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Abstract

This paper investigates the effect of tokenizers
on the downstream performance of pretrained
language models (PLMs) in scriptio continua
languages where no explicit spaces exist be-
tween words, using Japanese as a case study.
The tokenizer for such languages often consists
of a morphological analyzer and a subword tok-
enizer, requiring us to conduct a comprehensive
study of all possible pairs. However, previous
studies lack this comprehensiveness. We there-
fore train extensive sets of tokenizers, build a
PLM using each, and measure the downstream
performance on a wide range of tasks. Our re-
sults demonstrate that each downstream task
has a different optimal morphological analyzer,
and that it is better to use Byte-Pair-Encoding
or Unigram rather than WordPiece as a sub-
word tokenizer, regardless of the type of task.

1 Introduction

Tokenization is the first key procedure in current
natural language processing when inputting a tar-
get sentence to a pretrained language model (PLM).
It generally splits an input sequence into subword
units, where a subword is a fraction of a word.
Previous efforts have proposed several subword-
tokenization algorithms (hereafter, subword tok-
enizers), such as Byte-Pair-Encoding (BPE) (Sen-
nrich et al., 2016), WordPiece (Schuster and Naka-
jima, 2012), and Unigram (Kudo, 2018), and dif-
ferent PLMs use different subword tokenizers.1

It is widely acknowledged that tokenization af-
fects the downstrem performance of PLMs (Rust
et al., 2021; Gow-Smith et al., 2022; Bostrom and
Durrett, 2020; Park et al., 2020; Toraman et al.,
2022). The majority of the previous studies have fo-
cused on languages with explicit word boundaries,
such as English, while research on scriptio con-

* Work done while interning at Hitachi, Ltd.
1For example, BERT (Devlin et al., 2019) uses WordPiece,

and GPT-3 (Brown et al., 2020) uses byte-level BPE.

English:

Original text

Step 1: Morphological analysis (Splitting into “word-level” semantic units)

私は形態素解析器の研究をしています。

I_am_doing_research_on_morphological_analyzers.

I morphological

私 / は / 形態 / ##素 / 解析 / 器 / の / 研究 / を / し / て / い / ます / 。
I / am / doing / research / on / morphological / analyze / ##rs / .

私_は_形態素_解析_器_の_研究_を_し_て_い_ます_。

analyzers on research am doing

Step 2: Subword tokenization

Scriptio continua languages (Japanese):
“_” and “/” denote a space and a subword boundary, respectively.

Figure 1: Typical tokenization procedures in both scrip-
tio continua languages and English

tinua languages, or languages without word bound-
aries (like Japanese, Chinese, and Thai), is still
understudied. The tokenization process in scriptio
continua languages traditionally involves morpho-
logical analysis, which splits the input text into
morphemes (semantic units similar to words in
English) using the dictionary designed by human
experts (see Step 1 in Figure 1 for an example). In
this case, a tokenizer for a PLM consists of a mor-
phological analyzer and a subword tokenizer. To in-
vestigate the impact of tokenization in this scenario,
we need to perform a comprehensive study on sev-
eral sets of the available pairs, which is lacking
in the previous work (Bostrom and Durrett, 2020;
Inoue et al., 2022; Lowphansirikul et al., 2021).

In this paper, we investigate the effect of tokeniz-
ers on the downstream performance of PLMs in
scriptio continua languages, focusing on Japanese
as a case study. We train an extensive collection
of tokenizers consisting of known morphological
analyzer and subword tokenizer pairs, use them to
pretrain and fine-tune BERT models, and measure
their performance on a variety of downstream tasks.
On the basis of the experimental results, we address
the following three research questions. We first try
to answer if we should use a morphological ana-
lyzer2 in a scriptio continua language (Japanese)

2Not using a morphological analyzer means that we apply
subword tokenization directly, the same as in cross-lingual
PLMs such as XLM-R (Conneau et al., 2020).
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(RQ1). RQ2 and RQ3 each examine whether dif-
ferent morphological analyzers/subword tokenizers
perform differently on a downstream task.

