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Abstract
It has been suggested that pretrained language
models can be viewed as knowledge bases. One
of the prerequisites for using language mod-
els as knowledge bases is how accurately they
can store and retrieve world knowledge. It
is already revealed that language models can
store much 1-to-1 relational knowledge, such
as “country and its capital,” with high mem-
orization accuracy. On the other hand, world
knowledge includes not only 1-to-1 but also 1-
to-N relational knowledge, such as “parent and
children.” However, it is not clear how accu-
rately language models can handle 1-to-N rela-
tional knowledge. To investigate language mod-
els’ abilities toward 1-to-N relational knowl-
edge, we start by designing the problem set-
tings. Specifically, we organize the character of
1-to-N relational knowledge and define two es-
sential skills: (i) memorizing multiple objects
individually and (ii) retrieving multiple stored
objects without excesses or deficiencies at once.
We inspect LMs’ ability to handle 1-to-N rela-
tional knowledge on the controlled synthesized
data. As a result, we report that it is possible to
memorize multiple objects with high accuracy,
but generalizing the retrieval ability (expressly,
enumeration) is challenging.

1 Introduction

As a result of their pretraining on large amounts of
text, language models (LMs) store certain world
knowledge facts, such as “Paris is the capital of
France”, in their parameters and can retrieve that
knowledge when given a suitable prompt. Since the
ability to store and retrieve knowledge is also a key
functionality of knowledge bases (KBs; Weikum
et al., 2021), prior work has proposed to view lan-
guage models as knowledge bases (Petroni et al.,
2019). Quantitative evaluation of world knowledge
in LMs has focused on 1-to-1 relational knowledge
involving two entities, such as a country and its
capital (Petroni et al., 2019; Heinzerling and Inui,
2021; Safavi and Koutra, 2021; Razniewski et al.,
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Figure 1: Memorize and enumerate relational knowl-
edge. We are considering a synthetic setting in which
the LM is made to memorize a specific set of individual
relations and then needs to aggregate those relations
into 1-to-N relations.

2021). However, the question if and how well LMs
can handle 1-to-N relations, such as relations be-
tween parents and their children, is underexplored
so far.

Here, we conduct a study to assess the capabil-
ity of LMs to store and retrieve 1-to-N relations
in a manner similar to knowledge bases. We con-
sider a setting in which the model first is trained
to memorize individual relation instances, such as
“Tom has a child named Emma”, “Bob has a child
named Ava”, “Tom has a child named Lucas”, and
“Tom has a child named Olivia”. During inference
the model then has to retrieve 1-to-N relation, e.g.,
“Tom has children named Emma, Lucas, Olivia”
(Figure 1).

To investigate the possibility of viewing LMs
as KBs more precisely, it is necessary to clarify
the basic abilities of LMs, such as how accurately
they can store 1-to-N relational knowledge and how
flexibly they can retrieve multiple entities they have
stored.
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Our study represents the first comprehensive in-
vestigation of 1-to-N relational knowledge. Our
contributions are summarized as follows: (1) We
identified the capabilities necessary for LMs to
handle 1-to-N relational knowledge, taking into ac-
count its unique properties. Specifically, LMs must
be able to accurately memorize any object appear-
ing discretely and enumerate multiple objects with-
out over- or under-recall based on memory. (§ 3) (2)
Based on the identified capabilities, we formulated
two training schemes: element-valued supervision
for “memorization” and set-valued supervision for
“enumerating.” (§ 4) (3) We conducted a quantita-
tive evaluation of LMs’ “memorization” abilities
from both subject-oriented and object-oriented per-
spectives and categorized the errors encountered
during “enumerating.” Our results suggest that
LMs are able to store 1-to-N relational knowledge
with reasonable accuracy, but generalizing the abil-
ity to enumerate proves to be challenging. (§ 6)

2 Related Work

Factual knowledge probing Petroni et al.
(2019) investigated how much knowledge LMs had
acquired from large corpora by having models such
as pretrained BERT (Devlin et al., 2019) solve
problems in the “fill-in-the-blank” format. They
also pointed out three critical advantages of treating
LMs as KBs: “LMs require no schema engineer-
ing, do not need human annotations, and support
an open set of queries.”

