
Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics - Student Research Workshop, pages 200–211

July 10-12, 2023 ©2023 Association for Computational Linguistics

Probing for Hyperbole in Pre-Trained Language Models

Nina Skovgaard Schneidermann1, Daniel Hershcovich2 and
Bolette Sandford Pedersen1

1Center for Language Technology,
2Department of Computer Science

University of Copenhagen
ninasc@hum.ku.dk, dh@di.ku.dk, bspedersen@hum.ku.dk

Abstract
Hyperbole is a common figure of speech, which
is under-explored in NLP research. In this
study, we conduct edge and minimal descrip-
tion length (MDL) probing experiments for
three pre-trained language models (PLMs) in
an attempt to explore the extent to which hy-
perbolic information is encoded in these mod-
els. We use both word-in-context and sentence-
level representations as model inputs as a basis
for comparison. We also annotate 63 hyper-
bole sentences from the HYPO dataset accord-
ing to an operational taxonomy to conduct an
error analysis to explore the encoding of dif-
ferent hyperbole categories. Our results show
that hyperbole is to a limited extent encoded
in PLMs, and mostly in the final layers. They
also indicate that hyperbolic information may
be better encoded by the sentence-level repre-
sentations, which, due to the pragmatic nature
of hyperbole, may therefore provide a more ac-
curate and informative representation in PLMs.
Finally, the inter-annotator agreement for our
annotations, a Cohen’s Kappa of 0.339, sug-
gest that the taxonomy categories may not be
intuitive and need revision or simplification.

1 Introduction

Hyperbole is a common figure of speech that
involves the use of exaggerated language for
emphasis or effect (Claridge, 2010). Humans
exaggerate in a variety of registers and con-
texts, spanning from the colouring of informal,
everyday speech to a literary trope or a rhetor-
ical means of persuasion. Hyperboles inten-
tionally augment or diminish a feature of some
referent of discourse, presenting this feature
on some more or less abstract scale of mag-
nitude. The task of hyperbole identification
poses a challenge to natural language process-
ing in that it is highly pragmatic and utilizes
context and background knowledge to distin-
guish between literal and exaggerated usage of

a given lexical unit. As an illustration of the
pragmatic nature of hyperbole, we can inspect
the following two example sentences, wherein
(1A) is hyperbolic and (1B) is literal:
(1A) I’ve seen this movie at least eighty thousand times.

(1B) These products are tested at least eighty thousand times.

In (1A), it is reasonable to assume that the
speaker is exaggerating the number of times
they have seen this particular movie to empha-
size their enjoyment or familiarity with it be-
cause this would otherwise be a significant and
unrealistic time investment. However, when
it comes to a particular product, it has likely
gone through rigorous testing and quality con-
trol measures, which means that the statement
in (1B) can reasonably be interpreted literally.

Hyperbole identification has recently at-
tracted the interest of NLP researchers who
have collected datasets manually or semi-
automatically and shown that computational
modelling of hyperbole is indeed plausible
(Troiano et al., 2018). However, it remains
an under-explored area of research in figura-
tive language processing (FLP), primarily be-
cause its subjective and contextual nature com-
plicates computational modelling of the phe-
nomenon and makes it challenging to apply a
standard for collecting high-quality annotated
data (Biddle et al., 2021).

This paper seeks to contribute to the grow-
ing research on hyperbole identification in two
ways: Firstly, we perform probing tasks to
investigate whether pre-trained language mod-
els (PLMs) encode hyperbolic information in
its representation without fine-tuning on task-
specific data.1 In recent years, probing tasks

1By “hyperbolic”, we consistently refer to the figure of
speech, not the mathematical space.

200



have emerged as a popular approach in NLP
for interpreting and analyzing model represen-
tations, and it has previously been shown that
PLMs do encode both simile and metaphori-
cal knowledge (Chen et al., 2022). However,
to our knowledge, hyperbole probing remains
so far unexplored. Therefore, we replicate
edge and minimal description length (MDL)
probing experiments for metaphor described
by Aghazadeh et al. (2022) on a small hy-
perbole dataset constructed by Troiano et al.
(2018). We expect that encoding hyperbole
may present a larger challenge to PLMs than
metaphor because hyperbole knowledge is pri-
marily pragmatic rather than semantic (Mc-
Carthy and Carter, 2004).

