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Introduction

Welcome to the Tutorials Session of ACL 2023.

The ACL tutorials session is organized to give conference attendees a comprehensive introduction by
expert researchers to some topics of importance drawn from our rapidly growing and changing research
field.

This year, as has been the tradition over the past few years, the call, submission, reviewing and selection
of tutorials were coordinated jointly for multiple conferences: EACL, ACL, and EMNLP. We formed
a review committee including the EACL tutorial chairs (Sameer Pradhan and Fabio Massimo Zanzot-
to) and ACL tutorial chairs (Yun-Nung Vivian Chen, Margot Mieskes, and Siva Reddy). A reviewing
process was organized so that each proposal receives 2 reviews. The selection criteria included clarity,
preparedness, novelty, timeliness, instructors’ experience, likely audience, open access to the teaching
materials, diversity (multilingualism, gender, age and geolocation) and the compatibility of preferred
venues. A total of 42 tutorial submissions were received, of which 6 were selected for presentation at
ACL.

We would like to thank the tutorial authors for their contributions and flexibility while organising the
conference in a hybrid format. Finally, our thanks go to the conference organizers for effective collabo-
ration, and in particular to the general chair Yang Liu.

We hope you enjoy the tutorials.

ACL 2023 Tutorial Co-chairs
Yun-Nung (Vivian) Chen
Margot Mieskes
Siva Reddy
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1 Introduction

Tutorial Description Conversational systems are
envisioned to provide social support or functional
service to human users via natural language interac-
tions. Conventional conversation researches mainly
focus on the response-ability of the system, such
as dialogue context understanding and response
generation, but overlooks the design of an essen-
tial property in intelligent conversations, i.e., goal
awareness. The awareness of goals means the state
of not only being responsive to the users but also
aware of the target conversational goal and capa-
ble of leading the conversation towards the goal,
which is a significant step towards higher-level in-
telligence and artificial consciousness. It can not
only largely improve user engagement and service
efficiency in the conversation, but also empower
the system to handle more complicated conversa-
tion tasks that involve strategical and motivational
interactions. In this tutorial, we will introduce the
recent advances on the design of agent’s awareness
of goals in a wide range of conversational systems.
Type of Tutorial Cutting-edge
Targeted Audience Target audiences are re-
searchers and practitioners who interested in nat-
ural language processing and human-computer in-
teraction. The audience will learn about the state-
of-the-art research in conversational AI and the
cutting-edge designs of agent’s awareness in vari-
ous conversational systems.
Suggested Duration Half day (3 hours)

2 Tutorial Outline

Part I: Preliminary (20 minutes)
Conversational agents are generally envisioned to
achieve the conversational goal by providing so-
cial support or functional service to human users
via natural language interactions. In terms of the
goal, Part I will present a brief overview of the
widely-studied problems and correponding main-

stream approaches in several typical conversational
systems, including open-domain dialogue (ODD)
systems (Zhang et al., 2018a; Li et al., 2017; Roller
et al., 2021), task-oriented dialogue (TOD) sys-
tems (Budzianowski et al., 2018; Lei et al., 2018;
Su et al., 2022), conversational question answering
(CQA) systems (Choi et al., 2018; Reddy et al.,
2019; Anantha et al., 2021; Qiu et al., 2021), and
conversational recommender systems (CRS) (Li
et al., 2018; Deng et al., 2021; Wang et al., 2022).

Part II: Proactive Conversational Systems (50
minutes)
As opposed to responding to users, proactivity is
the most prominent feature of goal awareness in
conversational systems, which can improve the
collaboration between the users and system to-
wards the ultimate conversation goal. Derived from
the definition of proactivity in organizational be-
haviors (Grant and Ashford, 2008) and its dictio-
nary definitions (Dictionary, 1989), conversational
agents’ proactivity can be defined as the capability
to create or control the conversation by taking the
initiative and anticipating impacts on themselves or
human users. In this part, we will provide a com-
prehensive introduction about such efforts on the
design of agent’s proactivity that span various task
formulations and application scenarios. In specific,
we categorize them in three directions according to
the application scenario, and plan to discuss their
research problems and methods as follows:

• Topic Shifting and Planning in Open-domain
Dialogues The goal of OOD systems is to main-
tain engaging social conversations with users.
Proactive OOD systems can consciously change
topics (Rachna et al., 2021; Xie et al., 2021) and
lead directions (Tang et al., 2019; Wu et al., 2019;
Yang et al., 2022) for improving user engagement
in the conversation. We will present the existing
methods for topic shifting and planning in open-
domain dialogues, including graph-based topic
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planning (Qin et al., 2020; Zhong et al., 2021;
Xu et al., 2020; Ni et al., 2022), responding plan
generation (Kishinami et al., 2022), and learning
from interactions with users (Lei et al., 2022).

• Additional Information Delivery in Task-
oriented Dialogues The goal of TOD systems
is to provide functional service for users, such as
making reservations or managing schedule. The
proactivity in TOD systems is firstly defined as
the capability of consciously providing additional
information that is not requested by but useful
to the users (Balaraman and Magnini, 2020a,b),
which can improve the quality and effectiveness
of conveying functional service in the conver-
sation. We will introduce the recent studies of
proactive TOD systems with various designs. For
instance, Sun et al. (2021) add topical chit-chats
into the responses for TODs. Chen et al. (2022c)
enrich task-oriented dialogues with relevant en-
tity knowledge.

• Uncertainty Elimination in Information-
seeking Dialogues The goal of CIS systems (Za-
mani et al., 2022) is to fulfill the user’s informa-
tion needs and its typical applications include
conversational search, conversational recommen-
dation, and conversational question answering.
Conventional CIS systems assume that users al-
ways convey clear information requests, while
the user queries, in reality, are often brief and
succinct. Recent years have witnessed several
advances on developing proactive CIS systems
that can consciously eliminate the uncertainty
for more efficient and precise information seeks
by initiating a subdialogue. Such a subdialogue
can either clarify the ambiguity of the query or
question in conversational search (Aliannejadi
et al., 2019, 2021; Zamani et al., 2020) and con-
versation question answering (Guo et al., 2021;
Deng et al., 2022a), or elicit the user preference
in conversational recommendation (Zhang et al.,
2018b; Lei et al., 2020a,b).

Part III: Non-collaborative Conversational
Systems (40 minutes)
Most of existing conversational systems are built
upon the assumption that the users willingly col-
laborate with the conversational agent to reach the
mutual goal. However, this assumption may not
always hold in some real-world scenarios, where
the users and the system do not share the same
goal (He et al., 2018; Wang et al., 2019) or the users

are not willing to coordinate with the agent (Yang
et al., 2019; Kim et al., 2022). In these cases, the
conversational agent requires another feature of
goal awareness, i.e., non-collaborativity (Li et al.,
2020; Zhou et al., 2020), which means the capabil-
ity of handling both in-goal and off-goal dialogues
appropriately for ultimately leading back to the
system’s goal. In this part, we will categorize the
non-collaborative settings into two groups as fol-
lows and cover their to-date work respectively.

• The users and the system do not share the
same goal. Typical applications include persua-
sion dialogues (Wang et al., 2019), negotiation
dialogues (He et al., 2018; Chawla et al., 2021),
and anti-scam dialogues (Li et al., 2020). We
will present the approaches for the system to con-
sciously mitigate and resolve the conflict goals
with users, including dialogue strategy learn-
ing (Dutt et al., 2021; Yamaguchi et al., 2021;
Joshi et al., 2021), user personality modeling (Shi
et al., 2021; Yang et al., 2021), and response style
transfer (Mishra et al., 2022; Wu et al., 2021).

• The users are not willing to coordinate with
the agent. Example scenarios include calming
down the emotional users before solving their
problems (Liu et al., 2021b), managing the users’
complaints before providing service (Yang et al.,
2019), and handling problematic content during
the conversations (Kim et al., 2022). We will
introduce the pioneering studies for the system
to consciously deal with non-collaborative users
during the conversation, including emotion cause
analysis (Tu et al., 2022; Cheng et al., 2022), user
satisfaction estimation (Liu et al., 2021a; Deng
et al., 2022b), and safe response generation (Ba-
heti et al., 2021; Ung et al., 2022).

Part IV: Multi-goal Conversational Systems (30
minutes)
All the aforementioned conversational systems as-
sume that users always know what they want and
the system solely targets at reaching a certain goal,
such as chit-chat, question answering, recommen-
dation, etc. The system with a higher level of
agent’s awareness of goals should also be capa-
ble of handling conversations with multiple and
various goals. As for multi-goal conversational
systems (Liu et al., 2022; Deng et al., 2022c), the
agent is expected to consciously discover users’ in-
tentions and naturally lead user-engaged dialogues
with multiple conversation goals. We will cover
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the newly proposed problems in multi-goal conver-
sational systems with their corresponding data re-
sources (Sun et al., 2021; Zhao et al., 2022; Young
et al., 2022; Chiu et al., 2022). Then we will
discuss two problem settings of multi-goal con-
versational systems with corresponding state-of-
the-art approaches: (i) The goal sequence is pre-
defined (Bai et al., 2021; Zhang et al., 2021b), and
(ii) The next goal needs to be predicted (Liu et al.,
2020; Chen et al., 2022b; Deng et al., 2022c).