Jiang et al. (2020) and Brown et al. (2020) also
worked on creating optimal prompts for extract-
ing correct answers from pretrained LMs. These
investigations aim to extract knowledge that LMs
have acquired implicitly during pretraining. On the
other hand, we are interested in the degree to which
knowledge can be handled accurately when LMs
explicitly learn it. Thus, investigating what and
how well pretrained LMs acquire 1-to-N relational
knowledge from corpora is beyond our scope.

Storing 1-to-1 relational knowledge Heinzer-
ling and Inui (2021) established two basic require-
ments for treating LMs as KBs: “(i) the ability to
store a lot of facts involving a large number of enti-
ties and (ii) the ability to query stored facts.” Based
on these requirements, they elaborately examined
how much and how accurately LMs can store 1-to-
1 relational knowledge by comparing various entity
representations. However, the behavior of LMs
concerning 1-to-N relational knowledge remains

unclear.

Set handling This study explores handling mul-
tiple objects, which can be achieved by handling a
set of objects. Previous works such as Deep Sets
(Zaheer et al., 2017) and Set Transformer (Lee
et al., 2019) are representative ones that address
set handling in neural networks or transformers
(Vaswani et al., 2017).

Both focus on sets as inputs, being permutation-
invariant and treating sets of arbitrary size. While
this study focuses on sets as outputs rather than
inputs, the properties such as permutation-invariant
are considered to be essential aspects in common.

3 Designing an approach to 1-to-N
relational knowledge

In this section, we describe the unique properties
of 1-to-N relational knowledge and what capabili-
ties of LMs are needed to handle 1-to-N relational
knowledge.

To begin with, we define three significant unique
factors that make 1-to-N relational knowledge chal-
lenging to deal with: First, when the subject or
relation under consideration changes, the number
of objects associated with it changes. For example,
consider answering the question, “{Subject} has
children named <mask>.” The difficulty is that the
number of correct objects changes depending on
the input. Second, considering existing corpora,
multiple objects are likely to occur discretely. For
example, Barack Obama has two children, Malia
and Sasha, but only Malia may appear in some
specific contexts, and only Sasha may appear in
other contexts.. Finally, third, when we assume a
situation where an LM is used practically as a KB,
it is necessary to output these discretely appearing
objects together to avoid generating an inadequate
response to the input query.

Therefore, given the above properties, the two
essential LMs’ competencies considered necessary
to manage 1-to-N relational knowledge are as fol-
lows. (i) “the ability to accurately memorize any
objects appearing discretely.” (ii) “the ability to
retrieve multiple objects without over- or under-
recall based on memory.” In order to consider an
end-to-end approach to 1-to-N relational knowl-
edge, this study tackles it as a generative task using
the sequence-to-sequence model (Sutskever et al.,
2014), which allows for flexible responses based
on input.
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Figure 2: (i) Element-valued supervision and (ii) set-valued supervision. Element-valued supervision is intended
to have the LM memorize all objects of a 1-to-N relation individually. For a given subject, there are as N relation
instances. We train the model to output a single object entity when given an input query about a subject entity.
During the evaluation, N sequences are generated using a beam search of size N to verify if all N object entities are
stored and retrieved. Set-valued supervision is used to train the model to enumerate all objects for a given entity
and predicate in one prediction step.

4 Method

4.1 Terminology

In this work, we make use of the following terms:

Relation triple: A triple consisting of a subject
and an object entity, as well as a predicate that
describes the relation that holds between the subject
and the object, e.g., (Tom, hasChild, Emma).

1-to-N relation: A set of relation triples with the
same subject and predicate, but different objects,
e.g., (Tom, hasChild, Emma) and (Tom, hasChild,
Lucas).

Individual relation instance: A relation triple
expressed in text, for example “Tom has a child
named Emma.”

Element: Viewing a 1-to-N relation as a set, we
refer to individual relation instances as elements of
that set, e.g., “Tom has a child named Emma.” is an

element of the 1-to-N relation that holds between
Tom and his children.