Contributions 1) We test a comprehensive set of
known morphological analyzer and subword tok-
enizer pairs and use various downstream tasks to
clarify the effect of tokenizers on the downstream
performance of Japanese PLMs. 2) Accordingly,
we find the followings:

• We should use a morphological analyzer for
Japanese.

• Each task seems to have its own optimal mor-
phological analyzer(s).

• It is better to use either BPE or Unigram as a
subword tokenizer rather than WordPiece.

3) We publicly release the code and PLMs.3

2 Japanese Tokenizer

In this section, we explain the morphological ana-
lyzers and subword tokenizers used in this paper.

2.1 Japanese Morphological Analyzers

Japanese morphological analyzers are based on ei-
ther a pointwise or sequence prediction method.
The former tokenizes a sentence by extracting fea-
tures from the characters within a pre-defined win-
dow and then predicting if a boundary exists be-
tween each character using a classifier. The latter
first constructs a lattice from an input sentence on
the basis of a pre-defined dictionary, where each
path in the lattice represents a candidate token se-
quence and has a cost, and then selects the path
with the lowest cumulative cost as the analysis
result.4 We obtain a cost for each path using a
statistical model(s) or a hand-crafted dictionary.

We test the following four widely used morpho-
logical analyzers: MeCab M⃝ (Kudo et al., 2004),
Juman++ J⃝ (Tolmachev et al., 2018), Sudachi

S⃝ (Takaoka et al., 2018), and Vaporetto V⃝ (Akabe
et al., 2022). The first three adopt sequence predic-
tion while the last uses pointwise prediction.5

2.2 Subword Tokenizers

We compare the following three tokenizers: BPE
(B), WordPiece (W), and Unigram (U), each of

3Available at https://github.com/hitachi-nlp/
compare-ja-tokenizer.

4Since it is intractable to compute costs for all candi-
date paths, previous studies have used either the Viterbi algo-
rithm (Viterbi, 1967) or beam search to select a path.

5For more details, refer to Appendix A.

which differs in either vocabulary construction, tok-
enization algorithms, or both. These tokenizers are
empirically known to produce different subword
boundaries (Bostrom and Durrett, 2020).

Vocabulary Construction BPE constructs the
vocabulary by merging and adding a pair of existing
tokens with the highest score in the dictionary until
the total number of tokens in the dictionary reaches
a pre-defined size. The score is calculated based on
the frequency of the existing tokens. WordPiece is
similar to BPE but calculates the score based on the
frequency of a symbol pair and the individual fre-
quencies. Unigram heuristically builds a large seed
vocabulary from a training corpus (e.g., by taking
the most frequent substrings) and then iteratively
removes the least important symbols from the vo-
cabulary. Specifically, it first fits a unigram LM for
the current vocabulary and then computes (i) the
log likelihood of the training corpus with the LM
and (ii) that of the training corpus with the LM after
removing a particular symbol. It then sets (i) − (ii)
as the cost, which shows the degradation of the log
likelihood when the symbol is removed. Finally, it
removes the symbol with the lowest degradation.

Tokenization BPE splits a word into characters
and iteratively merges those with the most frequent
pair into larger known symbols in the vocabulary.
WordPiece6 splits a word by the longest subword
starting at the beginning of the word in the dictio-
nary and continues splitting until its end. Unigram
tokenizes a word by performing Viterbi inference to
select the maximum likelihood segmentation based
on its vocabulary and unigram LM.

3 Experimental Setup7

Tokenizers We compared a total of 12 tokenizers
(four morphological analyzers and three subword
tokenizers), as introduced in §2. We also consid-
ered three additional tokenizers not using morpho-
logical analyzers. We trained all tokenizers with
the vocabulary size of 30k utilizing 10M sentences
randomly extracted from Japanese Wikipedia.