Part V: Open Challenges for Conversational
Agents’ Awareness and Beyond (40 minutes)
In the last part, we will discuss the main open chal-
lenges in developing agent’s awareness in conver-
sational systems and several potential research di-
rections for future studies.

• Evaluation for Conversational Agent’s Aware-
ness The development of robust evaluation pro-
tocols has already been a long-standing prob-
lem for different kinds of conversational sys-
tems (Zhang et al., 2021a; Peng et al., 2021; Li
et al., 2022b). The evaluation for conversational
agent’s awareness is a more challenging problem,
since it is involved the evaluation not only from
the perspective of natural language, but also from
the perspectives of human-computer interaction,
sociology, psychology, etc. We will cover the
latest studies for shedding some lights on this
topic, inclusive of popular metrics such as goal
completion and user satisfaction (Liu et al., 2020;
Lei et al., 2022; Gupta et al., 2022), and model-
based methods such as user simulator (Zhang and
Balog, 2020; Sekulic et al., 2022).

• Ethics for Conversational Agent’s Awareness
Although existing designs of agent’s awareness
of goals in conversational systems generally aim
at social goodness (Wang et al., 2019; Liu et al.,
2021b; Kim et al., 2022), it is inevitably a double-
edged sword that can be used for good or evil.
For responsible NLP researches, we will dis-
cuss several important aspects of ethical issues
in conscious conversational systems: (i) Factu-
ality: Factual incorrectness and hallucination of
knowledge are common in conversational sys-
tems (Dziri et al., 2022; Honovich et al., 2021).
When enabling the conversational agent with
awareness, it becomes more crucial to guaran-
tee the factuality of the system-provided infor-
mation (Chen et al., 2022a). (ii) Safety: Besides
general dialogue safety problems, such as toxic

language and social bias (Saveski et al., 2021;
Barikeri et al., 2021), conscious conversational
systems need to pay more attentions to the ag-
gressiveness issue during the non-collaborative
conversations (Kim et al., 2022; Hu et al., 2022).
(iii) Privacy: The privacy issue is overlooked
in current studies on conversational systems (Li
et al., 2022a; Shi et al., 2022), but the agent’s
awareness raises concerns about how these con-
versational systems handle personal information
obtained from the users. Furthermore, we will
introduce some recent released resources that can
be adopted for studying this topic (Ziems et al.,
2022; Sun et al., 2022; Kim et al., 2022).

• Agent’s Awareness in LLM-based Conver-
sational AI Large Language Models (LLMs)
have been demonstrated to be powerful of han-
dling various NLP tasks in the form of con-
versations, such as ChatGPT (Schulman et al.,
2022), LaMDA (Thoppilan et al., 2022), Blender-
Bot (Shuster et al., 2022), etc. However, these
applications are typically designed to follow the
user’s instructions and intents. There are still sev-
eral limitations that attribute to the lack of agent’s
awareness, such as passively providing randomly-
guessed answers to ambiguous user queries, fail-
ing to refuse or handle problematic user requests
that may exhibit harmful or biased conversations,
etc. In addition, they also fall short of interact-
ing under non-collaborative or system-oriented
settings. Therefore, we will discuss the role of
LLMs in goal awareness for conversational AI
with some latest studies (Huang et al., 2022; Ahn
et al., 2022; Yao et al., 2022).

3 Presenters

Yang Deng is a final-year Ph.D. candidate in The
Chinese University of Hong Kong. His research
lies in natural language processing and information
retrieval, especially for dialogue and QA systems.
He has published over 20 papers at top venues such
as ACL, EMNLP, SIGIR, WWW, TKDE, and TOIS.
Additional information is available at https://
dengyang17.github.io.

Wenqiang Lei is a Professor in Sichuan Univer-
sity. His research interests focus on conversational
AI, including conversational recommendation, di-
alogue and QA systems. He has published rele-
vant papers at top venues such as ACL, EMNLP,
KDD, SIGIR, TOIS, and received the ACM MM
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2020 best paper award. He has given tutorials
on the topic of conversational recommendation
at RecSys 2021, SIGIR 2020, and co-organized
special issues about conversational information
seeking on ACM Trans. on Web. Specifically,
his tutorial on SIGIR 2020 accepts over 1600
audiences, being one of the most popular tuto-
rials in SIGIR 2020. Additional information is
available at https://sites.google.com/
view/wenqianghome/home.

Minlie Huang is an Associate Professor with the
Department of Computer Science and Technology,
Tsinghua University. He has authored or coau-
thored more than 100 papers in premier confer-
ences and journals (ACL, EMNLP, TACL, etc). His
research interests include natural language process-
ing, particularly in dialog systems, reading com-
prehension, and sentiment analysis. He is an editor
of TACL, CL, TNNLS, the Area Chair or SAC
of ACL/EMNLP for more than 10 times. He is
the recipient of IJCAI 2018 distinguished paper
award, a nominee of ACL 2019 best demo papers,
and SIGDIAL 2020 best paper award. Additional
information is available at http://coai.cs.
tsinghua.edu.cn/hml.

Tat-Seng Chua is the KITHCT Chair Professor
with the School of Computing, National Univer-
sity of Singapore. His main research interest in-
clude multimedia information retrieval and social
media analytics. He is the 2015 winner of the
prestigious ACM SIGMM Technical Achievement
Award and receives the best papers (or candidates)
over 10 times in top conferences (SIGIR, WWW,
MM, etc). He serves as the general co-chair of
top conferences multiple times (MM 2005, SI-
GIR 2008, WSDM 2023, etc), and the editors
of multiple journals (TOIS, TMM, etc). He has
given invited keynote talks at multiple top con-
ferences, including the recent one on the topic
of multimodal conversational search and recom-
mendation. Additional information is available at
https://www.chuatatseng.com/.

4 Reading Lists

Previous Tutorials:
(Chen et al., 2017b) ACL 2017 - Deep Learning
for Dialogue Systems;
(Su et al., 2018) NAACL 2018 - Deep Learning for
Conversational AI;
(Gao et al., 2018) ACL 2018/SIGIR 2018 - Neural
Approaches to Conversational AI;

(Gao et al., 2020) SIGIR 2020 - Recent Advances
in Conversational Information Retrieval;
(Dalton et al., 2022) SIGIR 2022 - Conversational
Information Seeking: Theory and Application.

Related Surveys or Book Chapters:
(Chen et al., 2017a) A Survey on Dialogue Systems:
Recent Advances and New Frontiers;
(Gao et al., 2019) Neural Approaches to Conversa-
tional AI;
(Huang et al., 2020) Challenges in Building Intelli-
gent Open-domain Dialog Systems;
(Zamani et al., 2022) Conversational Information
Seeking;
(Gao et al., 2022) Neural Approaches to Conversa-
tional Information Retrieval;
(Yan et al., 2022) Deep Learning for Dialogue Sys-
tems: Chit-Chat and Beyond.

5 Other Tutorial Information

Breadth and Diversity Considerations Accord-
ing to the representative set of papers listed in the
selected bibliography, the concerned work in this
tutorial will contain only 10%-15% of work that
involves at least one of the four presenters. The
rest of the tutorial will present a comprehensive
overview of the tutorial topic by discussing the
related work as much as possible from other re-
searchers. The discussed approaches are problem-
driven and language-agnostic, which means that the
introduced content are generally applicable to all
languages. The techniques are also not limited to
a certain type of dialogues and can be generalized
to diverse conversational systems. We have a di-
verse background for the presenters across multiple
institutions in different regions.

Ethical Considerations Artificial consciousness
is a broad and essential topic towards “Strong AI"
in the whole AI community (Searle, 1992), which
can and should be used for social goodness, but
inevitably comes with potential risks. In fact, the
awareness of goals is just one of the cognitive as-
pects of consciousness (Baars, 1993). As part of
this tutorial, we will provide a specific section for
discussing the ethical considerations and designs
for agent’s awareness in conversational systems.
This tutorial also provides the opportunity to arouse
discussions on how far we can and should go for
agent’s consciousness in conversational AI from
the view of ethical and responsible NLP researches.