Secondly, we build an operational taxonomy
based on a meta-analysis of the linguistic treat-
ment of hyperbole, and annotate an existing
dataset according to said taxonomy (McCarthy
and Carter, 2004; Mora, 2009; Claridge, 2010;
Burgers et al., 2016; Troiano et al., 2018). We
then use these annotations to analyze errors in
model predictions to further shed light on the
types of hyperboles that may pose a particular
challenge to PLMs, as well as when construct-
ing training corpora for the phenomenon. Our
work will hopefully provide insight into the
challenges of PLMs in identifying hyperbole,
as well as contribute to developing an opera-
tional annotation standard for computational
modelling of hyperbole.2

The remainder of this paper is structured as
follows: Section 2 contains an overview of re-
lated work in hyperbole research, as well as
probing experiments on other figures of speech.
Section 3 provides a background on the lin-
guistic research that is the framework for our
operational taxonomy and annotation. Section
4 is a short explanation of probing tasks for
PLMs, which we relate to the aim of our ex-
periments. Section 5 outlines our experimental
setup and describes the modifications made
to the HYPO dataset. Section 6 provides our
results and preliminary error analysis, and sec-
tion 7 is a discussion of said results, as well as

2Our code for the probing tasks is available at https:
//github.com/NiSc91/HyperboleProbe

ideas for future research. Section 8 contains a
summary and conclusions.

2 Related Work

In this section, we outline previous research
related to both hyperbole and probing experi-
ments on other figures of speech.

Hyperbole in NLP. While tropes such as
metaphor and sarcasm have received consider-
able attention within figurative language pro-
cessing research (Abulaish et al., 2020; Rai and
Chakraverty, 2020; Moores and Mago, 2022),
the automatic modelling of hyperbole is still at
a relatively early stage. Research within this
area can be roughly split into two objectives,
hyperbole identification (HI) and hyperbole
generation (HG).

Within the first, and for our purposes most
interesting, category, Troiano et al. (2018)
introduce the task of hyperbole detection
by showing that classical machine learning
pipelines can identify hyperboles with beyond-
chance accuracy. For this purpose, they col-
lect HYPO, the only manually constructed cor-
pus of 709 English hyperboles, and include
with the hyperbolic sentence s two contrasting
corpora: One consisting of the manually con-
structed literal paraphrases to each of the sen-
tences, and another consisting of a contrastive
non-hyperbolic example using the same min-
imal lexical unit. They then identify a set of
hand-crafted features targeting qualitative and
quantitative aspects of exaggeration and re-
port the best-performing classifier to be logis-
tic regression using the literal paraphrases as
negative examples, which achieves a 76% F1
score. In the same realm, Kong et al. (2020) ad-
dress hyperbole detection using deep learning
techniques on a constructed Chinese corpus
and find that an LSTM with hand-crafted and
embedding features produced superior results
(85.4% accuracy). Biddle et al. (2021) con-
struct a multitask learning classification archi-
tecture for hyperbole detection using a multi-
task BERT-based approach, wherein the model
is fine-tuned on the HYPO dataset and takes
the literal paraphrases as privileged informa-
tion using triplet sampling. The authors find
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that their model improves the logistic regres-
sion baseline described by Troiano et al. (2018)
by 10%. The authors also devise a series of test
sentences to linguistically probe their model
for extreme case formulations (ECFs), quanti-
tative, and qualitative hyperboles, as described
by Mora (2009), and find that their model par-
ticularly excels at hyperboles containing ECFs,
which may be due to the lexical substitution be-
tween the hyperbole and the literal paraphrase
being minimal.

Recent frameworks have also leveraged pre-
trained language models to generate hyper-
bole and expand on existing hyperbole data
in a semi-supervised way. Specifically, Tian
et al. (2021) construct a sentence-level hyper-
bole generation model by fine-tuning it on sen-
tences from a Reddit corpus using the syntac-
tic pattern known as the “so ... that” pattern,
which is said to be a productive strategy for
hyperbole (McCarthy and Carter, 2004). The
authors annotate the data with semantic rela-
tionships within the sentence and feed the an-
notations to COMeT models (Bosselut et al.,
2019) trained to generate commonsense and
counterfactual inference. They then train a
classifier to rank hyperbole candidates and use
a paraphrase model to generalize to more syn-
tactic patterns. An HG approach by Zhang and
Wan (2021) involves constructing a large-scale
hyperbole corpus, HypoXL, and proposes an
unsupervised approach to hyperbole genera-
tion wherein a fine-tuned BART model is used
to fill in masked hyperbolic spans.

