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1 Description

Language models (LMs) such as GPT-3 (Brown
et al., 2020) and PaLM (Chowdhery et al., 2022)
have shown impressive abilities in a range of natu-
ral language processing (NLP) tasks. However, re-
lying solely on their parameters to encode a wealth
of world knowledge requires a prohibitively large
number of parameters and hence massive compute,
and they often struggle to learn long-rail knowl-
edge (Roberts et al., 2020; Kandpal et al., 2022;
Mallen et al., 2022). Moreover, these paramet-
ric LMs are fundamentally incapable of adapting
over time (De Cao et al., 2021; Lazaridou et al.,
2021; Kasai et al., 2022), often hallucinate (Shus-
ter et al., 2021), and may leak private data from the
training corpus (Carlini et al., 2021). To overcome
these limitations, there has been growing interest
in retrieval-based LMs (Guu et al., 2020; Khan-
delwal et al., 2020; Borgeaud et al., 2022; Zhong
et al., 2022; Izacard et al., 2022b; Min et al., 2022),
which incorporate a non-parametric datastore (e.g.,
text chunks from an external corpus) with their
parametric counterparts. Retrieval-based LMs can
outperform LMs without retrieval by a large mar-
gin with much fewer parameters (Mallen et al.,
2022), can update their knowledge by replacing
their retrieval corpora (Izacard et al., 2022b), and
provide citations for users to easily verify and eval-
uate the predictions (Menick et al., 2022; Bohnet
et al., 2022).

Previously, retrieval and LMs have been studied
mostly separately, and only recently researchers
have integrated them and built systems in which
retrieval and LMs interact more organically, and a
number of retrieval-based LMs have been proposed
due to growing interest. They differ in their neural
architectures (e.g., the granularity of retrieval units,
how to integrate retrieved information), learning
algorithms, and different uses in downstream ap-
plications. In this tutorial, we aim to provide a

comprehensive and coherent overview of recent
advances in retrieval-based LMs. We will start
by first providing preliminaries covering the foun-
dations of LM (e.g., masked LMs, autoregressive
LMs) and retrieval systems (e.g., nearest-neighbor
search methods widely used in neural retrieval sys-
tems; Karpukhin et al. 2020). We will then focus
on recent progress in architectures, learning ap-
proaches, and applications of retrieval-based LMs.

A taxonomy of architectures We introduce a
taxonomy of architectures of retrieval-based LMs
based on a variety of dimensions. Retrieval-based
LMs can be categorized by the granularity of re-
trieved units stored in the datastore: either 1) a
chunk of text (Borgeaud et al., 2022; Izacard et al.,
2022b), or 2) a token (Khandelwal et al., 2020;
Zhong et al., 2022; Min et al., 2022), or 3) an en-
tity mention (Févry et al., 2020; de Jong et al.,
2022). We also plan to cover techniques for refin-
ing data stores and improving similarity search (He
et al., 2021; Alon et al., 2022). At the same time,
retrieval-base LMs can be categorized based on
how the retrieved information is integrated with
the parametric encoder: 1) whether retrieved com-
ponents are concatenated with the original input
text (Lewis et al., 2020; Guu et al., 2020; Izacard
et al., 2022b), 2) whether the retrieved components
are latent and integrated into the intermediate lay-
ers of Transformers (de Jong et al., 2022; Févry
et al., 2020; Borgeaud et al., 2022), or 3) distribu-
tion of tokens from the retrieved components and
the LMs are interpolated (Khandelwal et al., 2020;
Zhong et al., 2022; Yogatama et al., 2021).

Scalable learning algorithms Then, we discuss
the training approaches of retrieval-based LMs.
Since a retrieval datastore is typically very large,
how to train retrieval-based LMs effectively and
efficiently remains challenging. We first discuss
pipelined approaches that train retrieval compo-
nents and LMs separately, either through large-
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scale pre-training (Izacard et al., 2022a) or multi-
task instruction tuning (Asai et al., 2022). Several
other works train retrieval-based LMs with a fixed
retrieval module (Borgeaud et al., 2022; Yogatama
et al., 2021). We then discuss joint training under
reasonable resource requirements: either through
in-batch approximations to a full datastore, or up-
dating the datastore with updated parameters asyn-
chronously. The former uses fractions of the full
corpus that are carefully designed during joint train-
ing (Zhong et al., 2022; de Jong et al., 2022; Min
et al., 2022). The latter, on the other hand, aims to
use full corpus during training with asynchronous
index update for every certain time steps (Izacard
et al., 2022b; Guu et al., 2020).