Open Access of Materials All tutorial materials
will be made publicly available.
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1 Tutorial Overview

Teaching machines to reason over texts has been
a long-standing goal of natural language process-
ing (NLP). To this end, researchers have designed
a diverse set of complex reasoning tasks that in-
volve compositional reasoning (Geva et al., 2021;
Trivedi et al., 2022), knowledge retrieval (Yang
et al., 2018; Kwiatkowski et al., 2019), ground-
ing (Budzianowski et al., 2018; Xie et al., 2022;
Shi et al., 2021), commonsense reasoning (Talmor
et al., 2021a; Lin et al., 2020), etc.

A standard choice for building systems that per-
form a desired type of reasoning is to fine-tune a
pretrained language model (LM) on specific down-
stream tasks. However, recent research has demon-
strated that such a straightforward approach is
often brittle. For example, Elazar et al. (2021)
and Branco et al. (2021) show that, on question-
answering (QA) tasks, similar performance can be
achieved with questions removed from the inputs.
Min et al. (2019), Chen and Durrett (2019), and
Tang et al. (2021) show that models trained on
multi-hop QA do not generalize to answer single-
hop questions. The reasoning capabilities of these
models thus remain at a surface level, i.e., exploit-
ing data patterns. Consequently, augmenting LMs
with techniques that make them robust and effec-
tive becomes an active research area.

We will start the tutorial by providing an
overview of complex reasoning tasks where the
standard application of pretrained language mod-
els fails (in Sec 2). This tutorial then reviews
recent promising directions for tackling these
tasks (in Sec 3). Specifically, we focus on
the following groups of approaches that explic-
itly consider problem structures: (1) knowledge-
augmented methods, where the knowledge is ei-
ther incorporated during fine-tuning or pretrain-
ing; (2) few-shot prompting methods, which effec-

∗Equal Contribution.

tively guide the models to follow instructions; (3)
neuro-symbolic methods, which produce explicit
intermediate representations; and, (4) rationale-
based methods, one of the most popular forms
of the neuro-symbolic methods, which highlight
subsets of input as explanations for individual
model predictions. The tutorial materials are
online at https://wenting-zhao.github.
io/complex-reasoning-tutorial.

2 Problem Introduction

We will start with NLP tasks that require reason-
ing over multiple pieces of information in a pro-
vided context, covering various reasoning skills
such as fact composition, mathematical reason-
ing, inferring semantic structures, and reasoning
about entities (Yang et al., 2018; Yu et al., 2018;
Budzianowski et al., 2018; Dua et al., 2019; Ho
et al., 2020; Dasigi et al., 2019; Cobbe et al., 2021;
Trivedi et al., 2022). Then, we will discuss bench-
marks that combine multiple sources of informa-
tion (i.e., modalities), e.g., paragraphs, tables, and
images (Chen et al., 2020b; Talmor et al., 2021b;
Pasupat and Liang, 2015; Chen et al., 2020a).

We will present open-domain setups where exter-
nal knowledge should be integrated into the reason-
ing process (Geva et al., 2021; Onoe et al., 2021;
Ferguson et al., 2020; Talmor and Berant, 2018). In
addition, we will review tasks that require common-
sense reasoning (Talmor et al., 2021a; Rudinger
et al., 2020; Sap et al., 2019; Saha et al., 2021).

We will conclude this part by highlighting key
practices for dataset creation, that increase data
diversity and minimize annotation biases and rea-
soning shortcuts (Bartolo et al., 2020; Khot et al.,
2020; Geva et al., 2019; Parmar et al., 2022).

3 Approaches

(1a) Knowledge-Augmented Fine-Tuning Tack-
ling complex reasoning problems that require com-
monsense knowledge and entity-centric facts can
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benefit from access to external knowledge sources.
How to incorporate knowledge during fine-tuning
has thus been extensively studied. A general
method is to retrieving knowledge facts relevant
to given situations (e.g., questions) and fusing
them with an LM-based neural module. External
knowledge can be categorized into three forms:
structured (e.g., knowledge graphs like Concept-
Net (Speer et al., 2017)), unstructured (e.g., knowl-
edge corpora such as Wikipedia and Generic-
sKB (Bhakthavatsalam et al., 2020)), and instance-
based (i.e., annotated examples).

In this section, we will cover methods for these
three forms of knowledge in a variety of reasoning
problems. For structured knowledge, KagNet (Lin
et al., 2019) is a typical method that focuses on
fusing retrieved subgraphs from ConceptNet for
fine-tuning LMs to perform commonsense reason-
ing. Follow-up works include MHGRN (Feng
et al., 2020), QA-GNN (Yasunaga et al., 2021),
and GreaseLM (Zhang et al., 2022b). For unstruc-
tured knowledge, we will introduce methods that
encode a large knowledge corpus as neural mem-
ory modules to support knowledge retrieval for
reasoning. We will start with DPR (Karpukhin
et al., 2020), one of the most popular methods that
embed Wikipedia as a dense matrix of fact em-
beddings. Then, we will cover DrKIT (Dhingra
et al., 2020), which improves multi-hop reasoning
ability by encoding sparse entity mentions. Addi-
tionally, we introduce DrFact (Lin et al., 2021), a
fact-level extension for DrKIT that focuses on com-
monsense reasoning. For instance-based knowl-
edge, a promising direction, we will also intro-
duce methods such as RACo (Yu et al., 2022b),
ReCross (Lin et al., 2022), and QEDB (Chen et al.,
2022b), which aim to exploit annotated examples
to enhance reasoning.

(1b) Knowledge-Augmented Pretraining. Pre-
training performs self-supervised learning of repre-
sentations from large-scale data, which holds the
potential to help a broader range of downstream
tasks. We will review recent efforts to incorporate
knowledge and reasoning abilities into LMs during
pretraining. We first discuss retrieval-augmented
pretraining (Guu et al., 2020; Lewis et al., 2020a;
Borgeaud et al., 2021; Yasunaga et al., 2022b),
which retrieves relevant documents from an ex-
ternal memory and feeds them to the model as an
additional input. This helps not only knowledge-
intensive tasks but also some reasoning-intensive

tasks because the models learn to process multi-
ple documents for multi-hop reasoning (Yasunaga
et al., 2022b). We then discuss works that integrate
structured knowledge bases/graphs. For example,
some use knowledge graphs to make additional
pretraining objectives for LMs (Xiong et al., 2020;
Shen et al., 2020; Wang et al., 2021; Liu et al., 2021;
Yu et al., 2022a; Ke et al., 2021); others retrieve
and feed entity or knowledge graph information as
a direct input to the model (Zhang et al., 2019; Ros-
set et al., 2020; Liu et al., 2020; Sun et al., 2021;
Agarwal et al., 2021; Sun et al., 2020; He et al.,
2020; Yasunaga et al., 2022a). Recent works show
that these retrieved knowledge graphs can provide
LMs with scaffolds for performing complex rea-
soning over entities, such as logical and multi-hop
reasoning (Yasunaga et al., 2022a).

(2) Few-Shot Prompting Approaches. The rise
of large pretrained LMs, such as GPT-3 (Brown
et al., 2020), OPT (Zhang et al., 2022a), and
PaLM (Chowdhery et al., 2022), has unlocked
the potential of few-shot prompting methods for a
wide range of reasoning tasks. However, despite
their strengths, these LMs in the few-shot prompt-
ing mode have peculiar failure modes, especially
when it comes to complex reasoning tasks (Marcus,
2022). Further, the prompt has to be designed care-
fully, and it has been shown that seemingly innocu-
ous changes to the prompt (e.g., order of examples
or the format of text) can drastically impact the per-
formance (Le Scao and Rush, 2021; Mishra et al.,
2021). In response, several techniques have been
developed to make few-shot prompting methods to
be less susceptible to the exact prompt choice. This
section will cover both a high-level overview of
few-shot prompting and introduce specific classes
of techniques that can further improve the few-shot
prompting methods on complex reasoning tasks.

First, we will introduce prompt-design tech-
niques like chain-of-thought prompting (Wei et al.,
2022b) and least-to-most prompting (Wei et al.,
2022c), which encourage an LM to generate reason-
ing steps as part of the solution, helping with prob-
lem decomposition and enhanced reasoning. Next,
we will cover techniques that change the prompt
dynamically for each input query. The methods
covered in this part include selecting the training
examples in the prompt (Liu et al., 2022a) and edit-
ing the prompt to incorporate feedback received on
a similar-input (Madaan et al., 2022a).

Finally, we will cover techniques that lever-

12



age code-generation models for complex reason-
ing tasks. Representative techniques in this part
will cover i) the use of code-generation model for
structured commonsense reasoning (Madaan et al.,
2022b), ii) algorithmic reasoning by expanding
detailed instructions in the prompt (Zhou et al.,
2022), and iii) generating chain-of-thought styled
reasoning chains in Python code to tackle complex
symbolic reasoning tasks (Gao et al., 2022).

