
Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics - Student Research Workshop, pages 19–29

July 10-12, 2023 ©2023 Association for Computational Linguistics

Multi-Dialectal Representation Learning of Sinitic Phonology

Zhibai Jia
No.2 High School of East China Normal University

jiazhibai@proton.me

Abstract

Machine learning techniques have shown their
competence for representing and reasoning in
symbolic systems such as language and phonol-
ogy. In Sinitic Historical Phonology, notable
tasks that could benefit from machine learning
include the comparison of dialects and recon-
struction of proto-languages systems. Moti-
vated by this, this paper provides an approach
for obtaining multi-dialectal representations of
Sinitic syllables, by constructing a knowledge
graph from structured phonological data, then
applying the BoxE technique from knowledge
base learning. We applied unsupervised clus-
tering techniques to the obtained representa-
tions to observe that the representations cap-
ture phonemic contrast from the input dialects.
Furthermore, we trained classifiers to perform
inference of unobserved Middle Chinese labels,
showing the representations’ potential for indi-
cating archaic, proto-language features. The
representations can be used for performing
completion of fragmented Sinitic phonological
knowledge bases, estimating divergences be-
tween different characters, or aiding the explo-
ration and reconstruction of archaic features.

1 Introduction

The evolution of languages in the Sinitic family
created intricate correspondences and divergences
in its dense dialect clusters. Investigating the dy-
namics of this evolution, through comparison and
proto-language reconstruction, is an essential task
to Sinitic Historical phonology. However, it may
be costly for researchers to manually probe through
the groups in search of phonological hints. Hence,
it is desirable to accelerate the process with modern
algorithms, specifically, representation learning.

Graph-based machine learning (Makarov et al.,
2021) have gained increasing attention in recent
years, due to their versatility with data with flexible
structures. Especially, missing link prediction al-
gorithms for knowledge graphs (Wang et al., 2021)

(Zhu et al., 2022) can uncover a latent structure in
noisy and incomplete knowledge. In the case for
learning phonological representations, using graph-
based learning can allow for more comprehensive
integration of multi-dialectal evidence. Thus, we
propose applying graph-based techniques for multi-
dialectal representation learning.

We construct a knowledge graph from the multi-
dialectal phonological data, by abstracting unique
phonetic components and individual characters into
two kinds of nodes. Then, we connect them with
edges specific to the dialect type wherein the char-
acter is associated with the given component. On
the constructed knowledge graph, we train the
BoxE algorithm (Abboud et al., 2020), a Box Em-
bedding Model for knowledge base completion. Fi-
nally, we evaluate the obtained representations with
unsupervised and supervised clustering, as well as
MLP probes based on Middle-Chinese-derived la-
bels, to show this tool’s value for Sinitic phonolog-
ical investigation.

2 Background on Sinitic Languages

The analysis of Sinitic languages face a few specific
challenges due to unique phonological characteris-
tics. These characteristics define crucial details of
our design.

In Sinitic languages, morphemes are primarily
monosyllabic. Hence, Chinese writing binds one
syllable to each of its glyphs, known as characters.
A syllable in Sinitic can be decomposed into an
initial, a final and a tone. (Shen, 2020) Initials refer
to the consonant-like sounds at the beginning of a
syllable, which include both stops (e.g. /p-/, /b-/)
and fricatives (e.g. /s-/, /S-/). These initials could
be combined with various finals to form syllables.
Finals refer to the vowel-like sounds at the end of a
syllable, which included both simple vowels (e.g. /-
a/, /-i/, /-u/), complex vowels (e.g. /-ai/, /-ao/, /-ei/),
and vowels combined with consonant codas (/-m/,/-
n/,/-N/,/-p/,/-t/,/-k/). Tones refer to the pitch patterns
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associated with syllables in Chinese. Tones could
distinguish between words that were otherwise ho-
mophonous, and they were an important part of the
Chinese phonological system.

