
Generating Text from Language Models

Afra Amini1 Ryan Cotterell1 John Hewitt2
Luca Malagutti1 Clara Meister1 Tiago Pimentel3

1ETH Zürich 2Stanford University 3University of Cambridge
afra.amini@inf.ethz.ch ryan.cotterell@inf.ethz.ch
johnhew@cs.stanford.edu luca.malagutti@inf.ethz.ch

clara.meister@inf.ethz.ch tp472@cam.ac.uk

Abstract

An increasingly large percentage of natural lan-
guage processing (NLP) tasks center around the
generation of text from probabilistic language
models. Despite this trend, there lacks a unified
framing of the techniques for generating from
language models, both in terms of methods
that improve text quality and methods that
allow more fine-grained control of generation.
Without this framing, practitioners must either
be experts in the generation field or choose
somewhat blindly between a large range of al-
gorithms that can lead to wildly different results
depending on the specific use-case, e.g., top-p
sampling and beam search. In this tutorial, we
will provide a centralized and cohesive discus-
sion of critical considerations when choosing
how to generate from a language model. We
will first discuss the formal definition of a prob-
abilistic language generator and taxonomize
a wide range of empirically-observed problems
with systems using these models, like degrada-
tion, hallucination, and repetition. We will then
discuss their corresponding proposed algorith-
mic solutions under a unified light; specifically
as locally adapting the probabilities of a model
to avoid failure cases. Finally, we will then
cover methods in controlled generation, that go
beyond just ensuring coherence to ensure text
exhibits specific desired properties. We aim
for NLP practitioners and researchers to leave
our tutorial with a unified framework which
they can use to evaluate and contribute to the
latest research in language generation.

1 Introduction and Motivation

With their widespread public availability, large pre-
trained language models have become a core part of
many natural language processing (NLP) pipelines.
This trend is particularly evident in language gen-
eration tasks, where prompt engineering and con-
trolled generation techniques have shown that these
models can essentially be used “out-of-the-box” for
various language generation needs. Yet, as has been

observed repeatedly, how one chooses to generate
text from these models can lead to vastly differ-
ent results; make the wrong choice and a language
model can fall into repetitive loops (Welleck et al.,
2020), generate gibberish (Holtzman et al., 2020),
or spew out random (and possibly falsifiable) dec-
larations (Maynez et al., 2020). In the effort to cir-
cumnavigate these issues, one can make use of a va-
riety of relatively straightforward methods: (i) sam-
pling adapters, simple modifications to token-level
distributions that help prevent the generation of in-
coherent text; (ii) controlled generation methods,
techniques that guide these models to output strings
with a set of desired attributes. While employing
these methods often does not require domain exper-
tise, many people do not have proper knowledge of
the tools available—and much less how and when
to apply them. Hence, without years of experi-
ence in this subfield, both NLP researchers and
practitioners may have difficulty using pretrained
language models for text generation, as they will
likely encounter the problematic behaviors men-
tioned above.

In this cutting-edge tutorial, we aim to offer a
comprehensive introduction to techniques for gen-
erating strings from language models, discussing
both how to sample adeptly from and explicitly
control them. This tutorial will be divided in four
parts. First, we will present background knowledge
on language modeling, discussing both its mathe-
matical formulation, the empirically-observed suc-
cesses and shortcomings of modern models when
used to generate language, and the difficulty in eval-
uating these successes and failures. Second, we
will give a brief overview of the basics of language
generation, framing generation as the combination
of a choice of a decoding algorithm and objective.
The final two parts of this tutorial, which focus
on alleviating the previously discussed issues with
using language models out-of-the-box for gener-
ation, will be discussed within this framing: we
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present heuristic modifications to the objective that
have empirically-proven themselves effective at im-
proving generation quality as well as new decoding
algorithms that—when combined with the right
objective—can be used to enforce constraints on
the text output by models. We believe this will
equip the NLP community with the knowledge of
how to better employ these models for their down-
stream use-cases, thus making them more broadly
accessible.