Models We used the base configuration of BERT
(total parameters: 125M). For each tokenizer, we
pretrained BERT for 500k steps with masked
language modeling (Devlin et al., 2019) on the
Japanese Wikipedia and CC-100 (Conneau et al.,

6We follow the longest-match-first strategy used in BERT.
7For implementation details, refer to Appendix C.
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Tokenizer MARC-ja JSTS JNLI JSQuAD JCQA NER UD Avg.
Subword Morphological Accuracy Spearman Accuracy F1 Acc F1 LAS

bert-base-japanese 95.5±0.1 85.3±0.3 86.8±0.6 86.4±0.2 76.6±0.8 85.6±0.2 93.3±0.1 87.1

M⃝ MeCab 95.4±0.2 84.2±0.1 88.0±0.4 90.1±0.3 74.1±0.7 83.7±0.8 93.6±0.1 87.0
J⃝ Juman++ 95.5±0.1 84.6±0.4 87.6±0.4 90.1±0.2 73.8±0.3 85.1±0.6 93.6±0.1 87.2

BPE S⃝ Sudachi 95.5±0.1 84.2±0.2 88.2±0.3 90.2±0.2 74.2±0.6 83.5±0.6 93.8±0.1 87.1
(B) V⃝ Vaporetto 95.6±0.1 84.8±0.2 87.5±0.3 89.9±0.2 74.2±1.1 84.1±0.9 93.7±0.1 87.1

Nothing 95.4±0.2 82.8±0.2 87.2±0.2 88.7±0.3 72.8±0.8 62.9±1.1 93.4±0.1 83.3

MeCab 95.5±0.1 82.4±0.5 87.5±0.3 89.2±0.3 69.8±0.7 84.0±0.9 93.6±0.1 86.0
Juman++ 95.3±0.3 83.3±0.3 87.7±0.2 89.8±0.3 71.1±0.6 84.7±0.5 93.6±0.1 86.5

WordPiece Sudachi 95.3±0.2 83.7±0.3 87.2±0.4 89.6±0.1 70.0±0.9 82.4±0.6 94.0±0.1 86.0
(W) Vaporetto 95.3±0.2 83.6±0.1 88.0±0.4 89.7±0.2 71.0±0.4 84.0±0.8 93.8±0.1 86.5

Nothing 85.5±0.0 N/A 55.3±0.0 10.1±0.1 20.0±0.8 0.0±0.0 63.8±0.9 33.5

MeCab 95.4±0.3 84.6±0.4 88.3±0.4 89.5±0.3 74.5±0.8 83.1±1.0 93.4±0.2 87.0
Juman++ 95.4±0.2 84.3±0.3 87.8±0.3 89.9±0.2 74.9±1.2 84.1±0.4 93.4±0.1 87.1

Unigram Sudachi 95.6±0.2 84.8±0.5 88.4±0.3 89.9±0.1 74.5±0.6 83.0±1.3 93.7±0.1 87.1
(U) Vaporetto 95.5±0.3 84.6±0.2 87.9±0.3 89.9±0.1 74.3±0.8 84.1±0.4 93.7±0.1 87.1

Nothing 95.4±0.4 83.9±0.3 87.7±0.8 89.3±0.1 74.6±0.4 76.9±1.0 93.2±0.2 85.9

Statistical test results: Kruskal-Wallis test (Kruskal and Wallis, 1952). ✓ if p < .05 otherwise ✗.
RQ2: (B, W , U) (✗, ✗, ✗) (✓, ✓, ✗) (✓, ✗, ✗) (✗, ✗, ✗) (✗, ✓, ✗) (✓, ✓, ✗) (✓, ✓, ✓)
RQ3: ( M⃝, J⃝, S⃝, V⃝) (✗, ✗, ✗, ✗) (✓, ✓, ✓, ✓) (✗, ✗, ✓, ✗) (✓, ✗, ✓, ✗) (✓, ✓, ✓, ✓) (✗, ✗, ✗, ✗) (✗, ✗, ✓, ✗)

Table 1: Results from seven tasks with standard deviations over five runs. JCQA stands for JCommonsenseQA.
Values with a wavy line denote the worst results among morphological analyzers with the same subword tokenizer.
✓ indicates that there is statistical significance among (RQ2) morphological analyzers with the same subword
tokenizer or (RQ3) subword tokenizers with the same morphological analyzer, while ✗ denotes that there is no
statistical significance. For example, (✓, ✗, ✗) in RQ2 indicates that there is statistical significance between different
morphological analyzers with BPE, while no statistical significance is observed for WordPiece or Unigram.