Adaption to downstream tasks After discussing
the basic building blocks of retrieval-based LMs,
we show how retrieval-based LMs are adapted to
downstream applications. We first briefly summa-
rize the two approaches to adapt a model to a new
task: zero-shot or few-shot prompting without any
parameter updates (Shi et al., 2022; Wang et al.,
2022), and fine-tuning on target task data (Lewis
et al., 2020). We then discuss methods designed
to build more powerful retrieval-based LMs for
certain downstream tasks, such as dialogue (Shus-
ter et al., 2021), semantic parsing (Pasupat et al.,
2021), and machine translation (Khandelwal et al.,
2021; Zheng et al., 2021).

Up to this point, our tutorial has mainly fo-
cused on retrieving and integrating English plain
text. At this end, we will cover recent exten-
sions of retrieval-based LMs beyond English text,
including multilingual (Asai et al., 2021), multi-
modal (Chen et al., 2022; Yasunaga et al., 2022)
and code (Parvez et al., 2021) retrieval. These
works often extend dense retrieval models to enable
retrieval between heterogeneous input spaces (e.g.,
cross-lingual, cross-modal) and have shown that
referring retrieved knowledge leads to knowledge-
intensive generation.

Finally, we will use an exercise to showcase the
effectiveness of retrieval-based LMs. We con-
clude our tutorial by discussing several important
questions and future directions, including (1) how
we can further improve the scalability of retrieval-
based LMs without sacrificing performance, (2)
when retrieval-based LMs are particularly useful
in the era of rapidly evolving LMs, and (3) what is
necessary to enable applications of retrieval-based
LMs for more diverse domains.

2 Tutorial Outline

1. Introduction (15 minutes)

• An overview of the tutorial

• Why retrieval-based LMs?

2. Preliminaries (15 minutes)

• Language models: Auto-regressive LMs vs.
masked LMs

• Dense retrieval methods

• Approximate nearest neighbor search

3. Retrieval-based LMs: A taxonomy of archi-
tectures (40 minutes)

• Granularity of datastore: tokens, entity men-
tions, and chunks of text

• How retrieved information is integrated: in-
corporation in the input layer, intermediate
layers, and the output layer

4. Retrieval-based LMs: Scalable learning algo-
rithms (40 minutes)

• Pipelined training

• Training with In-batch approximations

• Joint training of retrieval and LMs with asyn-
chronous updates of corpus

5. Retrieval-based LMs: Downstream adapta-
tions (40 minutes)

• Adaptation methods: zero-shot/few-shot
prompting and fine-tuning on downstream
tasks

• Downstream applications and task-specific
modifications (e.g., dialogue, semantic pars-
ing)

6. Extensions beyond English text (10 minutes)

• Multilingual retrieval-based LMs

• Multimodal retrieval-based LMs

• Code generation

7. Demostration: An exercise to show retrieval-
augmented LMs (10 minutes)

8. Conclusions and future directions (10 min-
utes)
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3 Tutorial Information

Type of the tutorial Cutting-edge.

Length This is a 3-hour tutorial.

Target audience The tutorial will be accessi-
ble to anyone who has a basic knowledge of ma-
chine learning and natural language processing. We
think the topic will be of interest to both NLP re-
searchers/students in academia and NLP practition-
ers in the industry.

Breadth We estimate that 20% of the work cov-
ered in this tutorial will be by the presenters and
the remaining 80% by others. The papers we will
cover are from both academia and industry.

Diversity considerations. The speakers are from
two academic institutions with an affiliation with
an industry research group, including both a profes-
sor and Ph.D. students. Three out of four speakers
are female. The methods covered by our tutorials
can scale up to various languages or domains, and
we also briefly cover several papers focusing on
multilingual and expert-domain extensions of the
core frameworks. We will reach out to academic
communities such as WiNLP1 and Masakhane2 to
encourage them to attend our tutorial for participa-
tion of diverse audiences. Since retrieval-based
LMs are alternatives to LMs with a significantly
large number of parameters, we expect this tutorial
to be especially useful to researchers with mod-
est resources who do no have access to very large
models.

An estimate of the audience size Given that lan-
guage models are now used in a range of NLP tasks
and retrieval-based approaches have been applied
to diverse domains, we estimate that the number of
audiences will be around 150+.

Venues. We prefer ACL due to the growing in-
terest in the area and the travel constraints of some
of the speakers. EMNLP is our second preferred
choice, and we currently do not consider EACL.

Technical equipment. We would like to have
Internet access to show online demos.

Open access We plan to make all teaching ma-
terial available online and agree to allow the pub-
lication of slides and video recordings in the ACL
anthology.

1http://www.winlp.org/
2https://www.masakhane.io/

Ethical considerations Retrieval-based LMs are
often more powerful and parameter-efficient than
LMs, and do not require full re-training to update
world knowledge, which makes it more energy-
efficient and can reduce carbon footprints. Prior
work also shows that referring to external world
knowledge can reduce harmful biases and hallu-
cinations, although retrieval-based LMs can still
be plausible sounding but incorrect or non-sensical
outputs. We note that, as retrieval-based LMs may
retrieve raw data from a corpus, which can leak
privacy-sensitive information, especially when they
are built on top of a private corpus. We acknowl-
edge this to caution those who manage to apply
retrieval-based LMs to privacy-sensitive domains.