2 Target Audience

Our tutorial is targeted at members of the NLP
community who wish to make use of language
models for various language generation tasks. This
includes researchers, interested in e.g., data aug-
mentation techniques, as well as practitioners wish-
ing to make use of pretrained language models in
their language generation pipelines. We expect that
participants are comfortable with probabilistic for-
mulations of NLP tasks, as well as the structure and
formulation of standard autoregressive models e.g.,
transformers. While we do not require any read-
ings, we recommend reviewing (in no particular
order) the works cited in this proposal.

3 Outline

3.1 Part 1: Background

Modern natural language processing tends to pro-
ceed by (1) framing a task in probabilistic terms, (2)
estimating a model to imitate the task’s generative
processes (typically using finite training datasets
as a proxy), and then (3) using this model as a tool
to accomplish the task. This is how the task of
language modeling is often approached. More pre-
cisely, practitioners take a corpus D = {y(n)}Nn=1—
an N -sized set of strings consisting of tokens y
from some vocabulary V—and treat it as a set of
independently and identically distributed samples
from a distribution p(y). We will use p to denote
the true language modeling distribution, i.e., the
distribution defined by the data-generating process,
from which we drew our samples. In practice, the
vast majority of these models, which we denote
as pθ, are trained to minimize the cross-entropy
with the empirical distribution defined by our fi-
nite set of samples D. In this tutorial, we’ll focus
largely on autoregressive models of p, meaning
that we decompose the probability of a string as
p(y) =

∏T
t=1 p(yt | y<t) and build a model of the

conditional distribution p(yt | y<t) instead.

Successes and known failures. It is hard to over-
state the improvements in modeling performance
that have occurred in the last five years, as mea-
sured simply in terms of perplexity on held-out
data. These models are used ubiquitously as the
base for fine-tuning on downstream tasks, leading
to SOTA performance for myriad tasks. Indeed, the
recent ChatGPT is one such instance of a large lan-
guage model fine-tuned to generate astoundingly
fluent and realistic text.

However, when used out-of-the-box for lan-
guage generation (i.e., without any fine-tuning),
these models exhibit a number of failure modes.
Among others:

• Low-quality, low-probability words. Due
to the use of the cross-entropy objective, lan-
guage models place non-zero probability on
poor continuations.

• Degradation of long texts. Possibly as a re-
sult of the above, generating longer texts can
present a greater challenge, as errors tend to
propagate and accumulate.

• Repetition when searching for the mode. In
cases where highly probable text under the
training set is desired, language models’ prob-
ability estimates tend to fail and overestimate
the probability of highly repetitive text.

• Inability to guide or constrain generation.
There is no builtin way to direct or shift gen-
eration towards a particular concept, meaning
one may have to sample indefinitely in order
to get a text with the desired attributes.

Further, there is the added difficulty of measuring
the quality of generations in many settings: au-
tomatic metrics such as BLEU or ROUGE require
references and reference-free metrics still do not
have direct mechanisms for measuring attributes
of text that may be of interest, e.g., faithfulness
to a topic. A range of language generation tech-
niques are used both to avoid known failure modes,
to coax more desirable properties out of language
models, and to direct generation. These methods
will be the focus of our tutorial.

3.2 Part 2: Language Generation

Given a language model pθ(· |y<t), how does ones
generate text from it? In this part of the tutorial,
we give an overview of decoding strategies: tech-
niques for generating from probability distributions
over strings. Specifically, we will frame all decod-
ing strategies as consisting of two choice points: a
scoring function (or objective) and a decoding al-



gorithm. For example, standard ancestral sampling
can be recovered when standard log-probability
is used as the scoring function and multinomial
sampling is used as the algorithm. While this fram-
ing may seem excessive at first, it emphasizes the
ability to combine the components of well-known
decoding strategies. This in turn allows us to build
decoding strategies—whose efficacy depend on the
underlying model and the desired outcome—with
specific goals in mind. For example, one could use
the truncation scoring function specified by typical
sampling in combination with the beam search al-
gorithm if the user has reason to believe this would
help them achieve their goals.