Due to the early conception of the Chinese writ-
ing system, syllables from different Sinitic lan-
guages can usually be aligned to each other through
a written form. As this alignment is typically im-
plemented in databases of raw Sinitic data, the
difficulty of cognate identification is drastically
reduced, facilitating analysis. However, the sim-
ple syllable structure introduces large amounts of
homophones, words sharing same pronunciations,
into Sinitic languages. This hinders the use of
the comparative method in reconstructing a Sinitic
proto-language. The existence of a supersegmental
tone feature also complicates a historical analysis
of Sinitic languages.

Figure 1: Highlighting key characteristics of Sinitic rele-
vant to our approach. Characters are the central identity
in the multi-dialectal representations. The orthographic
alignment of sub-syllable components form the struc-
ture of data used in this study.

Two factors that motivate the use of a graph-
based method include the uniform structure of
Sinitic syllables and their intimate relationship with
characters. The intuitive syllable decomposition
and the glyph-based alignment inspire viewing the
components contextualized in various dialects as
different "observations" of a single character. Theo-
retically, these observations are derivable from the
reading of the character in the proto-language.

3 Related Work

The practice of computationally-aided proto-
language construction, often associated with cog-
nate identification, has been extensively considered
in the past two decades (Nerbonne et al., 2007). Ex-
amples include (Steiner et al., 2011) which draws
insights from bio-informatics and the classical com-
parative workflow, and (List et al., 2017), which

compared many methods for cognate identifica-
tion. An relevant insight from the latter paper is
that language-specific methods often outperform
language-general ones, especially for languages
like Sinitic. An epitome of neural methods for
proto-language reconstruction would be (Meloni
et al., 2021), in which Latin is reconstructed from
Romance descendent languages with a encoder-
decoder structure. Though, our approach differs
from their study in many crucial aspects. In Mel-
oni et al. 2021, the reconstruction is supervised,
with the proto-language Latin provided at training
time. But our method targets not only documented
proto-languages like Middle Chinese, but also un-
known, intermediate varieties in the development
from ancient Sinitic to modern dialects, which re-
quires an unsupervised approach. Additionally, in
term of techniques, their use of GRU and attention-
based transducers contrasts with our emphasis on a
graph-based method.

Considering the representation learning of
Sinitic, we found abundant literature on the topic of
speech recognition (Ma et al., 2022), segmentation
and synthesis, which often yield representations
of certain phonological relevance as by-product.
Though, these studies devote heavily to a few ma-
jor languages, specifically Mandarin or Cantonese,
and, since they are rarely claim motivation from
historical phonology, seldom take a multi-lingual
or multi-dialectal approach.

While speech representation learning often serve
the aformentioned purposes, the proposals of using
neural networks to model phonetics and phonology
from either symbolic abstractions or acoustic data
in order to examine theories in these fields are rele-
vant to this study. Unsupervised binary stochastic
autoencoders were explored in (Shain and Elsner,
2019). GAN (Generative Adversarial Networks)
was used in (Begus, 2020). These proposals mod-
eled perception and categorization, in relation to
language acquisation. Most interestingly, repre-
sentation learning has been applied for discover-
ing phonemic tone contours in tonal languages(Li
et al., 2020), of which a great portion are Sinitic
Languages. However, these proposals again rarely
address issues from historical phonology.

Finally, it should be noted that the concept of
transforming porous data in a regular, matrix-like
form to a loose, graph-like form for flexibility in
processing, while essential to the designs of this
paper, is not novel in the literature. Rather, it orig-
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inates with the GRAPE framework in (You et al.,
2020). Notably, when the data in question con-
cerns Chinese historical phonology, it coincides
with Johann-Mattis List’s proposals for introduc-
ing network methods into computational linguistics
and Chinese historical phonology. Generally, this
line of work should be considered most relevant to
our study (List, 2018; List et al., 2014; List, 2015).
List (2018) approaches issues spanning character
formation, Middle Chinese annotation, as well as
Old Chinese reconstruction with network methods.
List et al. (2014); List (2015) examines dialect evo-
lution with display graphs, with a focus on the
complex word-borrowing dynamics between the
dialect families. He calls for colleagues to lend
more attention to data-driven, quantitative meth-
ods. Our proposal answers List’s call by bringing
together knowledge graphs with Chinese historical
phonology. Furthermore, the utilization of SOTA
representation learning extends beyond the scope
of the aforementioned work.