(3) Neuro-Symbolic Approaches. Although per-
formance on NLP tasks is dominated by neural end-
to-end systems that directly map inputs to outputs
(Devlin et al., 2019; Raffel et al., 2020), these ap-
proaches lack interpretability and robustness. Sym-
bolic approaches, on the other hand, produce ex-
plicit intermediate reasoning trajectories such as
logical forms, reasoning paths, or program code,
which might then be executed to derive a final out-
put (Zettlemoyer and Collins, 2005; Chen et al.,
2019b, i.a.). Compared to both end-to-end and
chain-of-thought methods (Wei et al., 2022a, i.a.),
the reasoning processes produced by the symbolic
methods are interpretable, and the resulting execu-
tion makes them more robust to input changes.

Researchers (Andreas et al., 2016; Liang et al.,
2017; Gupta et al., 2019; Khot et al., 2021; Zhu
et al., 2022; Cheng et al., 2022; Gao et al., 2022;
Schick et al., 2023, i.a.) also propose to combine
neural modules and symbolic components to lever-
age advantages of both approaches. More specif-
ically, Neural-Symbolic Machines (Liang et al.,
2017) adopt a seq-to-seq model to generate pro-
grams and a Lisp interpreter that performs program
execution. (Chen et al., 2019b) designs a domain-
specific language for question answering over text.
BREAK (Wolfson et al., 2020) proposes a mean-
ingful representation, QDMR, that decomposes the
question into multiple steps. Thorne et al. (2021)
propose a mixed pipeline of logic forms and neural
networks, aiming at solving the scale problem and
noisy, messy data over a natural language database.

Another stream of works called neural module
networks (Andreas et al., 2016; Das et al., 2018;
Gupta et al., 2019) propose to generate symbolic
programs that are further softly executed by the cor-
responding neural modules. Khot et al. (2021) pro-
pose text module networks to solve complex tasks
by decomposing them into simpler ones solvable
by existing QA models and a symbolic calculator.
However, most prior neural-symbolic methods re-
quire the elaborate human design of the symbolic

language and the calibration of corresponding neu-
ral modules to tackle problems in a specific domain
with large training data. Recently, Cheng et al.
(2022) propose Binder, a new neural-symbolic sys-
tem based on GPT-3 Codex (Chen et al., 2021) that
supports flexible neural module calls that will en-
able higher coverage for the symbolic language,
while only requiring few annotations. Also, Gao
et al. (2022) introduce PAL, a new method based
on Codex that generates executable programs as
the intermediate reasoning steps and leverages a
Python interpreter to derive final answers.

This section will begin by discussing the high-
level comparison among the end-to-end, chain-of-
thought, symbolic (e.g., semantic parsing), and
neural-symbolic approaches. We will then move to
provide a high-level overview of different neural-
symbolic approaches. In this part, we will mainly
focus on neural-symbolic approaches with LMs.
Finally, we will cover recent techniques incorporat-
ing GPT-3 Codex in neural-symbolic approaches.

(4) Rationale-Based Approaches. Rationale-
based approaches extract parts of input to be rea-
soning certificates, offering end users a way to eval-
uate the trustworthiness of the predictions. Based
on reasoning types, rationales of different granular-
ity are identified – they can be tokens, sentences,
or documents (DeYoung et al., 2020; Kwiatkowski
et al., 2019). NLP systems can benefit from ratio-
nales in several ways. Yang et al. (2018) show that
providing rationales as additional supervision im-
proves models’ capacity to perform multi-hop rea-
soning. More recently, Chen et al. (2022a) demon-
strate the potential of using such methods to build
more robust NLP systems.

Existing methods for extracting rationales often
require supervision; they either apply multi-task
loss functions (Joshi et al., 2020; Groeneveld et al.,
2020), or design specialized network architectures
to incorporate inductive biases (Tu et al., 2019;
Fang et al., 2020). Because rationale annotations
are expensive to collect and not always available,
recent effort has been devoted to semi-supervised
and unsupervised methods. Chen et al. (2019a)
leverage entity taggers to build silver reasoning
chains used for rationale supervision. Glockner
et al. (2020) and Atanasova et al. (2022) design
unsupervised objectives for extracting rationales
in multi-hop QA systems. Finally, latent-variable
approaches are a natural fit for unsupervised learn-
ing (Lei et al., 2016; Zhou et al., 2020; Lewis et al.,

13



2020b). By modeling rationales as a latent variable,
it provides a principled way to explicitly impose
constraints in the reasoning process.

3.1 Schedule
1. Introduction & Motivations (15 min.)
2. Benchmarks & Evaluation (25 min.)
3. Knowledge-augmented Fine-tuning (25 min.)
4. Knowledge-augmented Pretraining (25 min.)
5. Break (30 minutes)
6. Neuro-Symbolic Approaches (25 min.)
7. Few-shot Prompting Approaches (25 min.)
8. Rationale-Based Approaches (25 min.)
9. Concluding discussion (15 min.)

4 Instructor information
Wenting Zhao is a Ph.D. student in Computer
Science at Cornell University. Her research fo-
cuses on the intersection of reasoning and NLP.
She is especially interested in developing explain-
able methods for complex reasoning problems.
Mor Geva is a postdoctoral researcher, now at
Google Research and previously at the Allen In-
stitute for AI. Her research focuses on debugging
the inner workings of black-box NLP models, to
increase their transparency, control their operation,
and improve their reasoning abilities. She is orga-
nizing the next edition of the Workshop on Com-
monsense Reasoning and Representation.
Bill Yuchen Lin is a postdoctoral researcher at
the Allen Institute for AI. He obtained his Ph.D. at
USC advised by Prof. Xiang Ren. His research
goal is to teach machines to think, talk, and act with
commonsense knowledge and commonsense rea-
soning ability as humans do. He was a co-author of
the tutorial on Knowledge-Augmented Methods for
Natural Language Processing and the Workshop
on Commonsense Representation and Reasoning
at ACL 2022.
Michihiro Yasunaga is a Ph.D. student in Com-
puter Science at Stanford University. His research
interest is in developing generalizable models with
knowledge, including commonsense, science, and
reasoning abilities. He co-organized the Workshop
on Structured and Unstructured Knowledge Inte-
gration (SUKI) at NAACL 2022.
Aman Madaan is a Ph.D. student at the School
of Computer Science, Carnegie Mellon Univer-
sity. He is interested in large language models,
feedback-driven generation, and the intersection
of code generation and natural language reasoning.
He helped organize the 1st and 2nd Workshops

on Natural Language Generation, Evaluation, and
Metrics (GEM) at ACL 2021 and EMNLP 2022.
Tao Yu is an assistant professor of computer sci-
ence at The University of Hong Kong. He com-
pleted his Ph.D. at Yale University and was a post-
doctoral fellow at the University of Washington. He
works on executable language understanding, such
as semantic parsing and code generation, and large
LMs. Tao is the recipient of an Amazon Research
Award. He co-organized multiple workshops in
Semantic Parsing and Structured and Unstructured
Knowledge Integration at EMNLP and NAACL.

5 Other Information

Reading List Rogers et al. (2022); Storks et al.
(2019); Liu et al. (2022b); Lyu et al. (2022); Wiegr-
effe and Marasović (2021); Andreas et al. (2016);
Cheng et al. (2022); Gao et al. (2022).

Breadth We estimate that approximately 30% of
the tutorial will center around work done by the
presenters. This tutorial categorizes promising ap-
proaches for complex reasoning tasks into several
groups, and each of this group includes a significant
amount of other researchers’ works.

Diversity considerations The challenges of
building robust and generalizable NLP systems ex-
ist in every language. The methods covered in this
tutorial are language-agnostic and can be extended
to non-English context.

For instructors, they all have different affilia-
tions (i.e., Cornell, Google, Stanford, USC, HKU,
and CMU). They are three PhD students, two post-
doctoral researchers, and one assistant professor;
two of the instructors are female.
Prerequisites Following knowledge is assumed:

• Machine Learning: basic probability theory,
supervised learning, transformer models

• NLP: Familiarity with pretrained LMs; stan-
dard NLP tasks such as question answering,
text generation, etc.