2020) datasets, consisting of 2.2 and 1.1M samples
each with the maximum length set to 512.

Benchmarks We used the following benchmarks:
JGLUE (Kurihara et al., 2022), NER8, and Univer-
sal Dependencies (UD) Japanese-GSD (Asahara
et al., 2018).9 Since the test set for JGLUE is
not publicly available, we fine-tuned all models
on the training set using five-fold cross-validation
and evaluated their performance on the develop-
ment set. Since the development and test sets are
not available for NER, we split the training set
into 9:1. We fine-tuned the models with five-fold
cross-validation by the former and measured the
performance using the latter.

4 Results and Analysis

This section addresses the three RQs raised in §1.

RQ1: Should we use a morphological analyzer?
Table 1 lists the results on the seven downstream
tasks grouped by subword tokenizer. The average
scores across tasks (“Avg.”) show that tokenizers

8Dataset: stockmarkteam/ner-wikipedia-dataset
9We provide the description of each task in Appendix

B. For reference, we also measured the performance of
bert-base-japanese, which uses MeCab and WordPiece.

without a morphological analyzer (“Nothing”) ex-
hibited the worst results among tokenizers with the
same subword tokenizer. This trend also generally
holds for task-specific results. These results make
intuitive sense because a morphological analyzer
can provide explicit semantic boundaries of an in-
put text, making the input units for subword tok-
enization similar to English words (Figure 1). This
should help a model to capture the semantic and
syntactic information more easily and consequently
outperform those that do not use a morphological
analyzer. We therefore conclude that we should use
a morphological analyzer for Japanese.

In addition to the above, we observe that Word-
Piece + Nothing produced by far the worst results
in all tasks due to the poor tokenization. WordPiece
processes a sequence word by word and treats a
sequence without a blank as a single word. If it
fails to tokenize a particular word, it tokenizes the
“whole” as a single [UNK] token. Without a mor-
phological analyzer, the length of a word becomes
abnormally long, making WordPiece more likely
to produce an [UNK] token. This means that the
majority of an input text will be converted into
[UNK] tokens, thus losing almost all of the content
in the text. In fact, the average sequence length
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JSTS JNLI JCQA NER UD

BPE ( V⃝ > M⃝)
( V⃝ > S⃝) – – ( J⃝ > S⃝) ( S⃝ > M⃝)

( S⃝ > J⃝)

WordPiece ( S⃝ > M⃝)
( V⃝ > M⃝) – – ( J⃝ > S⃝)

( S⃝ > M⃝)
( S⃝ > J⃝)
( V⃝ > M⃝)
( V⃝ > J⃝)

Unigram – – – – –

Table 2: Combinations of morphological analyzers with
statistical significance (p < .05, Steel-Dwass test). “–”
indicates no statistical significance observed. “ A⃝ > B⃝”
indicates that morphological analyzer A⃝ is significantly
better than morphological analyzer B⃝.

and ratio of [UNK] per sample in pretraining were
1.15± 3.28 and 99.8± 4.9%, respectively. These
caused unstable pretraining (see Appendix D).

Compared with other tasks, Nothing in NER
showed a considerable performance degradation
with a maximum difference of 22.2 (Juman++ vs.
Nothing in BPE). In NER, annotations are word-
level and tend to align well with morphemes. Since
tokenizers with morphological analyzers split a
morpheme into subword tokens, they can produce
more linguistically motivated subword segmenta-
tion than Nothing, thus giving them an advantage.