While these efforts point towards the possi-
bility of successfully training computational
models for the task of identifying hyperbole,
the research so far also has significant gaps:
Firstly, hyperbole in NLP lacks a unifying
definition or linguistically motivated formal
theory to describe the phenomenon. This is
reflected in a lack of a consistent annotation
scheme and procedure for hyperbole identifica-
tion in the available data, which makes hyper-
bole studies relatively far behind investigations
of metaphor, where most annotated data use
either the Metaphor Identification Procedure
and its extensions (MIP/MIPVU; Group, 2007;

Steen et al., 2019), or Conceptual Metaphor
Theory (CMT; Lakoff and Johnson, 1980) as
a procedure for annotation. This consistency
of theoretical framework and annotation pro-
cedure makes it easier to perform experiments
generalizing across languages and datasets.
Secondly, limited attempts have been made
to probe pre-trained language models on how
well they encode hyperbole without any fine-
tuning. This makes it unclear whether models
simply reconstruct the hyperboles found in the
fine-tuning objective, and how well the model
is able to learn hyperbolic information in a
zero-shot or few-shot setting.

Our experiment is, to our knowledge, the
first one to not utilize a fine-tuned model on hy-
perbolic sentences and to instead use probing
methods to test for the encoding of hyperbolic
information in PLMs.

Probing PLMs for Figurative Language
Information. Probing techniques provide
ways to understand and interpret the internal
representations learned by deep neural net-
works (Belinkov, 2022). They typically in-
volve extracting particular features or repre-
sentations from a model’s intermediate layers
to gain insights into its structure or decision-
making process. Several recent experiments
have been designed to probe PLMs for infor-
mation on figurative language. Namely, Chen
et al. (2022) tackle similarity interpretation (SI)
and generation (SG) tasks by probing simile
knowledge from PLMs by testing it on similar-
ity triple completion, i.e. sentences that take
the form [NP1] is as [ADJ] as [NP2]. Their
approach is to manually construct masked sen-
tences with this syntactic pattern and predict
the candidate words in the masked position.
To that end, they adopt an auxiliary training
process with the MLM loss to enhance the pre-
diction diversity of candidate words. While
this kind of probing works well to generate
particular syntactic constructions, it would be
ineffective for hyperbole due to its relatively
limited dependence on syntax.

Instead, we choose to adapt several exper-
iments conducted for metaphor probing by
Aghazadeh et al. (2022) for hyperbole. The
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(a) Subtree and examples for the Dimension category.

(b) Subtree and examples for the Type category.

Figure 1: The first two categories in the proposed taxonomy for hyperbole with examples for each.

authors conduct probing in two ways: First,
they train a linear probing classifier on 3 dif-
ferent PLMs to evaluate the accuracies and ex-
tractabilities with which they encode metaphor-
ical knowledge. Secondly, they use MDL prob-
ing to analyze the depth of the encoding of
metaphorical information in multi-layer repre-
sentations. The authors further extend their ex-
periment by generalizing across four datasets
and four languages. The results suggest that
contextual representations in PLMs do encode
metaphorical knowledge, mostly in their mid-
dle layers, and that it is possible to transfer
this information across languages and datasets
provided the annotation is consistent across
training and testing sets.

While we can replicate the basic probing
experiments, we cannot test the model’s gen-
eralizability given the scarce hyperbole data.
However, we do expect that it is possible via
these techniques to learn something about the
internal representations of hyperbole.

3 A Taxonomy for Hyperbole

In simple terms, hyperbole involves exagger-
ating a feature’s property X beyond what is
justified by the literal state of affairs (Claridge,
2010; Troiano et al., 2018). Stated in a more
discourse-centred way, hyperbole occurs when
an expression is more extreme than justified
given the ontological referent, i.e. the entity in
the world referenced by the text (Burgers et al.,
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(a) Subtree and examples for the Possibility category.

(b) Subtree and examples for the Conventionality category.