Estimated number of participants 150.
Preferable venue ACL.
Targeted audience Researchers and practition-
ers who seek to develop a background in complex
reasoning tasks where standard application of pre-
trained language models fail. By providing a sys-
tematic overview of recent promising approaches
for these tasks, this tutorial hopefully reveals new
research opportunities to the audience.
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1 Tutorial content

This tutorial will describe various aspects of scaling
up language technologies to many of the world’s
languages by presenting the latest research in Mas-
sively Multilingual Language Models (MMLMs).
We will cover topics such as data collection, train-
ing and fine-tuning of models, Responsible AI is-
sues such as fairness, bias and toxicity, linguistic
diversity and evaluation in the context of MMLMs,
specifically focusing on issues in non-English and
low-resource languages. Further, we will also talk
about some of the real-world challenges in deploy-
ing these models in language communities in the
field. With the performance of MMLMs improving
in the zero-shot setting for many languages, it is
now becoming feasible to use them for building lan-
guage technologies in many languages of the world,
and this tutorial will provide the computational lin-
guistics community with unique insights from the
latest research in multilingual models. Although
past tutorials have covered some of these topics
(such as linguistic diversity, data and training of
models), there has been a lot of interesting research
in the recent past that the CL community will ben-
efit from knowing about. Further, this will be the
first tutorial (as per our knowledge) that will dis-
cuss issues of deployment in language communities
and Responsible AI in the context of multilingual
models.

This tutorial will present a broad survey covering
work done by several research groups (as indicated
in the references), including work done by the au-
thors.

Type of the tutorial: cutting-edge
Target audience and pre-requisites: The target

audience for this tutorial are researchers from in-

dustry and academia who work on Large Language
Models, and are interested in learning about the lat-
est research in multilingual models to build systems
for non-English languages, low-resource languages
and multilingual speakers. We will not be covering
the basics of LLMs, so we expect that the audience
will be familiar with (at least the English versions
of) models such as BERT.

1.1 Outline of the tutorial

We plan to have five talks of 30/40 minutes each,
along with a 10 minute introduction, with 10 min-
utes for general discussion/spillover.

Introduction: We will start with a short intro-
duction on MMLMs, describing the models that
are available today and present the SOTA in model
performance on various tasks across different lan-
guages.

Data and pre-training: The main goal of this
section would be to outline the techniques lever-
aged for creating a high quality corpus for pre-
training strong MMLMs. We will cover the chal-
lenges encountered in creating such a corpus as
highlighted in CC100 (Conneau et al., 2020), mC4
(Xue et al., 2021), OSCAR (Ortiz Suárez et al.,
2020), ROOTS (Laurençon et al., 2022) etc., and
provide an overview of the various stages of such
a dataset creation pipeline. Ensuring the quality
of the training corpus is highly important as it is
directly correlated to the performance of MMLMs
(Kaplan et al., 2020). In addition to this, we will
also discuss the pre-training strategies and possi-
ble extensions for extending the recipe to multiple
languages (Conneau and Lample, 2019; Artetxe
and Schwenk, 2019) describing how scaling (both
on the data and model axis) can substantially help
improve model performance (Conneau et al., 2020;
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Xue et al., 2021), aiding in bridging the gap be-
tween the English performance of a multilingual
and an English only model, thereby reducing the
curse of Multilinguality.

Training paradigms and fine-tuning: We will
describe different training paradigms (Eg: an Elec-
tra based approach (Chi et al., 2022; He et al.,
2021)) and how to leverage bitext data, discussing
results of using contrastive learning approaches
(Chi et al., 2021) or extensions to Electra based
approaches (Chi et al., 2022), as well as show-
ing the benefits of going beyond English centric
bitexts (Patra et al., 2022). We will also discuss
some orthogonal approaches of training encoder-
decoder multilingual representation models (Liu
et al., 2020; Ma et al., 2021; ?), as well as compli-
mentary techniques to build better encoder mod-
els (Eg: Adapter based approaches (Pfeiffer et al.,
2022)). We will also focus on different strate-
gies for improving the fine-tuning performance of
these models. This includes techniques encour-
aging models to have more consistent predictions
across languages (Zheng et al., 2021), leveraging
weight perturbations to avoid overfitting (Wu et al.,
2022) or techniques to reduce the sharpness of loss
minima for better generalization (Foret et al., 2021;
Bahri et al., 2022).

Performance evaluation and reliability: While
the state-of-the-art multilingual models support
around 100 languages of the world, most existing
multilingual benchmarks contain evaluation data in
a handful of languages (Ahuja et al., 2022b). We
will discuss some potential approaches to scale up
multilingual evaluation like performance predic-
tion (Lin et al., 2019; Xia et al., 2020; Ahuja et al.,
2022c) and structure probing (Müller-Eberstein
et al., 2022; Clouâtre et al., 2022). We will also fo-
cus on measuring the cost-performance trade-offs
and sample efficiencies of fine-tuning MMLMs
with different sources of data (translation vs man-
ual collection)(Ahuja et al., 2022a). Further, we
will cover how to measure reliability in the con-
fidence predictions of multilingual models under
a zero-shot and few-shot setup by studying their
calibration (Ahuja et al., 2022d).

FATE issues: LLMs are known to pick up the
biases present in the datasets that are trained on. In
case of multilingual LLMs, apart from bias and fair-
ness issues at group and individual level, one also
need to address the issue of disparity of zero-shot
transfer accuracies across languages and varieties

(Choudhury and Deshpande, 2021; Lauscher et al.,
2020). Furthermore, there is little work done on
the interaction among the biases in corpora from
different languages, influence of grammatical gen-
der (Cao and Daumé, 2021) and other syntactic and
semantic factors on measurement and mitigation of
biases, and socio-cultural aspects of biases (Sam-
basivan et al., 2021). In this section of the tutorial,
we will survey the work done so far in non-English
FATE issues and present challenges that remain to
be addressed.

Deploying to language communities: LLMs
today are trained using billions of parameters, mak-
ing them infeasible to be used in low-memory foot-
print devices. Language communities (particularly
those that speak under-resourced languages) that
may benefit the most from Speech and NLP tech-
nologies may not have good enough connectiv-
ity to be able to use models hosted on the cloud.
This necessitates the development or distillation
of lightweight models for low-resource languages,
and in this section, we will present research in this
direction (Diddee et al., 2022). We will study the
state of current LT to serve communities speak-
ing different languages for critical situations such
as healthcare bots (Mondal et al., 2022). Further,
there are many social and cultural factors to be
taken into account while deploying MMLMs to
language communities, which we will also discuss
in this section.

1.2 Diversity considerations

The topic of the tutorial inherently encourages lin-
guistic diversity. In terms of gender diversity, two
of the tutorial presenters are female, while four are
male. In this tutorial, we will cover issues related to
Responsible AI (fairness, toxicity) and deploying
to under-resourced language communities which
will improve diversity considerations while build-
ing LLMs. The instructors are a mix of senior,
mid-career and junior researchers.

1.3 Reading list

Please check the references section for the reading
list.

2 Instructor bios

Sunayana Sitaram is a Senior Researcher at Mi-
crosoft Research India, where she works on mul-
tilingual speech and NLP. Her current research
interests include training and evaluation of Mas-
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sively Multilingual Language Models and Respon-
sible AI for NLP. Prior to coming to MSRI as a
Post Doc, Sunayana completed her MS and PhD
at the Language Technologies Institute, Carnegie
Mellon University in 2015. Sunayana’s research
has been published in top NLP and Speech con-
ferences including ACL, NAACL, EMNLP, Inter-
speech, ICASSP. She has organized special ses-
sions and workshops on under-resourced languages,
code-switching, multilingual evaluation and speech
for social good. She has also led the creation of
several benchmarks and datasets in code-switching,
ASR, NLI and TTS that have been used by research
groups all over the world.

Monojit Choudhury is a Principal Applied Sci-
entist at Microsoft Turing, prior to which he was
a Principal Researcher at Microsoft Research In-
dia. He is also a Professor of Practice at Plak-
sha University, and had held adjunct faculty posi-
tions at Ashoka University, IIIT Hyderabad and IIT
Kharagpur. Over the past 15 years, Monojit has
worked on several impactful projects on process-
ing of code-mixed text, evaluation and linguistic
fairness of large language models, and social im-
pact through participatory design of technology for
under-resourced languages like Gondi, Mundari,
Idu Mishmi and Swahili. Monojit has served as Se-
nior Area Chair and Area chair in leading NLP and
AI conferences including EMNLP, ACL, NAACL,
IJCNLP and AAAI. He has organized several suc-
cessful workshops in *ACL conferences (SUMEval
2022, CALCS series, TextGraph series, etc.) and
has delivered a tutorial on Code-mixed text pro-
cessing at EMNLP 2019. He is the general chair
of the Panini Linguistics Olympiad and the found-
ing co-chair of Asia Pacific Linguistics Olympiad
– programs to introduce bright young students to
linguistics and computational linguistics through
puzzles. Dr. Choudhury holds PhD and B.Tech de-
grees in Computer Science and Engineering from
IIT Kharagpur.