RQ2: Do different morphological analyzers per-
form differently on downstream tasks? Look-
ing at the statistical test results for RQ2 in Table 110,
we can see that there were significant performance
differences between different morphological ana-
lyzers with the same subword tokenizers in some
tasks, e.g., JSTS, NER, and UD. In other words,
different morphological analyzers could perform
differently on different downstream tasks.

For tasks with statistical significance, we further
ran the Steel-Dwass test (Douglas and Michael,
1991) to see which morphological analyzer had a
significant performance difference from the oth-
ers (Table 2). We can observe task-specific trends
for an effective morphological analyzer(s). Specif-
ically, for JSTS, Vaporetto performed well. For
NER, Juman++ was effective. For UD, Sudachi
performed well. Therefore, each task seems to have
its own optimal morphological analyzer(s).

RQ3: Do different subword tokenizers perform
differently on downstream tasks? From the sta-
tistical test results for RQ3 in Table 1, we ob-
serve significant performance differences between
subword tokenizers with the same morphologi-

10Note that we omit Nothing from the following analyses.
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Figure 2: Relationship between vocabulary similarity
of subword tokenizers and their performance difference.
Samples with the same subword tokenizer are excluded.

cal analyzers in some tasks, such as JSTS and
JCQA. “Avg.” in Table 1 indicates that Word-
Piece performed poorly, while BPE and Unigram
achieved similar results. The results of the Steel-
Dwass test (Table 3) also confirmed that WordPiece
showed significant performance degradation com-
pared with either BPE, Unigram, or both in some
tasks. We did not observe a significant difference
between BPE and Unigram across all tasks. There-
fore, different subword tokenizers could perform
on downstream tasks differently, and it is better to
use either BPE or Unigram.

We next analyze and discuss which differences
in subword tokenizers produced downstream per-
formance differences. First, we look at the differ-
ence in the vocabulary of subword tokenizers. We
plot the relationship between vocabulary similarity
and performance difference between two different
subword tokenizers in Figure 2. The vocabulary
similarity of two different subword tokenizers is
computed as |V1∩V2|

|V | , where |V | is the vocabulary
size and V1 and V2 are the vocabularies of two
subword tokenizers (T1 and T2). For each task,
we computed the performance difference between
the two as 1

5 |
∑

i s1i −
∑

j s2j |, where s1i and s2j
are the i-th and j-th observed scores of T1 and
T2, respectively. We observe that symbols related
to WordPiece ( and ▲) are plotted in the upper-
left corner, while others (■) are in the lower-right
corner, indicating that WordPiece has a different vo-
cabulary composition than BPE and Unigram, and
its performance difference is far larger than that
between BPE and Unigram. These results are con-
sistent with our finding that WordPiece performed
poorly with statistical significance, and both BPE
and Unigram showed similar results. Therefore, it
is possible that the vocabulary of a subword tok-
enizer has something to do with the downstream
performance.

Further, while WordPiece uses a greedy longest-
match-first strategy in tokenizing a word, both BPE
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MARC-ja JSTS JNLI JSQuAD JCQA NER UD

MeCab – (B > W)
(U > W) – (B > W) (B > W)

(U > W) – –

Juman++ – (B > W)
(U > W) – – (B > W)

(U > W) – –

Sudachi – (U > W) (U > W) (B > W)
(U > W)

(B > W)
(U > W) – (U > W)

Vaporetto – (B > W)
(U > W) – – (B > W)

(U > W) – –

Table 3: Combinations of subword tokenizers with statistical significance (p < .05, Steel-Dwass test). “–” indicates
no statistical significance observed. “X > Y” indicates that subword tokenizer X is significantly better than subword
tokenizer Y .

and Unigram use a more sophisticated approach
(as explained in §2.2). This algorithmic difference
might also contribute to the performance difference
between different subword tokenizers.

5 Conclusion

To investigate the effect of tokenizers on the down-
stream performance of PLMs in a scriptio continua
language (Japanese), we compared extensive sets
of tokenizers by evaluating them on a wide range of
downstream tasks and addressed the three RQs in
§1. Future work will examine how to automatically
select the optimal tokenizer pair for a given task.