Figure 2: The last two categories in the taxonomy.

2016). While much of the work on hyperbole
has previously been subsumed under studies
of metaphor, humour, and verbal irony, recent
corpus linguistic analyses have shed light on
more fine-grained characteristics. Namely, the
consensus in the treatment of hyperbole in lit-
erature is that the phenomenon is, among oth-
ers, characterized by the presence of extreme
case formulations (ECF), the ability of hyper-
bole to create either extreme possible worlds or
downright counterfactual and absurd scenarios,
and its augmentation of some property along a
qualitative or quantitative scale (McCarthy and
Carter, 2004; Mora, 2009; Claridge, 2010).

In the following, we outline some of the
key characteristics and visualize them in an
operational taxonomy (see Figures 1 and 2).

Dimension. There is widespread agreement
that hyperbole occurs on a scale of magni-
tude along two main dimensions: a quantita-
tive scale and a qualitative scale (Mora, 2009;
Claridge, 2010; Troiano et al., 2018). The dis-
tinction between these scales refers to whether
a hyperbole primarily concerns objective and
measurable aspects or subjective and evalua-
tive emotional states of affairs. According to
Mora (2009), who conducted a corpus analy-

sis of natural conversation on a 52000 word
subset of the British National Corpus (BNC),
quantitative hyperboles comprise 61% of the
analyzed hyperboles and include the seman-
tic fields of completeness, universality, mea-
sure, and magnitude. Qualitative (evaluative)
hyperboles concern positive or negative sen-
timents, as well as impact or singularity; e.g.
’shocking’, ’smashing’ etc. However, an im-
portant point to make here is that there is a
significant overlap between these dimensions,
as hyperboles will generally have an evalua-
tive function: For instance, the expression that
somebody has “piles of batteries in their room”
could be said to be a negative evaluation of the
state of the room, but we choose to annotate
such expressions as primarily quantitative, as
the exaggerated property is one of measure.
Another potentially relevant distinction is that
quantitative hyperboles have a verifiable ele-
ment, whereas purely qualitative hyperboles
often serve to convey an internal subjective
mental or emotional state (Claridge, 2010):
For instance, in the statement, It was the worst
meal I have ever had, the speaker could either
be conveying their honest opinion of the meal,
or they could be using exaggeration as a figure
of speech to emphasize their disappointment
with the meal.

Type. We use the term “type” to refer to
whether the hyperbole is basic or composite,
i.e., whether it stands alone or is combined
with another figure of speech. According to
Claridge (2010), hyperboles are basic if they
preserve the semantic domain of the corre-
sponding literal paraphrase, and composite if
it involves a domain transfer where elements
of a source domain is mapped onto a target
domain. The latter is primarily the case with
metaphor and, to a lesser extent, metonymy
<citeclaridge2010hyperbole. In our annota-
tions, we analyze simile as domain-preserving,
even though we recognize that simile can be an-
alyzed as an explicit metaphor (Burgers et al.,
2018).

Degree of possibility. This distinction is one
of degree and refers to the extent to which hy-
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perboles generate impossible, absurd, or coun-
terfactual scenarios. This is purely pragmatic
and influences the degree to which a statement
may be perceived as hyperbolic (McCarthy and
Carter, 2004; Troiano et al., 2018).

Level of conventionality. This last di-
chotomy refers to the fact that hyperboles can
use either more conventional or more novel
and creative language to express exaggeration.
This also impacts the extent to which a state-
ment is perceived as a hyperbole: For instance,
to say that one has not seen a person for ages is
so frequent that it could be considered a latent
or dead hyperbole, in the sense that it might
not be viewed as intentional exaggeration for a
specific purpose (McCarthy and Carter, 2004).
However, in our annotation, we do label such
frequent sentences as hyperbolic, although a
conventionalized one.