Pedagogical material We plan to do some short
hands-on exercises to let the audience try different
retrieval-based LMs with few-shot prompting using
Colab.

Past tutorials.

• ACL 2020 tutorial on Open-domain QA (Chen
and Yih, 2020): This tutorial provides com-
prehensive reviews of open-domain question
answering, some of which consist of a re-
triever and a generative model, while we fo-
cus on the recent progress of architectures and
learning algorithms of retrieval-based LMs
for diverse NLP tasks, not limiting its focus
to open-domain QA. Most of the papers will
be discussed in this tutorial have been pub-
lished since the Open-domain QA tutorial
three years ago. Moreover, one of the instruc-
tors, Danqi was an instructor of this ACL 2020
tutorial.

• SIGIR 2022 tutorial on Recent Advances in
Retrieval-Augmented Text Generation (Cai
et al., 2022): This tutorial focuses mainly on
recent retrieval-augmented text generation ap-
proaches with a focus on two applications:
dialogue and machine translation. Our tuto-
rial puts more emphasis on the architecture
and learning methods of retrieval-based LMs
that can be applicable to diverse NLP tasks.

4 Presenters

Akari Asai Akari Asai is a Ph.D. student in the
Paul G. Allen School of Computer Science & En-
gineering at the University of Washington, advised
by Prof. Hannaneh Hajishirzi. Her research lies
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in natural language processing and machine learn-
ing. Her recent research focuses on question an-
swering, retrieval-based LMs, multilingual NLP,
and entity-aware representations. She received the
IBM Fellowship in 2022. She is a lead organizer
of the Workshop on Multilingual Information Ac-
cess (NAACL 2022) and serves as an area chair in
question answering at EACL 2023.

Sewon Min Sewon Min is a Ph.D. student in the
Paul G. Allen School of Computer Science & En-
gineering at the University of Washington, and a
visiting researcher at Meta AI. Her research spans
question answering, representation and retrieval of
factoid knowledge, and language modeling. She
was a co-instructor and a co-organizer of multi-
ple tutorials and workshops at ACL, NAACL-HLT,
EMNLP, NeurIPS and AKBC, including a tuto-
rial on Few-Shot NLP with Pretrained Language
Models (ACL 2022), a tutorial on NLP for Long Se-
quences (NAACL-HLT 2021), and the Workshop
on Semiparametric Methods in NLP (ACL 2022).

Zexuan Zhong Zexuan Zhong is a Ph.D. student
in the Department of Computer Science at Prince-
ton University, advised by Prof. Danqi Chen. His
research interests lie in natural language processing
and machine learning. His recent research focuses
on retrieval-based LMs, generalization of retrieval
models, and efficient models in NLP. He received
a J.P. Morgan PhD Fellowship in 2022.

Danqi Chen Danqi Chen is an Assistant Profes-
sor of Computer Science at Princeton University
and co-leads the Princeton NLP Group. Her re-
cent research focuses on training, adapting, and
understanding large LMs, and developing scalable
and generalizable NLP systems for question an-
swering, information extraction, and conversational
agents. Danqi is a recipient of a Sloan Fellowship,
a Samsung AI Researcher of the Year award, out-
standing paper awards from ACL 2016, EMNLP
2017 and ACL 2022, and multiple industry fac-
ulty awards. Danqi served as the program chair
for AKBC 2021 and (senior) area chairs for many
*ACL conferences. She taught a tutorial on “Open-
domain Question Answering” at ACL 2020.

5 Reading List

• Unsupervised Dense Information Retrieval
with Contrastive Learning (Izacard et al.,
2022a)

• Task-aware Retrieval with Instructions (Asai
et al., 2022)

• Atlas: Few-shot Learning with Retrieval Aug-
mented Language Models (Izacard et al.,
2022b)

• Improving language models by retrieving
from trillions of tokens (Borgeaud et al., 2022)

• Mention Memory: incorporating textual
knowledge into Transformers through entity
mention attention (de Jong et al., 2022)

• Generalization through Memorization: Near-
est Neighbor Language Models (Khandelwal
et al., 2020)

• Nonparametric Masked Language
Model (Min et al., 2022)

• Training Language Models with Memory
Augmentation (Zhong et al., 2022)

• kNN-Prompt: Nearest Neighbor Zero-Shot
Inference (Shi et al., 2022)

• Neuro-Symbolic Language Modeling with
Automaton-augmented Retrieval (Alon et al.,
2022)
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