@inproceedings{asai-etal-2023-retrieval,
title = "Retrieval-based Language Models and Applications",
author = "Asai, Akari and
Min, Sewon and
Zhong, Zexuan and
Chen, Danqi",
editor = "Chen, Yun-Nung (Vivian) and
Margot, Margot and
Reddy, Siva",
booktitle = "Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 6: Tutorial Abstracts)",
month = jul,
year = "2023",
address = "Toronto, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.acl-tutorials.6",
doi = "10.18653/v1/2023.acl-tutorials.6",
pages = "41--46",
abstract = "Retrieval-based language models (LMs) have shown impressive performance on diverse NLP tasks. In this tutorial, we will provide a comprehensive and coherent overview of recent advances in retrieval-based LMs. We will start by providing preliminaries covering the foundation of LMs (e.g., masked LMs, autoregressive LMs) and retrieval systems (e.g., nearest-neighbor search). We will then detail recent progress in retrieval-based models, focusing on their model architectures and learning approaches. Finally, we will show how retrieval-based LMs are adapted to downstream applications, and extended to multilingual and multi-modal settings. Finally, we will use an exercise to showcase the effectiveness of retrieval-based LMs.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="asai-etal-2023-retrieval">
<titleInfo>
<title>Retrieval-based Language Models and Applications</title>
</titleInfo>
<name type="personal">
<namePart type="given">Akari</namePart>
<namePart type="family">Asai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sewon</namePart>
<namePart type="family">Min</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zexuan</namePart>
<namePart type="family">Zhong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Danqi</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 6: Tutorial Abstracts)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yun-Nung</namePart>
<namePart type="given">(Vivian)</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Margot</namePart>
<namePart type="family">Margot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Siva</namePart>
<namePart type="family">Reddy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Toronto, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Retrieval-based language models (LMs) have shown impressive performance on diverse NLP tasks. In this tutorial, we will provide a comprehensive and coherent overview of recent advances in retrieval-based LMs. We will start by providing preliminaries covering the foundation of LMs (e.g., masked LMs, autoregressive LMs) and retrieval systems (e.g., nearest-neighbor search). We will then detail recent progress in retrieval-based models, focusing on their model architectures and learning approaches. Finally, we will show how retrieval-based LMs are adapted to downstream applications, and extended to multilingual and multi-modal settings. Finally, we will use an exercise to showcase the effectiveness of retrieval-based LMs.</abstract>
<identifier type="citekey">asai-etal-2023-retrieval</identifier>
<identifier type="doi">10.18653/v1/2023.acl-tutorials.6</identifier>
<location>
<url>https://aclanthology.org/2023.acl-tutorials.6</url>
</location>
<part>
<date>2023-07</date>
<extent unit="page">
<start>41</start>
<end>46</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Retrieval-based Language Models and Applications
%A Asai, Akari
%A Min, Sewon
%A Zhong, Zexuan
%A Chen, Danqi
%Y Chen, Yun-Nung (Vivian)
%Y Margot, Margot
%Y Reddy, Siva
%S Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 6: Tutorial Abstracts)
%D 2023
%8 July
%I Association for Computational Linguistics
%C Toronto, Canada
%F asai-etal-2023-retrieval
%X Retrieval-based language models (LMs) have shown impressive performance on diverse NLP tasks. In this tutorial, we will provide a comprehensive and coherent overview of recent advances in retrieval-based LMs. We will start by providing preliminaries covering the foundation of LMs (e.g., masked LMs, autoregressive LMs) and retrieval systems (e.g., nearest-neighbor search). We will then detail recent progress in retrieval-based models, focusing on their model architectures and learning approaches. Finally, we will show how retrieval-based LMs are adapted to downstream applications, and extended to multilingual and multi-modal settings. Finally, we will use an exercise to showcase the effectiveness of retrieval-based LMs.
%R 10.18653/v1/2023.acl-tutorials.6
%U https://aclanthology.org/2023.acl-tutorials.6
%U https://doi.org/10.18653/v1/2023.acl-tutorials.6
%P 41-46
Markdown (Informal)
[Retrieval-based Language Models and Applications](https://aclanthology.org/2023.acl-tutorials.6) (Asai et al., ACL 2023)
ACL
- Akari Asai, Sewon Min, Zexuan Zhong, and Danqi Chen. 2023. Retrieval-based Language Models and Applications. In Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 6: Tutorial Abstracts), pages 41–46, Toronto, Canada. Association for Computational Linguistics.