Element-valued supervision: One of the two su-
pervised training schemes we employ. A model
is trained on elements, i.e., individual relation in-
stances, of 1-to-N relations. Concretely, the model
is given a relation instance with the object masked
out, e.g., “Tom has a child named <mask>.” and
has to predict the masked out object, e.g., “Emma”.
The goal of this training scheme is to have the
model memorize individual objects based on their
corresponding subjects.

Set-valued supervision: In the second of our
supervised training schemes the model is trained
to predict the set of all objects for a given sub-
ject and predicate, e.g., given “Tom has children
named <mask>.”, the model has to generate the
text “Emma, Lucas, Olivia”.
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Table 1: Templates: We used different templates for each model to fit each pretraining setting.

Parent-children Director-titles

BART
Element-valued
supervision {Sbj} has a child named <mask>. {Sbj} directed a film titled <mask>.

Set-valued
supervision {Sbj} has children named <mask>. {Sbj} directed following movies: <mask>.

T5
Element-valued
supervision What is the name of {Sbj}’s child? What movie did {Sbj} direct?

Set-valued
supervision What are the names of {Sbj}’s children? What are the titles of movies {Sbj} directed?

4.2 Handling of 1-to-N Relational Knowledge

We investigate the behavior of LMs for 1-to-N rela-
tional knowledge when explicitly trained. Specif-
ically, we use the sequence-to-sequence model to
generate variable-length responses to inputs.

As described in § 3, the two abilities necessary
for LMs to handle 1-to-N relational knowledge are
(i)memorizing multiple discretely appearing ob-
jects and (ii)enumerating memorized objects with-
out excess or deficiency. In this section, we conduct
two experiments, each corresponding to the essen-
tial abilities.

(i) Memorization The first experiment is aimed
at “memorization” through element-valued supervi-
sion. Here, 1-to-N relational knowledge is decom-
posed into a one-to-one form, and we train LMs
to memorize multiple objects individually. In the
learning process, one object is output in response
to an input for a particular subject, and then all ob-
jects will be memorized in this fashion. Therefore,
the state in which the LMs memorize all N objects
can also be paraphrased as the state in which the
LMs can output all N objects.

Therefore, the evaluation of whether LMs mem-
orized multiple objects is checked by generating
multiple sequences using beam-search. Specifi-
cally, N sequences are generated for a subject using
the same query as the training data. By checking
how many correct objects are included in the se-
quences, we evaluate how many objects the LMs
memorized.

(ii) Enumeration The second experiment at-
tempts to acquire “the ability to enumerate memo-
rized objects.” Here, training by set-valued super-
vision is performed in conjunction with memoriza-
tion by element-valued supervision. The reason
for using the two supervisory methods together is
the premise that to enumerate multiple objects, it
is necessary to memorize them in the first place.
Although it is possible to perform element-valued

supervision and then shift to set-valued supervision,
catastrophic forgetting of memorized objects may
occur during the training of set-valued supervision.
Indeed, we have confirmed that catastrophic forget-
ting of memorized objects occurs during set-valued
supervision, so in this paper, the two supervisory
methods are used together. For some subjects in
the training data, LMs explicitly learn the behavior
of enumerating the objects in response to queries
that explicitly ask for multiple objects. We then
test whether set-valued supervision allows LMs to
enumerate objects for other subjects as well, i.e.,
whether they can generalize the ability to enumer-
ate.

5 Experimental setup

5.1 Synthetic Data
In the following experiments, we uniquely prepared
the 1-to-N dataset to measure how well LMs can
accurately store plenty of facts. Specifically, we
randomly obtained canonical names of parents and
their two to four children from Wikidata (Vrandečić
and Krötzsch, 2014). We also randomly obtained
the canonical names of directors and their two
to four representative films from IMDb Datasets1.
Therefore, by preparing 1-to-2, 1-to-3, and 1-to-4
relational knowledge, we will observe how LMs
performance changes as the number of objects in-
creases. We only collected data that meets the
following conditions.

• To ensure that all entities are distinguishable,
there is no data with the same canonical name
across both subjects and objects.

• Only entities consisting of four or fewer words
separated by spaces or hyphens are used to
adjust for storing difficulty due to word length.

We only consider memorizing and enumerating
entities which appear in the training data.