Vishrav Chaudhary is a Principal Researcher
at Microsoft Turing where he works on scaling
and building efficient Multilingual and Multimodal
representation and generation models. Prior to Mi-
crosoft, Vishrav was a Lead Researcher at FAIR
and focused on several aspects of Machine Trans-
lation, Quality Estimation and Cross-lingual un-
derstanding. Over the past 10 years, Vishrav’s re-
search work has been published in several leading
NLP and AI conferences and journals including

ACL, EMNLP, NAACL, EACL, AACL, TACL,
JMLR and AMTA. He has also organized several
workshops successfully including SUMEval 2022,
AmericasNLP 2021, WMT 2021 etc. He has also
served as an Area Chair for EMNLP 2022. Vishrav
has also led creation of benchmarks and datasets
targeting 100+ languages which have been used to
train state-of-the-art Cross Lingual Representation
and Machine Translation models.

Barun Patra is an Applied Scientist at Mi-
crosoft Turing. His research interest revolves
around building better foundational models that
can help support numerous NLP tasks across dif-
ferent languages. Barun’s research work focuses
on improving the quality and efficiency of training
these large multilingual foundational models, help-
ing achieve state-of-the-art performance on cross-
lingual NLP tasks.

Kabir Ahuja is a Research Fellow at Microsoft
Research India, where he works on building linguis-
tically fair multilingual models covering different
aspects around their performance, calibration, eval-
uation, interpretation, and data collection. He is
also interested in the analysis and interpretability
of the computation mechanisms utilized by neural
sequence models for solving different tasks.

Kalika Bali is a Principal Researcher at Mi-
crosoft Research India working in the areas of Ma-
chine Learning, Natural Language Systems and
Applications, as well as Technology for Emerg-
ing Markets. Her research interests lie broadly
in the area of Speech and Language Technology
especially in the use of linguistic models for build-
ing technology that offers a more natural Human-
Computer as well as Computer-Mediated interac-
tions.

3 Other

Estimate of audience size: 50
Venues: We would prefer ACL 2023 to be the

venue for the tutorial, but EMNLP and EACL are
also acceptable. We do not forsee any special re-
quirements for technical equipment.

3.1 Ethics statement

This tutorial will present current research on Mul-
tilingual model training, evaluation, Responsible
AI issues and deploying models in the field. Al-
though we aim to promote linguistic diversity by
discussing issues pertaining to multilingual models
trained on around 100 languages, many languages
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of the world are not supported by these models.
Further, the techniques that we will discuss mainly
apply to written languages, while unwritten lan-
guages will be excluded from the tutorial.
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Abstract

An increasingly large percentage of natural lan-
guage processing (NLP) tasks center around the
generation of text from probabilistic language
models. Despite this trend, techniques for
improving or specifying preferences in these
generated texts rely mostly on intuition-based
heuristics. Further, there lacks a unified pre-
sentation of their motivations, practical imple-
mentation, successes and pitfalls. Practitioners
must, therefore, choose somewhat blindly be-
tween generation algorithms—like top-p sam-
pling or beam search—which can lead to wildly
different results. At the same time, language
generation research continues to criticize and
improve the standard toolboxes, further adding
entropy to the state of the field. In this tutorial,
we will provide a centralized and cohesive dis-
cussion of critical considerations when choos-
ing how to generate from a language model. We
will cover a wide range of empirically-observed
problems (like degradation, hallucination, rep-
etition) and their corresponding proposed algo-
rithmic solutions from recent research (like top-
p sampling and its successors). We will then
discuss a subset of these algorithms under a uni-
fied light; most stochastic generation strategies
can be framed as locally adapting the probabil-
ities of a model to avoid failure cases. Finally,
we will then cover methods in controlled gener-
ation, that go beyond just ensuring coherence to
ensure text exhibits specific desired properties.
We aim for NLP practitioners and researchers
to leave our tutorial with a unified framework
which they can use to evaluate and contribute
to the latest research in language generation.

1 Introduction and Motivation

With their widespread public availability, large pre-
trained language models have become a core part of
many natural language processing (NLP) pipelines.
This trend is particularly evident in language gen-
eration tasks, where prompt engineering and con-
trolled generation techniques have shown that these

models can essentially be used “out-of-the-box” for
various language generation needs. Yet, as has been
observed repeatedly, how one chooses to generate
text from these models can lead to vastly differ-
ent results; make the wrong choice and a language
model can fall into repetitive loops (Welleck et al.,
2020), generate gibberish (Holtzman et al., 2020),
or make up random facts (Maynez et al., 2020). In
the effort to circumnavigate these issues, one can
make use of a variety of relatively straightforward
methods: (i) sampling adapters, simple modifica-
tions to token-level distributions that help prevent
the generation of incoherent text; (ii) controlled
generation methods, techniques that guide these
models to output strings with a set of desired at-
tributes. While employing these methods often
does not require domain expertise, many people do
not have proper knowledge of the tools available—
and much less how and when to apply them. Hence,
without years of experience in this subfield, both
NLP researchers and practitioners may have dif-
ficulty using pretrained language models for text
generation, as they will likely encounter the prob-
lematic behaviors mentioned above.

In this cutting-edge tutorial, we aim to offer a
comprehensive introduction to techniques for gen-
erating strings from language models, discussing
both how to sample adeptly from and explicitly
control them. This tutorial will be divided in four
parts. First, we will present background knowledge
on language modeling, discussing both its mathe-
matical formulation, and the empirically-observed
shortcomings of modern models. Second, we will
cover the basics of language generation, presenting
both deterministic and stochastic decoding strate-
gies. Third, we present a unifying framework for
sampling adapters, the family of methods often
used for stochastic decoding that transform the out-
put of a model according to qualitatively motivated
rules. Finally, we will discuss several methods for
controlled text generation, i.e., methods that allow
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users to enforce constraints on the text output by
models. We believe this will equip the NLP com-
munity with the knowledge of how to better employ
these models for their downstream use-cases, thus
making them more broadly accessible.

2 Target Audience and Preferred Venue

Our tutorial is targeted at members of the NLP
community who wish to make use of language
models for various language generation tasks.
This includes researchers, interested in e.g., data
augmentation techniques, as well as practitioners
wishing to make use of pretrained language models
in their language generation pipelines. We expect
that participants are comfortable with probabilistic
formulations of NLP tasks, as well as the structure
and formulation of standard autoregressive models
e.g., transformers. While we do not require
any readings, we recommend reviewing (in no
particular order) the works cited in this proposal.
Given the rising popularity of tasks involving
language generation, we estimate an audience of
approximately 100 people. We would be willing
to present this tutorial at both ACL and EMNLP.

3 Outline

3.1 Part 1: Background
Modern natural language processing tends to
proceed by (1) framing a task in probabilistic
terms, (2) estimating a model to imitate the
task’s generative processes (typically using finite
training datasets as a proxy), and then (3) using
this generative model as a tool to accomplish the
task. More precisely, practitioners take a textual
dataset D = {yn}Nn=1—an N -sized set of strings
over some vocabulary V—and treat it as a set of
independently and identically distributed samples
from a distribution p(y), where y ∈ V∗. We will
use p to denote the true distribution—the distribu-
tion defined by the task’s hypothetical generative
process, from which we drew our samples.

In this tutorial, we’ll focus largely on autoregres-
sive models of p, meaning that we decompose the
probability of a string as p(y) =

∏T
t=1 p(yt | y<t)

and build a model of the conditional distribution
p(yt | y<t) instead. In practice, the vast majority
of these models, which we denote as pθ, are trained
to minimize the empirical KL-divergence with the
finite set of samples D.
Successes and known failures. It is hard to over-
state the improvements in modeling performance

that have occurred in the last five years, as mea-
sured simply in terms of cross entropy. Still, lan-
guage generation techniques are used both to avoid
known failure modes and to coax more desirable
properties out of language models. In our tuto-
rial, we will discuss the following failure modes of
language models, among others:

• Low-quality low-probability words. Due to
their use of the softmax to compute pθ(yt |
y<t), language models place non-zero proba-
bility on poor continuations.

• Degradation of long texts. Possibly as a re-
sult of the above, generating longer texts can
present a greater challenge, as errors tend to
propagate and accumulate.

• Repetition when searching for the mode. In
cases where highly probable text under the
training set is desired, language models’ prob-
ability estimates tend to fail and overestimate
the probability of highly repetitive text.

High- and low-entropy generation. In some dis-
cussions around language generation, tasks are of-
ten discussed as “open-ended” (for example, story
generation) or not (for example, machine transla-
tion). The techniques and histories of the corre-
sponding literatures are often somewhat separate.
We will discuss open-endedness as a scale well-
described by the entropy of the true distribution a
task specifies, as well as the entropy of the desired
output behavior of the model. So, for example, in
machine translation, the true distribution over cor-
rect translations has a relatively low entropy, even
though texts (especially long ones) have a num-
ber of roughly equivalent translations; further, it is
common to look for only the “most likely” transla-
tion. Story generation typically has more entropy
(the set of nice stories is large) and the generation
of arbitrary web text has more entropy still; further,
the notion of the “most likely” web text document
is unintuitive, to say the least. We will thus dis-
cuss models and the methods used to generate from
them with the concept of entropy in mind, rather
than using the more traditional (albeit qualitative)
notion of open-endedness.