4 Method

The graph-based method for representing dialect
data has the benefit of making the model more
flexible, robust, and efficient at using porous, in-
complete data. This is particularly important since
investigations into dialects are often uncoordinated,
resulting in a large amount of partial character en-
tries, where only some columns have pronuncia-
tions while others are missing. It could be argued
that we can use missing data imputation to alleviate
the issue, and continue processing the dialect data
in a matrix form, perhaps with feed-forward neural
networks or denoising autoencoders(Vincent et al.,
2008). However, traditional missing-data imputa-
tion techniques may create fictitious syllables that
violate the phonotactics of that dialect when imput-
ing initials or finals according to the mode of a type.
Conditioning the initials or finals on each other will
cause higher-order dependencies that are hard to
solve. Therefore, by keeping the spaces untouched
and using paired comparisons, the graph formalism
circumnavigates the problem. This formulation
may also allow for auxiliary input features, such as
basic phonological knowledge about the nature of
phonemic contrast, to be injected into the model.
On this graph, we learn the embeddings with the
BoxE algorithm, to be discussed below.

4.1 Construction of a Multi-Dialectal
Knowledge Graph

Figure 2: Partial Illustration of the Phonology Knowl-
edge Graph. The numerals represent the indices repre-
senting the Chinese characters and the glyphs for what
they represent. /33/ is a tone in Chao’s notation. The
other nodes are segments represented in the Interna-
tional Phonetic Alphabet. The text labels for the edges
demonstrate the how edges are categorized according
to both dialect and phone type. Note that it is bi-partite
by nature, as edges can only occur between “phonemic”
nodes and “character” nodes, colored blue and black in
the figure.(This is not provided explicitly)

We expressed the data with a knowledge graph
and trained the representations through an auxiliary
task of completing the multi-dialectal knowledge
graph. With a graph-based technique, the represen-
tations can be more robust to noisy and porous data.
Additionally, the method will be more flexible, al-
lowing for auxiliary input features to be injected.

We construct a graph by leveraging the charac-
ters, as well as individual initials, finals and tones
from various dialects as nodes. (See Figure 2) .For
instance, the fact of character C having an initial I
in dialect D is modeled with an edge from C to I.
The edge has type specific to the dialect D and the
category of the component, which is an initial. This
edge type can be denoted as “D-initial”. Demon-
strated in Fig. 2, C could be character No. 1, when
I is /t/ and the edge is "Changsha_initial".

After constructing the graph, character-level and
component-level representations are trained simul-
taneously. The knowledge graph algorithm at-
tempts to model the nodes features as well as a
prediction function so that, when given a character
node and a type of link, the corresponding pronun-
ciation node can be predicted with maximum like-
lihood. In this process, the model implicitly gen-
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erates hypotheses about character pronunciations
missing or unseen in training, as well as historical
relationships between the syllables.

If there are M characters with readings from
N dialects involved in an experiment, the upper
bound for the number of edge types will be 3N .
Assuming that F1 + F2 + F3 unique initials, finals
and tones could be found within the aggregated
phonological systems of the N dialects, the upper
bound for number of nodes is M + F1 + F2 + F3.
The graph size scales sub-linearly with the number
of dialects, since as more dialects are considered,
their phonemic inventories will start to overlap and
exhaust.

Following convention in knowledge base re-
search, the graph is presented in Triples of Head-
Relation-Tail format.