1https://www.imdb.com/interfaces/
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Figure 3: Object-oriented memorization accuracy: showing how many objects LMs memorized
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Figure 4: Subjects-oriented memorization accuracy: showing how many subjects are there that LMs memorized
their corresponding N objects.

5.2 Models and Training settings

We used the pretrained BART-base (Lewis et al.,
2020) and T5-base (Raffel et al., 2019) as the
sequence-to-sequence model in the experiments.
The training in the two experiments described be-
low (§ 6.1 and § 6.2) was continued until the mod-
els strongly overfit the training data. Precisely, we
continued training until the accuracy of the training
data no longer improved by more than 30 epochs.

The accuracy was calculated as follows: for
element-valued supervision, the accuracy was de-
termined by whether the model could generate the
correct object for each subject in the input. If the
model generated one of the correct N objects for
each subject, it was considered correct; otherwise,
incorrect. For set-valued supervision, the accuracy
was determined by whether the model generated a
set of multiple correct objects with no omissions
or additions. If the model generated a complete
set of correct objects, it was considered correct;
otherwise, incorrect.

As detailed training settings, the learning rate
was started at 5e-5 in common with BART and T5,
and it was reduced by half if the accuracy did not

improve by more than three epochs. The batch
size was varied according to the model and training
data size/domain. AdamW (Loshchilov and Hutter,
2019) was commonly used as the optimizer. In
addition, a different template was used for each
model so that the input sentence templates were
similar to the pretraining settings for each (BART
uses <mask> token in pretraining, but T5 does not.)
The templates used are listed in Table 1.

6 Experiments

6.1 Element-valued supervision

In the first experiment, we investigated the ability
to memorize multiple objects using element-valued
supervision. Here, we tested whether the LMs
could correctly store N objects associated with a
single subject. Specifically, as shown in Figure 2,
the learning process of having one object generated
for each input sentence, such as “{Subject} has a
child named <mask>.” or “{Subject} directed a
film titled <mask>.” was performed for all objects.
Thus, the learning setup is such that there are as
many target sentences as objects for each input
sentence.
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Table 2: Accuracy of enumerate operation

Model BART-base T5-base
Set-valued supervision ratio 30% 60% 90% 30% 60% 90%

Parent-children
1-to-2 46.7 45.8 49.3 27.0 40.7 49.5
1-to-3 8.33 9.33 9.67 10.7 16.8 20.7
1-to-4 1.00 1.33 2.17 0.500 2.33 2.67

Director-titles
1-to-2 42.0 43.3 44.17 19.8 24.2 28.7
1-to-3 22.5 24.2 26.3 14.8 15.8 23.7
1-to-4 6.17 10.7 11.3 2.33 3.83 7.00

We then checked the degree to which LMs
trained with element-valued supervision could re-
call multiple objects through the generation of N
sequences using beam search. To be precise, N
was for the number of objects associated with the
input subject, and we analyzed the count of correct
objects within those sequences.

In this experiment, we also tested whether the
LMs’ memorization accuracy changed when the
training data size, i.e., the number of entities, was
varied. Here, we evaluated this memorization accu-
racy from two perspectives.

Object-oriented memorization accuracy The
first perspective is object-oriented memorization
accuracy, shown in Figure 3, which evaluates the
degree of recall of objects in the training data. Fig-
ure 3a and 3b correspond to the parent-children
and director-titles datasets, respectively. The solid
blue line corresponds to T5, and the dashed yellow
line to BART, with darker colors corresponding
to 1toN relational knowledge with more objects.
The results show that T5 has better memorization
accuracy than BART, although no significant dif-
ferences by data domain were observed. Also, the
larger N, i.e., the greater the number of objects as-
sociated with one subject, the more likely N entities
could not be memorized.

Subject-oriented memorization accuracy The
second perspective, subject-oriented memorization
accuracy, evaluated how many subjects were mem-
orized with all related N objects. Specifically, in
generating multiple objects by beam search, we
show how many subjects existed for which all N
objects were generated.

The results are shown in Figure 4, where 4a
and 4b correspond to the parent-children and
director-title datasets, respectively, as in Figure 3.
The results confirmed that, overall, T5 has higher
memorization accuracy. Looking at performance

by the number of objects, it is clear that, in com-
mon with the two data domains and two models,
the greater the number of objects, the more difficult
it was to remember all of them in conjunction with
the subject.