We will then motivate the usage of different scor-
ing functions and decoding algorithms, providing
both intuition and formal reasons as to why we
might want either in different settings. A main
focus of this discussion will be the scale of “open-
endedness” on which a generation task falls. For
example, story generation can be very open-ended
when there are no specific desired directions for the
story to follow. On the other hand, machine trans-
lation is quite semantically-constrained. In this
tutorial, we will discuss open-endedness as a scale
well-described by the entropy of the true distribu-
tion a task specifies, an attribute which—without
explicitly added modeling biases—we expect to be
reflected in models of this distribution.

These attributes of a generation task motivate
different quantitative approaches during decoding.
In machine translation, we often look for high prob-
ability strings, for which we can rely on determin-
istic decoding algorithms that “search” over the
support of the distribution pθ(· |y<t) for this cor-
rect answer. On the other hand, if generating from a
distribution over web text documents, the notion of
the “most likely” web text document is unintuitive,
to say the least. This motivates the use of stochastic
generation strategies, which naturally add diversity
to the generated output. Yet in both of these cases,
several issues arise from simply using p(y) as the
scoring function, such as the inability to steer gener-
ation in a desired direction (if not encoded directly
in p(y) itself) or the possibility to sample from low
probability regions of p(y). In the next section, we
dive into different methods to mitigate these issues.

3.3 Part 3: Sampling Adapters

In this part of the tutorial, we will discuss simple
modifications to the standard log-probability scor-

ing function that have been proposed in the effort
to the mitigate the generation failures discussed
in part 1 (Fan et al., 2018; Holtzman et al., 2020;
Basu et al., 2021; Meister et al., 2022; Hewitt et al.,
2022). For example, one issue that has received
large focus is the constraint that language models
must assign nonzero probability to all token in the
vocabulary. Even if a model assigns inappropri-
ate tokens very low probability, there is still the
chance of sampling them when using stochastic
decoding algorithms. This can lead to undesirable
outputs, as a single incoherent token can render a
natural language string virtually incomprehensible
(Fan et al., 2018; Holtzman et al., 2020). Under
the assumption that our training data consisted of
coherent text, the model will subsequently not be
able to predict appropriate continuations for such a
text as it was not exposed to text of this nature dur-
ing training. While intuitively we might expect this
issue to only occur with low probability, a concrete
example proves otherwise.1

Methods such as nucleus and top-k sampling
have proposed simple modifications to the scoring
function p(· | y<t) to exclude undesirable tokens
from the candidate pool. These types of transfor-
mations are widely-employed when sampling from
probabilistic language generators: they are quick
to implement, efficient in practice, and surprisingly
effective. Indeed, nucleus sampling is often used
as a baseline in various language generation tasks
(Welleck et al., 2020; Pillutla et al., 2021; Basu
et al., 2021).

Here we will offer a formal treatment of these
transformations; we present a general framework
for what we call sampling adapters, the class of
functions g : R|V| → R

|V| that adapts each con-
ditional distribution pθ(· | y<t) in a locally nor-
malized language model to a new distribution. We
will show results from prior works comparing these
methods, describing the problems that they miti-
gate (such as sampling incoherent tokens) as well
as the problems that they introduce (such as repeti-
tive generations). Finally, we will discuss possible
interpretations of the effectiveness of these meth-
ods, in order to provide intuition for why they lead
to better language generation.

1Let’s say we have a model that assigns a very small col-
lective probability mass of 0.1% to all tokens in the tail (low-
probability region) of the distribution at any given point. If
we sample a sequence of 200 tokens from this model, there is
a 1−(1−0.001)200 ≈ 20% chance it will contain at least one
token from the tail of the distribution.