4.2 The Box Embedding Model

In pilot tests, We considered various algorithms
from the field of graph representation learning and
knowledge base completion for application. In the
process, it is revealed that few algorithms are in-
herently suitable, as there are many subtle require-
ments in this context:

1. Models designed for knowledge graphs are
more suited to this application than general
graph learning algorithms, since the graph to
be processed is heterogeneous, besides carry-
ing edge type as information.

2. The model must have strong capacity for mod-
eling multiple unique relations between the
same two nodes. It is very common for one
character to have the same initial across differ-
ent dialects. This rules out many translation-
based models, that, when given different re-
lations, always predict different tail nodes.
Prominent examples of such models include
TransE (Bordes et al., 2013) and RotatE (Sun
et al., 2019).

3. If the model uses inverse triples as an aug-
mentation technique, then the model should
also be expressive in many-to-one and one-
to-many relations, because one initial or final
will be mapped to numerous characters.

4. Of the applicable algorithms, interpretability
should be prioritized, since we hope to extract
interpretable phonological knowledge from
the obtained representations. This casts doubt

on a another large family of knowledge graph
models, namely the bi-linear models, epito-
mized by RESCAL(Nickel et al.) and Dist-
Mult(Yang et al., 2015).

After consideration, we chose BoxE for its ex-
pressiveness and tolerance to many-to-one relation-
ships, due to its Box embedding designs. Empir-
ically, we also demonstrate that the BoxE is rela-
tively optimal for the phonological task through
comparison with RotatE (Sun et al., 2019) and
ComplEx (Trouillon et al., 2016) in Table 4.

Here is a brief description of the BoxE algorithm.
It is a translational model that embeds each node
with two vectors: ei, which represents the position
vector, and bi ∈ Rd, which represents the trans-
lational bump. These vectors are obtained after
incorporating triples into the model. Additionally,
each edge type is defined with two hyper-rectangles
r(1) and r(2) ∈ Rd. To satisfy the relation R be-
tween entity E1 and E2, there is e1+ b2 ∈ r(1) and
e2 + b1 ∈ r(2). Intuitively, this means that E1 and
E2 "bump" each other in hyperspace Rd by some
distance. If the new vectors fall within the bounds
of the associated boxes, then the proposition is con-
sidered probable. To facilitate gradient descent, the
boxes have relaxed borders. It is worth noting that
BoxE is also capable of hyper-graph learning as it
accepts higher arity relations as input, though we
did not exploit this feature for this study.

Our training objective was to maximize the score
or probability of given relations. To elaborate,
this means maximizing the chance of predicting
masked initials/finals/tones of some character in
some dialect with the unmasked components as-
sociated with that character, from both within and
without the dialect. This is analog to the compara-
tive method in Historical Phonology, as the model
implicitly reconstructs a latent "proto-language",
from which the descendent languages can be de-
duced (or, "decoded") with maximum likelihood.

5 Data and Experimental Setup

We use pronunciation data from four varieties of
Xiang Chinese Changsha長沙, Shuangfeng雙峰,
Guanyang Wenshi 灌陽文市, and Quanzhou Xi-
ancheng 全州縣城., spoken primarily in Hunan
Province, provided by CCR(Huang et al., 2011),
and retrived with Comparative analysis toolset for
Chinese dialects(Huang, 2021). We also obtain
labels of Middle Chinese readings from the same
source. In this work, Middle Chinese refers to
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the phonological system recorded in the dictio-
nary Qieyun, from the year 601 AD. It was sup-
plemented in the Song Dynasty into the dictionary
Guangyun, from which this study draws data. Mid-
dle Chinese is literary and may not reflect the col-
loquial speech of China in any time or place. How-
ever, most phonological systems of modern Sinitic
languages (with the notable exception of the Min
Languages) can be derived from the Qieyun system.
Thus we treat it as a useful protolanguge model for
most Sinitic Languages.