4 Probing PLMs for Hyperbole

Probing language models aims to answer ques-
tions related to the model’s internal repre-
sentation, such as the location and depth of
the encoding of a linguistic property in the
multi-layer representation, or which input fea-
tures contributed to a particular behaviour of
the PLM (Belinkov, 2022). Standard probing
methods involve training a linear classifier on
top of a PLM to predict a linguistic property of
interest, where a high probing performance on
the task is associated with the model encoding
said property. It is common practice to freeze
the parameters of the PLM, which serves to
prevent the gradients of the probing classi-
fier from back-propagating into the model and
thereby altering its pre-trained representation
(Tenney et al., 2019). Following Aghazadeh
et al. (2022), our experiments are not aimed
at improving the accuracy of hyperbole iden-
tification tasks; we simply want to check the
extent to which hyperbole knowledge may be
encoded in the base representations. To that
end, we employ edge probing, in which the
classifier receives span-level representations
from the PLM as inputs after they have been
projected to a fixed-dimensional layer, 250 in
this case. Thus, we define the span input to

the PLM as the minimal lexical unit conveying
hyperbolic information as given by the HYPO
dataset (Troiano et al., 2018).

One common criticism of edge probing is
that it may not be explanatory in the sense
that it does not provide insight into whether
a model is learning a linguistic property or
simply memorizing the task (Belinkov, 2022).
An information-theoretic perspective on ad-
dressing this limitation is to combine the prob-
ing quality of the classifier with some metric
of the effort needed to extract the linguistic
knowledge. This approach is known as MDL
probing (Voita and Titov, 2020), wherein ef-
fort intuitively refers to the number of steps
required by the PLM to encode a compressed
representation of the input sequence. Follow-
ing Aghazadeh et al. (2022), we use the online
coding implementation of MDL, which mea-
sures a representation’s ability to learn from
various portions of the data. We report the
compression, which is given by N · log2(K).
In the context of language modelling, N refers
to the size of the dataset, and K is the set of
unique sequences being compressed. A ran-
dom classifier will have a compression of 1,
and increased data compression is associated
with a better encoding of the given property.

5 Experiments

Here we describe our data and setup.

Dataset and annotation. We utilize HYPO,
a manually constructed English hyperbole
dataset (Troiano et al., 2018) of 709 hyper-
boles with corresponding literal paraphrases,
as well as a minimal units corpus that provides
the contrastive negative (literal) examples for
each hyperbole (see examples (1A) and (1B)
in §1).

For the purpose of our experiment, we first
discard the corpus of literal paraphrases as we
are interested in contrasting the hyperbolic us-
age of a particular word or phrase with a literal
usage of the same word or phrase. It would
otherwise not be possible to construct spans.
To obtain span labels for each hyperbole and
its negative contrast sentence, we programmat-
ically extract the positions of each minimal
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Figure 3: Inter-annotator agreement for the four aspects.

lexical unit and manually adapt the labels as
needed; namely, we exclude examples with
multiple spans and those without minimal unit
contrasts.3 Our final dataset contains 1396
span-labelled hyperbolic and literal sentences,
which we split into training (70%), test (20%),
and development (10%) sets.

We meticulously annotate the 63 hyperbolic
sentences in the development sample using
the operative taxonomy outlined in §3.4 In
order to obtain inter-annotator agreement, we
enliste the help of additionally 5 annotators,
assigning 12-13 sentences to each. As a result,
each sentence is annotated twice. We observe
a mean Cohen’s Kappa of 0.339 (see Figure 3),
suggesting only fair agreement, with particular
difficulties on the dimension and type spectra
on the taxonomy.

Experimental setup. We conduct edge- and
MDL probing experiments for three models,
BERT (Devlin et al., 2018), RoBERTa (Liu
et al., 2019), and Electra (Clark et al., 2020).
Following Aghazadeh et al. (2022), all the
models are initiated from the base versions
of the Huggingface Transformer library (Wolf
et al., 2020), with 12 layers, 768 hidden size,
and 110m parameters. In line with the pro-
cedure described in detail by by Tenney et al.
(2019), we use the contextual vector represen-

3See examples in Appendix A.
4Similar fine-grained annotations were conducted by citet-

troiano2018computational, although they weren’t included in
the HYPO dataset, and inter-annotator agreement were not
measured due to expected degree of difficulty.