Interestingly, both memorization accuracies in
the two perspectives show roughly independent be-
havior concerning data size. One possible reason
for the higher overall memory accuracy of T5 is
that the parameter size of the T5-base is about 1.5
times larger than that of BART-base. This may con-
tribute to higher memory accuracy. The fact that
100% memorization accuracy was not achieved
for either data size may suggest that memorizing
1-to-N relational knowledge is not easy for LMs.
Examples of LMs’ predictions are shown in Table
3.

6.2 Element-valued and Set-valued
supervision

In this subsequent experiment, the model was
trained with element-valued and set-valued super-
vision to acquire the ability to enumerate all associ-
ated objects. More expressly, compared to the first
experiment, we additionally employed set-valued
supervision, which involved using “{Subject} has
children named <mask>.” as the input sentence
and “{Object1}, {Object2}, ...” as the correspond-
ing target sentence, as an example. This approach
aimed to generalize the model’s ability to enumer-
ate all accurately memorized objects in response to
queries requesting multiple objects.

We conducted both element-valued and set-
valued supervision during training. Specifically,
we trained LMs using element-valued supervision
on all subjects to memorize all associated objects.
We fixed the training data size at 3000 subjects for
each. Simultaneously, we randomly selected 20%
of the subjects, i.e, 600 subjects, as a test set for
set-valued supervision. For the remaining 80% of
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Table 3: Examples of generated N sequences for element-valued supervision. Showing 1-to-3 relational knowledge,
which includes leakage of memorization. Objects with green background color are correct and those with red are
incorrect.

Data Domain 1-to-N Subject Gold objects Top-N sequences

Parent-children 1-to-3 Dr. Dre
Hood Surgeon
La Tanya Danielle Young
Truice Young

BART
1: Hood Surgeon

2: Truice Young

3: Young Hood Surgeon
T5
1: Hood Surgeon

2: Truice Young

3: La Tanya Danielle Young

Director-titles 1-to-3 Jack Holton
A Dream for Christmas
Escape to Witch Mountain
The Wild Country

BART
1: Escape to Witch Mountain

2: A Dream for Christmas
3: The Wild Country
T5
1: Escape to Witch Mountain

2: A Dream for Christmas
3: Adventures in Dinosaur City

the subjects, we varied the proportion of subjects
for which set-valued supervision was applied (i.e.,
30%, 60%, or 90%) to examine whether the gen-
eralization ability would change depending on the
number of instances that the LMs learned how to
enumerate their corresponding objects.

The goal was to investigate how well the model
could generalize to subjects in the test set when
using set-valued supervision and to determine the
impact of varying the proportion of subjects with
set-valued supervision on model performance.

The results (Table 2) show that the enumerating
accuracy is highest when the supervision ratio is
90% for all, indicating that it is important to have
many training instances to generalize the enumer-
ating capability.

Although there are differences in the enumerat-
ing accuracy scores across data domains and mod-
els, we found a tendency for the enumeration per-
formance to decrease significantly as the number
of target words increases.

Error analysis Quantitative error distributions
are shown in Table 4, and specific examples of
incorrect answers are shown in Table 5. Table 4
shows that for small numbers of objects (e.g., 1-
to-2), BART tended to generate incorrect objects
(labeled “Incorrect”), while T5 often duplicated the
same object (labeled “Duplication”), highlighting
a noticeable difference between the two models.
As the number of objects increased (e.g., 1-to-3, 1-

to-4), both models were more likely to produce
wrong answers due to missing objects (labeled
“Missing”). The distribution of errors across differ-
ent datasets was generally similar, but both models
were more prone to missing objects in the parent-
children dataset, suggesting that the type of entity
names might have an impact on the error patterns.

7 Conclusion

We addressed handling 1-to-N relational knowl-
edge by a generative approach using the sequence-
to-sequence model. Since little work has been done
on 1-to-N relational knowledge in previous studies,
we started by organizing the properties of 1-to-N
relational knowledge and setting up the capabili-
ties considered necessary for LMs based on these
properties.