We operate on symbolic abstractions instead of
raw acoustic data, as all the data have been tran-
scribed into IPA in the database. One row of data
corresponds to readings of one Chinese character.
Internally, each character is mapped to a unique
identifier, which is the character’s serial number
in Guangyun. For every variety of Chinese, there
are four columns, corresponding to initial value,
final value, tonal value and tonal type of a given
character’s pronuciation. The tone type argument
is actually redundant, and it is assigned manually
by investigators. In each dialect, there is a one-to-
one correspondence between one tone value with
one tone type. Between two dialects, tones aris-
ing from the same Middle Chinese tone are given
same names. Hence, the tone type feature intro-
duces prior expert knowledge about the historical
origin of tones. However, we expect the model to
derive the historical tones without any diachronic
expert knowledge. Hence, we discard the tone type
feature, and use only the three values for this study.

5.1 Processing of Duplicate Data

Characters in Sinitic can be polyphonic, that is,
sometimes a character will be mapped to multiple
readings in one dialect. This results in duplicate
data in the dataset. For convenience, we drop the
extra pronunciations and keep only the first line
for every entry. Though, there can be ambiguity
surrounding the correspondence of readings for
polyphonic characters. For instance, the first read-
ing entry for a polyphonic character in dialect A
might be cognate with the second reading entry
for the character in dialect B. However, our naïve
approach will match all the first entries to each
other. Additionally, two dialects may inherit only
partial readings of a polyphonic character in the
proto-language. Hence, this procedure potentially
introduces erroneous alignment into the model.

5.2 Split of Training, Testing and Validating
Datasets

The model was not trained with all the data, so as
to examine the robustness of the model. Instead,
some triples are diverted to form testing and vali-
dating datasets. Unfortunately, assignment in this
context is slightly more complicated than simple
stochastic choice. There is the scenario where all
initial (final/tonal) information about one character
is diverted from training. In this case, the model
will not be able to correctly embed this character.
To circumvent this issue, we mandate that at least
one feature from any of the three compositional
types is retained in the training set for any charac-
ter. In the four Xiangyu in this case, the result is
empirically a split of 80.50%:12.52%:6.98%.

5.3 Data Statistics
The initials, finals and tones count for the four
dialects are listed in Table 1. A total of 2805 char-
acters is included, but not every character has the
corresponding phonological data documented in
every dialect. In the training set, there are 22300
entries.

5.4 Model Setup
For the parametric size of the model, see Table 2.
We employ the BoxE algorithm implemented in the
Python library PyKeen (Ali et al., 2021b,a). We did
not fine-tune the model or any model parameters,
so as to demonstrate the capability of the model in
even in a highly suboptimal setting.

Initials Finals Tones
Changsha 21 38 11
Shuangfeng 28 35 11
Guanyang 28 42 5
Quanzhou 26 43 4

Table 1: Data Statistics

Parameter Value

Vector and hyperbox dimension 64
Number of nodes 2946
Number of edge types 12
Cumulative parameter size 378624
Optimization algorithm Adam
Number of epochs 2000

Table 2: Model Parameters
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6 Experimental Evaluation

Figure 3: Preliminary Visualization of Training Dynam-
ics and Trained Embeddings.

Figure 4: UMAP(McInnes et al., 2018, McInnes et al.,
2018,Uniform Manifold Approximation and Projection)
decomposed visualizations of the translational bumps
(a) and position embeddings (b). The coloring reflects a
point’s index in the Guangyun, which is sorted accord-
ing to rhyme.

6.1 Canonical Evaluation of Model
The convergence of the model, and a preview of
the spatial distribution of embeddings can be seen
in Figure 3. The model quickly converges. The
entity plot decomposed with PCA reveals a mass
of character readings “ejecting” two groups of en-
tities, respectively the combination of all initials
and tones, and all finals, which is in accordance
with the bi-partite and heterogeneous nature of this
graph.