3.2 Part 2: Language Generation

Given a pretrained language model pθ(· | y<t),
how does ones generate text from it? There is
a plethora of options available. We split these
into two subgroups: deterministic and stochastic
decoding strategies (Wiher et al., 2022).
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Deterministic decoding. In tasks with one (or
only a small number of) correct answers, re-
searchers typically rely on deterministic strategies,
which “search” over the support of the distribu-
tion pθ(· | y<t) for this correct answer. In short,
these strategies rely on some quantification of a
string y’s quality, e.g., its probability under pθ,
and they try to find the string which maximizes it.
Finding this string, however, is an NP-hard prob-
lem (Chen et al., 2018). These decoding strategies
thus propose heuristic methods for performing this
search. Beam search, for instance, searches for
this maximizing string by iteratively expanding all
substrings y<t, albeit at any given point, keeping
only the k best substrings found so far.

Stochastic decoding. In tasks for which text
diversity is a desired attribute, stochastic strategies
are usually employed. Typically, these strategies
work incrementally: first, one word is sampled
from pθ(· | y<t); this word is then appended to
the context, producing yt; the next word is then
sampled from pθ(· |y<t+1). Sampling stops at some
pre-determined length, or once the end-of-string
token is sampled. Following this iterative process,
we sample strings according to distribution p(y).
Several issues arise from simply sampling from
p(y), though. In the next section, we dive into
different methods to mitigate these issues.

3.3 Part 3: Sampling Adapters

As discussed in part 1, due to the structure of most
probabilistic language generators, no token in the
vocabulary can be assigned a probability of zero
under pθ(· | y<t). Even if a model assigns inap-
propriate tokens very low probability, there is still
the chance of sampling them when using stochastic
decoding strategies. This can lead to undesirable
outputs, as a single incoherent token can render a
natural language string virtually incomprehensible
(Fan et al., 2018; Holtzman et al., 2020). While
intuitively we might expect this issue to only occur
with low probability, a concrete example proves
otherwise. Let’s say we have a model that assigns
a very small collective probability mass of 0.1%
to all tokens in the tail (low-probability region) of
the distribution at any given point. If we sample a
sequence of 200 tokens from this model, there is a
1−(1−0.001)200 ≈ 20% chance it will contain at
least one token from the tail of the distribution.

In an attempt to prevent this issue, several works
have proposed simple modifications to the sam-

pling distribution to exclude undesirable tokens
from the candidate pool. Two prominent examples
are nucleus and top-k sampling, both of which trun-
cate the distribution to some subset of its most prob-
able items (and then renormalize it). These types
of transformations are widely-employed when sam-
pling from probabilistic language generators: they
are quick to implement, efficient in practice, and
surprisingly effective. Indeed, nucleus sampling is
often used as a baseline in various language gen-
eration tasks (Welleck et al., 2020; Pillutla et al.,
2021; Basu et al., 2021).

In this part of the tutorial, we will offer a for-
mal treatment of these transformations; we present
a general framework for what we call sampling
adapters, the class of functions g : R|V| → R

|V|

that adapts each conditional distribution pθ(· |y<t)
in a locally normalized language model to a new
distribution. We will discuss the motivation and
formulation of several popular sampling adapters
(Fan et al., 2018; Holtzman et al., 2020; Basu et al.,
2021; Meister et al., 2022; Hewitt et al., 2022), de-
scribing the problems that they mitigate (such as
sampling incoherent tokens) as well as the prob-
lems that they introduce (such as repetitive gener-
ations). Further, we will show results from prior
works comparing these methods. Finally, we will
discuss possible interpretations of the effectiveness
of these methods, in order to provide intuition for
why they lead to better language generation.

3.4 Part 4: Controlled Generation

Generated samples from language models often
contain toxic or non-factual content (Gehman et al.,
2020; Maynez et al., 2020). Further, they also of-
ten go off-topic, even after applying the sampling
adapters discussed in the previous section (Yang
and Klein, 2021). To ensure that the generated sam-
ples satisfy a set of desired properties—e.g. being
non-toxic or talking about a certain topic—we need
methods to impose controls during the sampling
process. The question we will discuss in this part of
the tutorial is how can we sample from a pretrained
language model pθ, while ensuring that samples sat-
isfy a specific control c? This can be formalized as
sampling from a conditional distribution pθ(y | c)
instead. We split prior work on sampling from this
distribution into two groups: autoregressive and
non-autoregressive controlled generation methods.

Autoregressive generation. Similar to the de-
coding strategies discussed earlier, these methods
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incrementally generate text one token at a time,
in a sequential manner. At each step of the gen-
eration, a token yt is sampled with probability
p(yt | y<t, c)—which, following Bayes’ rule, is
proportional to pθ(yt | y<t) p(c | y≤t) (Yang and
Klein, 2021). In other words, at each timestep, the
score of a candidate yt under the language model
pθ(yt |y<t) is reweighted according to the probabil-
ity that y≤t satisfies the control target: p(c | y≤t).
This control target is usually estimated with a su-
pervised classifier parameterized by ϕ: pϕ(c | y≤t)
(Ghazvininejad et al., 2017; Holtzman et al., 2018).
The implication of this approach is that we need to
have reliable estimates of how much a prefix satis-
fies the desired control. However, this is arguably
an easier problem than building the entire distri-
bution over natural language strings, if due to the
smaller size of the support alone. Once we obtain
such estimates, we can make use of an arbitrary
language model pθ for controlled generation.

Non-autoregressive generation. While autore-
gressive methods have proven effective for control-
ling the topic or the sentiment of samples, they
fail for more complex controls such as toxicity or
syntax. Particularly, for more complex controls,
estimating p(c | y≤t) becomes challenging. If
at any point this probability distribution diverges
from the true value, the error will propagate to the
next steps due to structure of most of these models.
To address this issue, non-autoregressive strategies
propose to sample the whole sequence y at once.
This is usually done by designing Markov-Chains
based off of some (autoregressive) language model
pθ(y) that have the stationary distribution p(y | c).
Given that the sampling space is high dimensional,
Hamiltonian Monte Carlo (HMC) algorithms, such
as Langevin Dynamics, have been shown to be
effective for drawing samples from those Markov-
Chains (Qin et al., 2022; Kumar et al., 2022).

3.5 Breadth of Research Covered

This tutorial is intended as a primer for recent lan-
guage generation techniques. To this end, it will
need to pull on research from a large number of
authors, spanning several institutions. Explicitly,
the background section on language modeling will
cover, for example, works from OpenAI, Google,
AI2, and DeepMind, as institutions with the re-
sources to train these large language models and
make them publicly available. The introduction
to generation will touch on prominent methods,

such as beam search (Graves, 2012), nucleus sam-
pling (Holtzman et al., 2020), Mirostat (Basu et al.,
2021), top-k sampling (Fan et al., 2018), typical
decoding (Meister et al., 2022) and top-η sampling
(Hewitt et al., 2022). The controlled generation
section will summarize work on weighted decod-
ing (Ghazvininejad et al., 2017; Holtzman et al.,
2018), FUDGE (Yang and Klein, 2021), and re-
cently proposed HMC-based methods (Qin et al.,
2022; Kumar et al., 2022).

4 Presenters

• Afra Amini is a PhD student at ETH Zürich in
the ETH AI Center. Her current foci include
language generation and parsing.

• Ryan Cotterell is an assistant professor at
ETH Zürich in the Institute for Machine
Learning. His research focuses on a wide
range of topics, including information-
theoretic linguistics, parsing, computational
typology and morphology, and bias and
fairness in NLP systems.

• John Hewitt Is a PhD student at Stanford
University. His research tackles basic
problems in learning models from broad
distributions over language, characterizing
and understanding those models, and building
smaller, simpler models.

• Clara Meister is a PhD student at ETH
Zürich in the Institute for Machine Learning
and a Google PhD Fellow. Her current foci
include language generation, pyscholinguis-
tics, and the general application of statistical
methods to natural language processing.

• Tiago Pimentel is a PhD student at the Univer-
sity of Cambridge and a Facebook Fellow. His
research focuses on information theory, and
its applications to the analysis of pre-trained
language models and natural languages.