Word-in-Context Sentence Level
Experiment Accuracy µ-F1 Accuracy µ-F1

BERT 0.69 0.6895 0.72 0.7184
RoBERTa 0.72 0.7220 0.78 0.7762
ELECTRA 0.73 0.7256 0.78 0.7761

Table 1: Edge probing classification results.

tation for each span as inputs to the model, fol-
lowed by a projection-layer and self-attention
pooling to collapse the span vectors down to
a fix-length 256-dimensional representation.
The edge probing classifier, which in this case
is a single linear layer, is then trained on top of
the PLM. We do not change the original hyper-
parameters; we keep the batch size of 32 and
the learning rate of 5e − 5, and train over 5
epochs for each experiment. During model
training, the development set is used to moni-
tor the model’s performance and as a stopping
criterion at each epoch. The MDL probe is
based on the same structure as the edge prob-
ing experiment (Aghazadeh et al., 2022). One
minor change we make to accommodate the
small size of our data is to delete the smallest
fraction trained on by the MDL probe, as it
would otherwise amount to a single example.
We run our experiments in two configurations:
One in which we use the manually labelled hy-
perbole spans as inputs to the PLM, which fol-
lows the classic edge probing procedure. We
call this the word-in-context (WiC) represen-
tation to emphasize that the model only has
access to the rest of the sentence through the
context embeddings (Tenney et al., 2019). In
the other configuration, which is used as ba-
sis for comparison, we feed the entire sentence
span to the model - the so-called sentence-level
configuration.

6 Results

All our results are reported on the test set.

Edge probing results. The edge probing
classification results are in Table 1 and the
classification scores for the hyperboles and the
literal sentences are in Table 2. We only report
last layer scores, as we just evaluate the base
representations.
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Experiment Class Precision Recall F1

Word-in-Context

BERT literal 0.70 0.66 0.68
nonliteral 0.68 0.72 0.70

RoBERTa literal 0.73 0.71 0.72
nonliteral 0.71 0.73 0.72

Electra literal 0.74 0.71 0.72
nonliteral 0.72 0.74 0.73

Sentence Level

BERT literal 0.78 0.61 0.69
nonliteral 0.68 0.82 0.74

RoBERTa literal 0.80 0.74 0.77
nonliteral 0.75 0.82 0.78

ELECTRA literal 0.84 0.69 0.76
nonliteral 0.73 0.87 0.79

Table 2: Performance metrics for each of the models.

Annotation WiC Sentence Total

QUAL 0.784 0.865 37
QUANT 0.692 0.731 26
PDOM 0.676 0.765 34
SDOM 0.828 0.862 29
NPOSS 0.769 0.821 39
POSS 0.708 0.792 24
CONV 0.806 0.806 36
NCONV 0.667 0.815 27

Table 3: Recall for word-in-context and sentence-level
annotations for each category.

MDL probing results. We report the com-
pression for each of the experiments in Fig-
ure 4. The best layer is consistently near the
top layer, but not the top layer itself.

Error analysis. Our error analysis is con-
ducted for the model with the best recall,
RoBERTa, and is only conducted for the hy-
perbolic examples, i.e. the 63 annotated hyper-
boles in the development set. We choose the
best layer based on the compression displayed
in Figure 4; i.e. layer 11 for the WiC repre-
sentation and layer 8 for the sentence-level
representation.

Table 3 report the recalls, i.e. the percent-
ages of correctly predicted hyperboles, for
each of the annotated categories, for both of
our experiments, along with the distributions
of each of the annotations on the 63 samples.

7 Discussion

We observe notably lower scores than for
the metaphor probing experiments across the

BERT WiC. BERT sentence-level.

RoBERTa WiC. RoBERTa Sentence-level.

ELECTRA WiC. ELECTRA sentence-level.

Figure 4: Compression for each of the models.