Canonically, BoxE is evaluated with the hit@n
metric and MRR (mean reciprocal rank) for link
prediction. On the validation set, our model
achieved hit@1:51.25%, hit@5: 87.19%, hit@10:
93.76% on the “tail” batches. The head batches are
not relevant because they involve “predicting char-
acters from initials/finals”, of which there is many
to one. In Table 4, we demonstrate empirically the
superiority of the BoxE algorithm over other com-
mon knowledge graph algorithms on this phonolog-
ical task. A clearer visualization of the embedded
points can be seen in Figure 4. Guangyun ensures
that rhyming characters (having the same final)
have similar coloring on the map. The coloring is
only a reflection of the point’s serial in the dataset

and does not have any quantitative interpretation.
Presumably, the translational bump for characters
will contain more relevant information to histori-
cal phonology, as they designate which component
types to "bump into the box." Without mention, all
experiments are carried out on the bump embed-
dings and not positions. However, empirically we
find that the two kinds of embeddings are inter-
changeable.

6.2 Examining Contrastive Information

In this section, unsupervised clustering is used to
evaluate contrastive information in the embeddings.
Based on the hypothesis that the phonological struc-
tures of the dialects are co-embedded in the latent
structure of embeddings, we determined if the high-
dimensional embeddings retain information asso-
ciated with the theoretic categories of the input
dialects, a similar task to Tilsen et al. 2021. After
applying a clustering algorithm to the embedded
characters, the information yield 1 of the found cat-
egories against input categories of initials, finals
and tones is computed. A higher information yield
indicates that the clusters found by unsupervised
clustering were more interpretable with respect to
the input phonemic categories. 2 3

The clustering algorithms used for dissecting
the cloud of embedded characters include HDB-
SCAN (McInnes and Healy, 2017,A density based
method), Affinity Propagation, K-means and Ag-
glomerated Clustering.4 The results can be seen in
Figure 5.

Affinity propagation and HDBSCAN achieved
best effects on finding interpretable clusters from
the datasets. Though, we find that HDBSCAN
is very sensitive to the two parameters: its effect
degrades when we allow for smaller clusters but
demands greater confidence on the classification.
Notably, HDBSCAN achieved an effect similar to
affinity propogation with just 29 clusters, while the
latter used 130.

The large information yields reflect that the unsu-
1Entropy subtracted by conditional entropy, or an empirical

estimate of mutual information.
2HDBSCAN sometimes refuses to classify points it is not

sure of. These points are combined into one category for the
aforementioned purpose.

3Before using HDBSCAN, UMAP was first used to reduce
the 64 embedding dimensions to 8 dimensions, with the neigh-
bour parameter set to 50. This is an advised practice from the
HDBSCAN documentation.

4The numerous methods were tried sequentially as we do
not know which algorithm best recovers the latent structure of
representations in accordance with theoretic categories.
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Figure 5: Information yield in percentage averaged across four dialects. For HDBSCAN, the min samples and
min cluster size parameters were set to 2 and 200, 5 and 75, 20 and 20 respectively. The other three methods were
employed on the original embeddings. For K-means and agglomerative clustering, the number of clusters was
specified to be 30 and 10.

pervised algorithms do tend to dissect the character
set along latent lines corresponding to phonologi-
cal opposition in the input dialects, as shown in a
partial observation in Table 3. It appears that the
distribution of finals in dialects had more influence
on the latent structure than initials or tones. Simply
put, the characters within each unsupervised clus-
ter are more likely to rhyme than alliterate, though
both cases occur in observation of the HDBSCAN
Clusters.

There are limitations to this experiment though,
which will be discussed below.

6.3 Inference of Proto-language Features

In this section, we investigate the quality of our
embeddings with respect to proto-language recon-
struction tasks, as an important potential applica-
tion of this method lies with such work. Hence, we
trained classifiers in attempt to infer labels from
Middle Chinese, which likely predates proto-Xiang,
therefore an accessible surrogate for that proto-
language.

The features to infer are Grades (等地), Voice(清
濁), Tones(聲調), She (攝, a coarse division of
finals), Initials (字母), and Mu(韻目,a fine division
of finals).