Limitations

This study has the following limitations:
• We fixed the vocabulary size of each subword

tokenizer to 30k. Using a different size might
yield different results than those in our paper,
though the effect of varying the vocabulary
size for a subword tokenizer seemed to be
small if the size is sufficiently large (e.g., over
16k or more) (Toraman et al., 2022).

• We have used the BERT architecture for our
comparison, while there are other commonly
used model architectures such as T5 (Raffel
et al., 2020) and GPT-3. The investigation
with these architectures is our future work.

• To investigate the impact of tokenizers on the
downstream performance of PLMs in scriptio
continua languages, we have taken Japanese
as a case study. Other scriptio continua lan-
guages will be addressed in the future.

Ethics Statement

This study did not involve any sensitive data
but only used publicly available data, including

Wikipedia, CC-100, JGLUE, Japanese NER, and
UD as explained in the paper. Although we plan
to release the resulting models, they might perform
unfairly in some circumstances, as reported in Bal-
dini et al. (2022). We highly recommend users to
refer to studies on debiasing PLMs, such as Guo
et al. (2022).
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Appendices

A Japanese Morphological Analyzers

MeCab (Kudo et al., 2004) MeCab tokenizes a
sentence by first constructing a lattice on the basis
of its dictionary and then selecting the combination
with the lowest cumulative cost using the Viterbi
algorithm (Viterbi, 1967). The cost is calculated
using a pre-defined feature function in sequence
labeling.

Juman++ (Tolmachev et al., 2018) Juman++ tok-
enizes a sentence by constructing a lattice in accor-
dance with the dictionary and subsequently select-
ing the path with the highest score by beam search.
The score is calculated using both a RNN-based
language model and a feature-based linear model.

Sudachi (Takaoka et al., 2018) Sudachi puts an
emphasis on offering a tokenizer and dictionary
for business use, enabling us to select tokens of
different granularity for each application. We use
the “Middle” unit of granularity, which is similar
to words in general sense.

Vaporetto (Akabe et al., 2022) Vaporetto tok-
enizes a sentence by extracting features from the
characters within a pre-defined window and sub-
sequently classifying if a boundary exists between
each character with a linear classification model.

B Downstream Tasks

We briefly describe the seven downstream tasks
used in this paper. The statistics for each task
dataset are presented in Table 4.

MARC-ja A binary classification task to predict
whether a product review is positive or negative.
The dataset is based on the Japanese part of the Mul-
tilingual Amazon Reviews Corpus (MARC) (Ke-
ung et al., 2020).

JSTS A regression task to predict a semantic sim-
ilarity score between two sentences. The score
ranges from 0 (least similar) to 5 (most similar).
The data were sourced from the Japanese version
of the MS COCO Caption Dataset (Chen et al.,
2015) and the YJ Captions Dataset (Miyazaki and
Shimizu, 2016).

JNLI A three-way classification task to predict
an inference relation between two sentences. The
relation includes “contradiction,” “neutral,” and
“entailment,” the same as in SNLI (Bowman et al.,

2015). The data source was the same as that for
JSTS.

JSQuAD A question answering task to predict
a corresponding answer span given a question and
context. The data were sourced from Japanese
articles in Wikipedia and its construction process
is based on SQuAD v1.1 (Rajpurkar et al., 2016).

JCommonsenseQA A multiple-choice question
answering task to select the best choice from five
choices given a question. JCommonsenseQA is
a Japanese version of CommonsenseQA (Talmor
et al., 2019), and it was constructed in the same
manner as in CommonsenseQA, which used the
multilingual knowledge base: ConceptNet (Speer
et al., 2017) as seeds.

NER A task to identify and categorize named
entities in a given sentence. The data were sourced
from Japanese articles in Wikipedia and anno-
tated by Stockmark Inc. The dataset is avail-
able at https://github.com/stockmarkteam/
ner-wikipedia-dataset.

UD A dependency parsing task to predict the syn-
tactic dependency structure of a given sentence (Ze-
man et al., 2017, 2018). The output is a directed
tree originating out of a root node. Each edge in
the tree has a label that defines a grammatical rela-
tionship between two words.

