but better in ROUGE F-scores.
Feeding multiple syntactic parses into the GAT-
based model simultaneously leads to a significant
performance drop. While replacing GAT with the
proposed cSEN increases performance in all met-
rices, with 37.73 in BLEU score and 70.27, 47.09,
68.23 in ROUGE F-scores. From the above results,
we conclude that syntax parses from unsupervised
derivation or modern Chinese syntax parsers intro-
duce noise and degrade model performance. With
our confidence learning, model is able to distin-
guish and separate informative syntactic informa-
tion from noise, thus alleviating its negative effect.

Table 6 shows three ancient-to-modern Chinese
translation examples produced by different models.
From generations for Sent 1, we can see a common
error: due to the lack of contextual information, all
three models assume the surname of "the father"
useing the most common Chinese surnames, such
as "Li" and "Zhang". For Sent 2, the generations
from the baseline model and vanilla GAT differ
significantly from the human-annotated reference.
They fail to recognize the relationship between the
characters,such as who "其娣" refers to, thus gen-
erating tranlations that did not correspond to the
facts. In contrast, with stronger denoising capa-
bility, cSEN is able to correctly encodes the infor-
mation in ancient Chinese texts, thus producing
higher-quality translations.

5 Exploration

In this section, we investigate the impact of differ-
ent cSEN components and analyze the nature of
different syntax parses.

First, we conduct ablation studies on cSEN. Re-
sults are reported in Table 4. Both the removal
of the confidence (equivalent to vanilla GAT) and
the removal of the gated mechanism lead to signifi-
cant performance degradation. This indicates that
both modules are crucial for effectively utilizing
syntactic information from noisy parses.

Second, we experiment with different syntax
tree combination setups. Table 5 lists the findings.
Combining two syntax parsers onto a single depen-
dency graph can provide richer syntactic informa-
tion and produce higher performance than using
alone syntax parses, no matter it is from unsuper-
vised derivation or a supervised parser. We also
explore the incorporation position of LRB features.
It can be observed that the model performance suf-
fers significantly if LRB features and graph parses
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Sent Ancient Chinese

src: 父岘，少骁勇，事章大宝为帐内部曲。
1 ref: 父亲陈岘，年轻时骁勇，侍奉章大宝，任帐内部曲。

trl: His father, Chen Xian, was brave when he was young. He served Zhang Dabao, as an in-tent soldier.
src: 晋伐骊戎，骊戎男女以骊姬。归生奚齐。其娣生卓子。

2 ref: 晋国攻打骊戎，骊戎男把骊姬献给晋献公，回国后生了奚齐，她的妹妹生了卓子。
trl: Jin state attacked Li Rong. Li Rong’s men presented Li Ji to Jin Xian Gong. After returning the state, Li Ji gave birth to Xi Qi, and her sister
gave birth to Zhuo Zi.
src: 及竣事，又曰：杨存中之罢，朕不安寝者三夕。

3 ref: 等到事毕后，又说：杨存中被罢免，我有三天不得安寝。
trl: After the matter was over, he said: "The dismissal of Yang Cunzhong, made me unable to sleep for three days."

Baseline

1 父亲张岘，少年时骁勇善战，在章大宝帐下当兵,任章大宝的部曲。
His father, Zhang Xian, was brave and good at fighting when he was young. He served as a soldier under the command of Zhang Dabao, and was
Zhang Dabao’s soldier.

2 晋国讨伐骊戎，骊戎男女献上骊姬，回国后生了奚齐，骊戎的妹妹生了卓子。
Jin state attacked Li Rong, and Li Rong’s men and women presented Li Ji, and after returning the state, they gave birth to Xi Qi, and Li Rong’s
sister gave birth to Zhuo Zi.

3 等到完成任务，又说：杨存中被罢免，朕三夜不安寝。
After completing the task, he said: "The dismissal of Yang Cunzhong, made me unable to sleep for three nights."

Vanilla GAT

1 父亲李岘，少年时骁勇善战，在章大宝手下做事。
His father, Li Xian, was brave and good at fighting when he was young, and worked under Zhang Dabao.

2 晋国讨伐骊戎，骊戎男娶了骊姬，嫁给了奚齐，奚齐的妹妹生了卓子。
Jin state attacked Li Rong. Li Rong’s men married Li Ji, married Xi Qi, and Xi Qi’s sister gave birth to Zhuo Zi.

3 等到完工，又说：杨存中被罢免的事，我感到不安宁的有三个晚上。
After the work was finished, he said: I felt uneasy about Yang Cunzhong’s dismissal for three nights.

cSEN

1 父亲陈岘，年轻时骁勇，事奉章大宝任帐内部曲。
trl: His father, Chen Xian, was brave when he was young. He served Zhang Dabao as an in-tent soldier.

2 晋国攻打骊戎，骊戎男把骊姬送给晋国，回国后生了奚齐，她的妹妹生了卓子。
Jin state attacked Li Rong. Li Rong’s men presented Li Ji to Jin State. After returning the state, Li Ji gave birth to Xi Qi, and her sister gave birth
to Zhuo Zi.

3 等到事情完毕，又说：杨存中被罢免，我三天不安寝。
trl: After the matter was over, he said: "The dismissal of Yang Cunzhong, made me unable to sleep for three days."

Table 6: Ancient-to-modern Chinese translation examples generated by the baseline model, vanilla GAT, and cSEN.
The first block shows the original ancient Chinese sentence (src), human-annotated modern Chinese reference (ref),
and corresponding English translations (trl).

are directly merged together. This again indicates
the necessity of our gated method for LRB feature
integration.

Third, as illustrated in Figure Figure 3, we com-
pare our model and baselines over different input
lengths. cSEN performs better in relative longer
sentences, according to the results. This supports
the hypothesis that syntax helps guide longer sen-
tence understanding as dependency reduces the dis-
tance. Because of the incompatibility between mod-
ern and ancient Chinese, unsupervised derivation is
more effective than supervised parsing when com-
pared to other syntax parsers. In most cases, cSEN
yeilding better performance due to its stronger de-
noising capabilities.

6 Conclusions
In this paper, we investigate the role of syntax in
improving ancient Chinese understanding. Due to
lack of syntax annotation, syntax trees are obtained
by unsupervised derivation and supervised modern
Chinese parser. To alleviate the negative effect of
noise, we propose a confidence-based syntax en-
coding network (cSEN). Experimental results on
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Figure 3: BLEU scores for different input sentence
lengths.

two typical ancient Chinese understanding tasks
show that our model can effectively distinguish
informative syntactic information from noise and
achieve better performance. The application of our
proposed cSEN can enhance the accessibility of
ancient Chinese resources by offering a scalable
and consistent solution for mining semantic infor-
mation of ancient Chinese texts.

90



Limitations

The main limitation of our study comes from the
extra parameters caused by confidence calculation,
in which two separate self-attention operations and
Biaffine transformation are performed. Incremen-
tal parameters results in a more time-consuming
training process, and a higher hardware demand for
storage. To address this issue, we plan to combine
parameters from different attentional transforma-
tions into shared weight matrices in our future work
to reduce the model size.
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