board: Based on the compression reported for
the MDL probes, only reaching up to 1.4 in
the best configuration, we can conclude that
hyperbolic information does appear to a minor
extent to be encoded in PLM representations.
This is in line with our expected hypothesis
that encoding hyperbole may pose a bigger
challenge given its primarily pragmatic nature,
and also fits with the fact that PLMs have been
reported to struggle with pragmatic inference
and commonsense knowledge (Rogers et al.,
2020). Perhaps more interestingly, we can in-
spect the compression for each of the 12 layers
reported in Figure 4 to understand where hy-
perbole is best encoded by the representation,
which appears to mostly be in the final lay-
ers. This is different from metaphor and may
lend further credence to the idea that pragmat-
ics is typically encoded deeper into the PLM.
However, since we are employing a very small
dataset, the extent to which we can draw def-
inite conclusions is limited. In the future, we
would like to extend our experiments to more
data and languages to measure generalizability.
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Upon analyzing the MDL compressions of
the two model representations, we make an in-
triguing observation that the sentence-level rep-
resentation consistently outperforms the WiC
representation, with compressions reaching up
to 1.4 for the top layer. This discovery raises
thought-provoking questions about the amount
of hyperbole information inferred by the con-
textual embeddings, as hyperbole often sur-
passes the token or phrase level. For example,
consider the sentence, "The temperature was
so low, I saw polar bears wearing jackets." In
this case, the entire complement sentence cre-
ates the hyperbole. This leads to discussions
about defining the lexical unit of hyperboles
for corpus collection and annotation purposes
(Burgers et al., 2016). As for the model rep-
resentations themselves, while PLMs theoreti-
cally encode context in their representation, it
is worth exploring how much information is
contained within and between subwords in the
WiC representation. Employing interpretabil-
ity metrics could provide further insights into
this matter.

Considering the low inter-annotator agree-
ment and that recall seems to generally in-
crease with the frequency of the subcategory in
the sample, it is challenging to draw insights
from the model error analysis (see Table 3).
However, we may tentatively conclude that
the models have an easier time with conven-
tional hyperboles, which is the opposite find-
ing to that of Troiano et al. (2018) for tradi-
tional machine learning pipelines. Similarly
surprisingly is it that the PLMs have better
recall for domain-switching hyperboles than
domain-preserving ones, which may also be
confounded by a strength variable. Further-
more, when manually expecting the false pos-
itives, we observe that some sentences pre-
dicted to be hyperbolic do indeed contain
words and phrases with a potential hyperbolic
interpretation, e.g. paradise in the sentence
“He thought a place awaited him in paradise”„
suggesting that analyzing hyperbole in a larger
context might provide further insights.

Finally, the low inter-annotator agreement,
particularly on the dimension and type di-

chotomies, suggests that the hyperbole cate-
gories are not intuitively well-understood or
discriminated. During discussions with anno-
tators upon completion of the task, we had
several instances where overlap of the dimen-
sion subcategories was so large that annotators
could argue for either one, and it also wasn’t
clear to annotators when a semantic domain-
switch was present. The latter suggests that
more linguistic training may be necessary to
identify combined figures of speech in context,
for instance, through application of the hyper-
bole identification procedure (HIP) (Burgers
et al., 2016). As a consequence, we would
like to change our approach to hyperbole an-
notation in future corpus construction and in-
vestigate to which extent these categories are
indeed computationally relevant. Our nega-
tive findings lend credence to the claim by
Biddle et al. (2021) that annotation schemes
may present a bottleneck for further devel-
opment of of the task. We would also like
to explore approaches for model evaluation
of hyperbole types using conceptual knowl-
edge bases and linguistic resources; namely
leveraging framenets to explore their utility
for metaphorical hyperboles, as well as inves-
tigating templates using particular syntactic
patterns for evaluating quantitative hyperboles.

8 Conclusions

This study has attempted to probe three pre-
trained language models (PLMs) for hyper-
bolic knowledge to better inspect how this in-
formation is encoded in their representations.
We find, predictably, that knowledge of hy-
perbole is only to a limited extend encoded
by PLMs, and, somewhat more surprisingly,
that sentence-level representations appear to
be supperior to word-in-context (WiC) repre-
sentations, which may further highlight that
most hyperbolic information does in fact ex-
ist beyond the token or phrase level. In the
future, we would like to contribute with more
hyperbole data with an operational annotation
procedure, extend to cross-lingual experiments,
as well as investigate the role of linguistic re-
sources for hyperbole identification.
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Hyperbole Literal Dim. Type Poss. Conv.

Marriage is the grave of love. I have gone to visit the grave of a
friend.

QUAL SDOM NPOSS CONV

So much snow that it is like walking
in the firmament.

Some stars in the firmament have a
name.

QUANT PDOM NPOSS NCONV

The ancient castle was so big that it
took a week to walk from one end to
the other.

It took a week to walk from one end
of the region to the other.

QUANT PDOM POSS CONV

His feet are colder than the arctic. The Antarctic is colder than the
Arctic.

QUANT PDOM NPOSS NCONV

Table 4: Sample data with annotations. Token spans are marked by italics around the word or phrase.
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