C Implementation Details

We implemented our tokenizers with the Tokeniz-
ers library11 and our models using the PyTorch
(Paszke et al., 2019) and Transformers (Wolf et al.,
2020) libraries. We trained our models with four
NVIDIA V100 (32GB) GPUs for pretraining and
one for fine-tuning. We used automatic mixed pre-
cision (FP16) provided by PyTorch as default. The
code is available on the GitHub: https://github.
com/hitachi-nlp/compare-ja-tokenizer, and
the models are available on the Hugging Face Hub:
https://huggingface.co/hitachi-nlp.

C.1 Data
We downloaded Wikipedia data from
https://www.tensorflow.org/datasets/
catalog/wikipedia#wikipedia20201201ja.
As its preprocessing step, we excluded sentences
with less than 30 characters and those containing
“Category” or table symbols.

11https://github.com/huggingface/tokenizers
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Dataset License Task Type Number of samples
Train Dev Test

JGLUE

MARC-ja

CC BY-SA 4.0

Text classification 187,528 5,654 -
JSTS Sentence pair classification 12,451 1,457 -
JNLI Sentence pair classification 20,073 2,434 -
JSQuAD Question answering 62,859 4,442 -
JCommonsenseQA Question answering 8,939 1,119 -

Japanese NER CC-BY-SA 3.0 Named entity recognition 5,343 - -
UD-Japanese-GSD CC BY-SA 4.0 Dependency parsing 7,050 507 543

Table 4: Statistics for each dataset used in this paper. Note that the test sets are not currently publicly available for
JGLUE. Japanese NER does not have the corresponding development and test sets.

Hyperparameter Value

Batch size 128
Total training steps 500,000
Adam ϵ 1e-8
Adam β1 0.9
Adam β2 0.999
Sequence length 512
Learning rate 1e-4
Learning rate schedule Linear warmup
Warmup steps 10,000
Weight decay 0.01
Attention dropout 0.1
Dropout 0.1

Table 5: Hyperparameters for pretraining

C.2 Model
We used the base configuration of BERT (12 hid-
den layers and attention heads, Dimhidden = 768,
Dimintermediate = 3072, Total parameters = 125M).

C.3 Pretraining
We pretrained all models for 500k steps and opti-
mized them with AdamW (Loshchilov and Hutter,
2019). We mostly followed the configurations of
Devlin et al. (2019). Table 5 lists the hyperparame-
ter settings used in pretraining.

C.4 Fine-tuning
Table 6 lists the hyperparameters for fine-tuning
models on the JGLUE, NER, and UD datasets. For
UD, we trained a deep biaffine attention parser
(Dozat and Manning, 2017) built on top of the
PLMs. We computed an average for each token
over the top four layers of the BERT hidden rep-
resentations and used it as an input to a biaffine
attention parser (BAP). The dimensionalities of arc
and relation features given to each biaffine module
are 500 and 100, respectively. We used the SuPar
library12 to implement the parser and followed its

12https://github.com/yzhangcs/parser

Hyperparameter Value

Batch size 32
Epochs 5 for JGLUE tasks & NER

10 for UD
Adam ϵ 1e-8
Adam β1 0.9
Adam β2 0.999
Sequence length 512 for MARC-ja & UD

348 for JSQuAD
128 for JSTS, JNLI & NER

64 for JCQA
Learning rate 3e-5 for JGLUE tasks & NER

5e-5 for BERT in UD
1e-3 for BAP in UD

Learning rate schedule Linear warmup
Warmup steps 10% of steps
Weight decay 0.01
Attention dropout 0.1
Dropout 0.1

Table 6: Hyperparameters for fine-tuning

default hyperparameter configurations.

D Pretraining Loss

Figure 3 shows the pretraining loss curves for our
models grouped by morphological analyzer. We
can see that WordPiece + Nothing was unstable in
pretraining.
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Figure 3: Pretraining loss curves
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