Grades are believed to be associated with me-
dials, a component in the front of the final (amal-
gamated with final in Xiangyu data). Voice is a
division based on properties of the initial, in which

voiced consonants, voiceless unaspirated conso-
nants, voiceless aspirated consonants and nasal
consonants are distinguished. For tones, in Middle
Chinese, there were four: level, rising, departing,
and entering. Of these categorical labels, there are
respectively 4, 4, 4, 16, 36 and 206 unique classes.
5

For this experiment, a train-test split of 0.67-
0.33 was instated. Since phonological evolution is
quite regular and systematic, we should expect de-
cent results without a great proportion of data used
for training. Accuracies below are for the test set.
These values are consistently higher than a naïve
baseline of guessing the mode of each distribution,
proving that proto-language related features were
preserved in the retrived embeddings. (See Table
5.)

The MLP generally outperforms Ridge Classi-
fication on inference for these characters, with
the sole exception of tones, where RC outper-
forms MLP by 1.1%. The best results are attained
for tones and voice, showing these features to be
phonologically well preserved from Middle Chi-
nese to Xiang languages.

Interesting observations can be drawn from the
confusion matrices generated with such classifica-
tion. Presumably, these matrices can offer insight

5Canonically so, but there are a few erroneous entries in
the data we used, resulting in sometimes one or two extra
categories containing a few characters. They were kept.
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ID Changsha Shuangfeng Guanyang Quanzhou
0 Initial:/m/ Initial:/m/ Initial:/m/ Initial:/m/
1 Initial:/ph/ Initial:/ph/ Initial:/ph/ Initial:/ph/
2 Final:/ĩn/ Final:/ĩ/ Final:/ iẼ/ Final:/ ieN/
7 Final:/(u)ei/ Final:/ui/ Final:/ uEi/ Final:/uei/

Table 3: Analysis of Selected HDBSCAN Clusters. In these clusters, characters are predominantly, but not
exclusively associated with the listed features.

Alg. (Metric %) Hit@1 Hit@5 Hit@10
BoxE 51.25 87.19 93.76
RotatE 33.11 57.47 66.18
ComplEx 9.40 24.65 35.37

Table 4: An empirical demonstration of the superiority
of the BoxE algorithm for the phonological investigation
task among common missing link prediction methods.
The models were set to the same embedding dimension.
None of the models were fine-tuned or ran for more
than a single time, hence all readings should be seen as
sub-optimal.

into what categories were blended, which opposi-
tions were lost during the development of some lan-
guage family. One such example is demonstrated
in Figure 6. It could be seen that there is large
confusion between the Xian咸, Dang宕 and Shan
山 Shes, and also between Xie蟹 and Zhi止 Shes.
6 This could indicate that in Proto-Xiang, there
is confusion between these categories relative to
Middle Chinese.

Figure 6: Confusion matrix for She.

6In Baxter’s transcription,咸 = -eam,宕 = -ang,山 = -ean;
蟹 = -ea,止 = -i (Baxter and Sagart, 2014). There are only
hypothetical IPA values available for these archaic categories.

7 Discussions

Our current setting only operates on pre-abstracted
symbols and lacks incorporation of acoustic or
articulatory evidence. Incorporating multi-modal
data into a knowledge graph framework could en-
hance the quality of embeddings and enable more
accurate representations of phonological features.
Alsp, the proposed method uses shared embed-
dings for symbolic components across different
dialects, which cannot fully capture dialect-specific
variations. Investigating contextualized or dialect-
specific component embeddings could improve the
model’s ability to capture finer-grained phonologi-
cal distinctions. Finally, phonetically similar com-
ponents are currently treated as independent items,
which is too absolute an assumption. However, it
is also possible for phonetic cues to override the
correct phonological alignment in the model. In
many cases, phonetic similarity does not imply
diachronic homology. Two phonetically equiva-
lent syllables from two different dialects may have
different origins. Conversely, two phonetically dis-
tinct syllables from two different dialects may be
cognate. The subtle balance between "phonetic"
and "phonological" proximity requires further dis-
cussion.