Specifically, we defined two essential capabili-
ties: “memory of discretely appearing multiple ob-
jects” and “enumeration of objects based on mem-
ory.” Then, we developed training schemes based
on these perspectives. We used element-valued su-
pervision and beam search for the former to memo-
rize and evaluate multiple objects. We found that
nearly 90% of the objects could be memorized, al-
though we observed a tendency for memory omis-
sions to occur as the number of objects increased.
However, we also confirmed that it is challenging
to achieve 100% perfect memory.

For the latter, we attempted to generalize “enu-
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Table 4: Quantitative error analysis on 90% set-valued supervision: showing the number of incorrect responses
generated by the model, categorized into three types of errors. "Incorrect" denotes model-generated sequences that
contain one or more incorrect objects. Responses that lack objects are classified as "Missing" (omission of objects),
while those with duplicate instances of the same object are labeled as "Duplication."

Model BART-base T5-base
Error Type Incorrect Missing Duplication Incorrect Missing Duplication

Parent-children
1-to-2 280 0 18 154 2 147
1-to-3 229 306 7 93 287 96
1-to-4 175 406 6 105 380 99

Director-titles
1-to-2 298 0 37 156 1 271
1-to-3 70 352 20 41 287 130
1-to-4 25 481 25 37 441 80

Table 5: Examples of enumerating error for the parent-children dataset. The error part is colored in red. These errors
are for 1-to-3 relational knowledge and were generated by the T5, which is trained with 90% set-valued supervision.

Error Subject Gold and Prediction

Missing Jeb Bush
Gold: George P. Bush, Noelle Bush, John Bush Jr.
Pred: John Bush Jr., Noelle Bush (missing)

Incorrect Shimon Peres
Gold: Tsvia Walden, Hemi Peres, Yoni Peres
Pred: Tsvia Walden, Yoni Peres, Leo Peres

Duplication Alice Meynell
Gold: Viola Meynell, Everard Meynell, Madeline Lucas
Pred: Viola Meynell , Madeline Lucas, Viola Meynell

Excess(Incorrect) Alan Alda
Gold: Beatrice Alda, Elizabeth Alda, Eve Alda
Pred: Elizabeth Alda, Beatrice Alda, Eve Alda, Nanna Alda

meration ability” by set-valued supervision in con-
junction with memorization by element-valued su-
pervision. The results showed that learning more
data improved the generalization performance for
acquiring enumeration ability. However, we also
observed the LM’s behavior, which aligns with hu-
man intuition: the more objects increase, the more
difficult it becomes to enumerate all of them cor-
rectly. Notably, the generalization performance for
1-to-2 relational knowledge was only about 50%
for the test set, and for 1-to-4 relational knowl-
edge, only about 10% generalization performance
at most.

For our next steps, we are considering the fol-
lowing approach. The training setup of the cur-
rent element-valued supervision is characterized
by multiple target sentences for one input sentence,
which is incompatible with the model’s learning
algorithm. Therefore, we would like to test a mem-
orizing method using ordinal numerals such as first
and second to distinguish each template for N ob-
jects. We would also like to investigate this memo-
rization method’s effect on the generalization per-
formance of enumeration.

As for enumeration, which has been difficult
to generalize, we would like to examine effective
means of improving performance for a small num-
ber of objects. Specifically, we are considering

adjusting the hyperparameters for text generation
and verifying whether errors in enumerating will
be reduced. After that, we would like to explore
learning methods to enumerate N objects without
needing hyperparameters adjustment in stages.

Introducing our 1-to-N problem setting into the
LMs-as-KBs paradigm opens up many more in-
triguing challenges. While we investigated this
setting under a controlled condition with a uniform
frequency of object appearance, the frequency of
each of the N objects in a corpus is likely to vary
in reality. Furthermore, there may be multiple para-
phrases expressing the same relation.

For example, in our study, we only considered
the phrase “{Subject} has a child named {Object}.”
but there are other phrases such as “{Subject}’s
child is {Object}.” or “{Object} is a daughter of
{Subject}.” As a primary avenue for future research,
we will explore whether LMs can handle 1-to-N
relational knowledge effectively under these more
complex conditions.
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