3.4 Part 4: Controlled Generation

Generated samples from language models often
contain toxic or non-factual content (Gehman et al.,
2020; Maynez et al., 2020). Further, they also
often go off-topic, even after applying the sampling
adapters discussed in the previous section (Yang
and Klein, 2021). To ensure that the generated
samples satisfy a set of desired properties—e.g.
being non-toxic or talking about a certain topic—
we need methods to impose controls during the
sampling process. The question we will discuss in
this part of the tutorial is how can we sample from
a pretrained language model pθ, while ensuring that
samples satisfy a specific control c? This can be
formalized as turning our scoring function into a
different distribution pθ(y | c). We look methods
for building pθ(y | c) using an arbitrary language
model and the decoding algorithms that can used
with this distribution under different circumstances.

Given a control c, our goal is to sample a to-
ken yt from the distribution p(· | y<t, c). Follow-
ing Bayes’ rule, this distribution is proportional
to pθ(· | y<t) p(c | y≤t), where we use pθ to de-
note an arbitrary language model. In other words,
we can view our problem as reweighting the score
of a candidate yt under the language model pθ ac-
cording to the probability that y≤t satisfies the con-
trol target: p(c | y≤t) (Yang and Klein, 2021).
This control target can be estimated with a super-
vised classifier parameterized by ϕ: pϕ(c | y≤t)
(Ghazvininejad et al., 2017; Holtzman et al., 2018).
Building such a classifier, however, is arguably an
easier problem than building the entire distribution
over natural language strings, if due to the smaller
size of the support alone. Once we obtain such es-
timates, we can make use of an arbitrary language
model pθ and standard autoregressive decoding al-
gorithm for controlled generation.

While autoregressive methods have proven ef-
fective for controlling the topic or the sentiment
of samples, they fail for more complex controls
such as toxicity or syntax. Particularly, for more
complex controls, estimating p(c | y≤t) becomes
challenging. If at any point this probability distri-
bution diverges from the true value, the error will
propagate to the next steps due to structure of most
of these models. To address this issue, other con-
trolled generation methods propose sampling the
whole sequence y at once, using Markov-Chain
methods. Specifically, these methods propose a
decoding algorithm for building Markov-Chains

based that have the stationary distribution p(y | c).
Given that the sampling space is high dimensional,
Hamiltonian Monte Carlo (HMC) algorithms, such
as Langevin Dynamics, have been shown to be
effective for drawing samples from those Markov-
Chains (Qin et al., 2022; Kumar et al., 2022).

4 Presenters

• Afra Amini is a PhD student at ETH Zürich in
the ETH AI Center. Her current foci include
language generation and parsing.

• Ryan Cotterell is an assistant professor at
ETH Zürich in the Institute for Machine
Learning. His research focuses on a wide
range of topics, including information-
theoretic linguistics, parsing, computational
typology and morphology, and bias and
fairness in NLP systems.

• John Hewitt Is a PhD student at Stanford
University. His research tackles basic
problems in learning models from broad
distributions over language, characterizing
and understanding those models, and building
smaller, simpler models.

• Clara Meister is a PhD student at ETH
Zürich in the Institute for Machine Learning
and a Google PhD Fellow. Her current foci
include language generation, pyscholinguis-
tics, and the general application of statistical
methods to natural language processing.

• Tiago Pimentel is a PhD student at the Univer-
sity of Cambridge and a Facebook Fellow. His
research focuses on information theory, and
its applications to the analysis of pre-trained
language models and natural languages.

Diversity Considerations

As our tutorial focuses on language generation, we
will cover issues related to modeling and generat-
ing strings in languages which are typologically
different from English. Further, this tutorial was
developed by a group of researchers from three uni-
versities (Stanford, ETHZ and Cambridge), who
are originally from 3 continents (Asia, North Amer-
ica, and South America). Lastly, it will discuss
work produced by authors spanning many back-
grounds, both in industry—where institutions have
the resources to train these large language models
and make them publicly available—and academia—
which has given a large focus to making efficient
use of pretrained models during generation.
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