Several lines of research may benefit from ro-
bust multi-dialectal representations. In dialectol-
ogy, there is need for estimating divergence be-
tween phonological systems. That includes the
divergences between its constituents, such as indi-
vidual characters, phonemes and syllables. With
multi-dialectal representations, this divergence can
be estimated quantitatively. In historical phonology,
the reconstruction of a proto-language demands
deep scrutiny of dialect systems whose efficiency
can be improved with manipulating the representa-
tions. Also, they can be used for completion of the
phonological knowledge base. Often knowledge
bases for Sinitic phonology are fragmented, due to
imperfect surveys and heterogeneity of sources, etc.
The representations can be used to infer missing
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Algorithm(Acc %) Grades Voice Tones She Initials Mu
Ridge Classification 65.3 76.4 84.1 54.6 49.4 18.6
MLP 70.5 81.1 83.0 61.4 53.2 26.9
Naïve Baseline 48.4 35.4 35.6 15.3 8.1 1.8

Table 5: Comparison of Ridge and MLP probes for proto-language Feature Inference. The baseline is the accuracy
obtained by uniformly guessing the most frequent class for each character.

pronunciations in different dialects to improve the
quality of observations.

The graph-based method proposed in this pa-
per benefits from phonological characteristics spe-
cific to Sinitic languages, but is also limited by
these characteristics. Specifically, the process of
constructing a phonological graph from words, as
proposed in this study, is less natural in languages
where words typically have many syllables, and
vary in the number of syllables contained. In these
languages, the temporal interaction of syllables
within a word is a new phenomena that the graph-
based method needs to adapt to. Additionally, in
these languages, it will be less straightforward to to-
kenize the words into expressive sub-words to use
as nodes in the graph. Presumably, in non-Sinitic
languages, the proposed method will be most per-
formant in other languages of the Southeast Asian
Sprachbund, such as those in the Hmong-Mien
or Austroasiatic families. These languages share
phonological features with Sinitic languages that
enable our method. On the other hand, this method
will likely meet more complications outside of the
local sprachbund.

8 Conclusion

This paper demonstrated the potential of graph-
based representation learning in Chinese Historical
Phonology. The representations are potent in many
ways, i.e. facilitating the reconstruction of minor
proto-languages.

In the future, more sophisticated techniques such
as deep learning models could be explored to fur-
ther improve the quality of the obtained represen-
tations. Furthermore, the proposed method can be
integrated with other linguistic resources, such as
recordings, articulatory time series, or orthographic
corpora, to enrich the knowledge base and improve
the accuracy of reconstructions. With the develop-
ment of modern, massive linguistic datasets such
as Nk2028(nk2028, 2020), CogNet(Batsuren et al.,
2022) or MorphyNet(Batsuren et al., 2021) as well
as improvements in large pre-trained models, we

can expect foundational models that possess emer-
gent and meta-generalizing capabilities to arise in
historical phonology or morphology. This avenue
of research holds great promise for advancing our
understanding of the phonology and evolution of
Sinitic languages, and potentially other language
families as well.

Limitations

This study stems from a novel idea for Chinese
Historical Phonology Studies. As few direct pre-
decessors could offer hindsight, there are quite a
few limitations to this study that may be addressed
with further work.

1. While the initial-final-tone decomposition is
convenient in this context, it also limits the
transferrability of the proposed tool to lan-
guages outside of the Sinosphere. This calls
for further exploration of more generalize-
able approaches to phonological representa-
tion learning.

2. Polyphonic characters were not fully uti-
lized in the study, and their alignment per-
reading and tokenization into separate identi-
fiers should be considered in future work.

3. Finally, making full use of the dataset is cru-
cial, and the stochastic train-test split used
in this study may leave out important hints.
Alternative sampling strategies, such as cross-
validation or bootstrapping, could enhance the
robustness of the results.
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