Diversity Considerations

As our tutorial focuses on language generation, we
will cover issues related to modeling and generat-
ing strings in languages which are typologically
different from English. Further, this tutorial was
developed by a group of researchers from three uni-
versities (Stanford, ETH and Cambridge), who are
originally from 3 continents (Asia, North America,
and South America). Lastly, it will discuss work
produced by authors spanning many institutions
and backgrounds (see § 3.5).
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Abstract

This tutorial targets researchers and practition-
ers who are interested in ML technologies for
NLP from indirect supervision. In particular,
we will present a diverse thread of indirect su-
pervision studies that try to answer the follow-
ing questions: (i) when and how can we provide
supervision for a target task T , if all we have
is data that corresponds to a “related” task T ′?
(ii) humans do not use exhaustive supervision;
they rely on occasional feedback, and learn
from incidental signals from various sources;
how can we effectively incorporate such super-
vision in machine learning? (iii) how can we
leverage multi-modal supervision to help NLP?
To the end, we will discuss several lines of re-
search that address those challenges, including
(i) indirect supervision from T ′ that handles T
with outputs spanning from a moderate size to
an open space, (ii) the use of sparsely occur-
ring and incidental signals, such as partial la-
bels, noisy labels, knowledge-based constraints,
and cross-domain or cross-task annotations—
all having statistical associations with the task,
(iii) principled ways to measure and understand
why these incidental signals can contribute to
our target tasks, and (iv) indirect supervision
from vision-language signals. We will con-
clude the tutorial by outlining directions for
further investigation.

1 Introduction

Conventional approaches to NLP rely on task-
specific labeled examples of a large volume. This
does not apply to scenarios where tasks may be
too complicated or costly to annotate, or the sys-
tem is required to handle a new task immediately.
Many people increasingly perceive that pretrained
language models (PLMs) use self-supervision, and
therefore there is no need for supervision anymore.
While this is probably true for Encoder-only mod-
els (e.g., BERT (Devlin et al., 2019)), this does not
hold for Decoder models, where people nowadays
use vast amounts of supervision and reinforcement

learning signals. Therefore, it is still desirable to
gather supervision that has already existed in re-
lated tasks or is pretty cheap, which is termed “in-
direct supervision” in this tutorial.

Recently, there have been increasing works that
study indirect supervision for a wide range of NLP
tasks. For example, Yin et al. (2019) and Lu et al.
(2022a) respectively leveraged the rich annotation
of a source task (natural language inference or sum-
marization) to address the poorly-annotated target
tasks. To make better use of the natural texts, some
literature (Roth, 2017; Chen et al., 2021; He et al.,
2021) proposed to explore incidental supervision,
e.g., phonetic similarity and similar temporal dis-
tribution for named entity transliteration, to help
downstream tasks. That sort of incidental supervi-
sion is often weak signals that exist in the data and
the environment independently of the tasks at hand,
and is hard to be encoded by PLMs. Furthermore,
when accessing supervision from pure text is chal-
lenging, researchers turned to other modalities for
indirect supervision (Li et al., 2022b).

This tutorial presents a comprehensive introduc-
tion of those lines of frontier research on indirectly
supervised NLP. In particular, it tries to answer the
following questions: (i) Which source task is easier
to be adapted to solve various target tasks and any
constraints there? (ii) What are the limitations of
pretrained language models in discovering supervi-
sion from natural texts, and how can we alleviate
them with incidental signals? (iii) Are there any
theoretical measures that can indicate the benefits
of the incidental signals to a given downstream
task? (iv) How to mitigate the gap between differ-
ent modalities if we want to utilize image/video
knowledge to guide NLP? By addressing those crit-
ical questions, we believe it is necessary to present
a timely tutorial to comprehensively summarize the
new frontiers in indirectly supervised NLP research
and point out the emerging challenges that deserve
further investigation. Participants will learn about
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recent trends and emerging challenges in this topic,
representative tools and learning resources to ob-
tain ready-to-use models, and how related technolo-
gies benefit end-user NLP applications.

2 Outline of Tutorial Content

This half-day tutorial presents a systematic
overview of recent advancements in indirect su-
pervision methods for NLP. The detailed contents
are outlined below.

2.1 Background and Motivation [15min]
We will begin motivating this topic with a selection
of real-world applications and emerging challenges
of NLP with limited end-task annotations.

2.2 Indirect Supervision from NLU Tasks
[30min]

We start with indirect supervision from a source
task that is efficient to handle a moderate size of
outputs in the target task. For example, in most
zero/few-shot text classification tasks, such as topic
classification, entity typing, relation identification,
etc., the main obstacle is letting systems under-
stand the semantics of labels. In contrast to con-
ventional supervised classifiers, which converted
labels into indices, we introduce NLI (natural lan-
guage inference)-based approaches that take into
account the input semantics as well as label se-
mantics. In specific, we will introduce typical work
that treats different topics (Yin et al., 2019), stances
(Xu et al., 2022), entity types (Li et al., 2022a; Du
et al., 2023), event types (Lyu et al., 2021), en-
tity relations (Xia et al., 2021; Sainz et al., 2021,
2022), and question-answer (Yin et al., 2021) as
hypotheses and the inputs as premises, then makes
use of pretrained NLI system to handle a variety of
classification tasks with a given set of labels.

In addition, we will present extractive question
answering (Ex-QA) based supervision that is uti-
lized for downstream tasks (McCann et al., 2018;
Keskar et al., 2019; He et al., 2020; Wu et al., 2020;
Li et al., 2020). The advantage of Ex-QA based
indirect supervision over the NLI-based one lies
in that Ex-QA can handle sequence tagging and
span detection tasks while NLI-based approaches
primarily work for classification.

2.3 Indirect Supervision from NLG and IR
[30min]

We will introduce methodologies that acquire indi-
rect supervision signals from natural language gen-

eration (NLG) and information retrieval tasks to
solve more low-resource discriminative tasks. For-
mulating discriminative tasks as generation tasks
can be an efficient way to guide PLMs to lever-
age the semantics of decision labels (Huang et al.,
2021; Lu et al., 2022a; Hsu et al., 2022; Yuan et al.,
2022). A method of this kind typically leads to
a sequence-to-sequence generation process that
emits a verbalization of the decision label given
the input sequence (Zeng et al., 2018, 2020; Ye
et al., 2021; Cao and Ananiadou, 2021). Instead of
predicting classification logits, these models rep-
resent the class as a concise structure and employ
controlled decoding for the generation. In this way,
the model allows cross-task signal transfer from
high-resource NLG tasks, and captures a semanti-
cally rich representation of the discriminative task’s
original decision space. A representative example
is SuRE (Lu et al., 2022a), which reformulates the
more expensive relation extraction task into sum-
marization with constrained decoding, leading to
more precise and label-efficient sentence-level re-
lation extraction. We will also introduce methods
that reformulate as a retrieval task (Zhang et al.,
2021a,b; Huang et al., 2022; Chen et al., 2020).
This technique allows using the inductive bias of
a dense retrieval model to handle a discriminative
task with a large decision space, such as entity link-
ing (Zhang et al., 2021a) and fine-grained typing
(Huang et al., 2022).

2.4 Incidental Supervision from Natural Text
[30min]

Both the indirect supervision introduced in the
above sections (§2.2-§2.3) relies on transferred
supervision signals from some source task anno-
tations. Natural texts are structured to contain a
large number of incidental signals that can be subse-
quently utilized by downstream tasks with minimal
human effort. Despite the fact that the community
has found that PLMs are capable of providing inci-
dental supervision signals for a wide range of tasks,
they do not provide controls over what kinds of
knowledge exist. To the end, we introduce inciden-
tal relations found in natural text spans. For exam-
ple, certain keywords and linguistic patterns can
provide incidental supervision to downstream tasks
such as relation extraction (Zhou et al., 2022b), tem-
poral reasoning (Zhou et al., 2020, 2021), and affor-
dance reasoning (Qasemi et al., 2022). Moreover,
textual snippets can often be viewed in a structure
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by their global information, such as publication
dates, titles, and authors, which establish relations
that helps with complex tasks (Zhou et al., 2022a).
Designing and collecting such linguistic patterns
often require human knowledge; this process of
injecting human knowledge provides signals that
PLMs cannot find and produces diverse automatic
supervision for many tasks.

2.5 Theoretical Analysis of Incidental
Supervision [30min]

§2.4 presents several real-world applications of in-
cidental signals. In this part, we pose the challenge
to define a principled way to measure the benefits
of these signals to a given downstream task, and
the challenge to further understand why and how
these signals can help reduce the complexity of the
learning problem in theory. We will introduce ex-
isting efforts along these two lines, mainly He et al.
(2021) and Wang et al. (2020). Specifically, we in-
troduce (i) a unified theoretical framework (Wang
et al., 2020) for multi-class classification when the
supervision is provided by a variable that contains
nonzero mutual information with the gold label; the
nature of this problem is determined by the transi-
tion probability from the gold labels to the indirect
supervision variables (van Rooyen and Williamson,
2018) and the learner’s prior knowledge about the
transition; and (ii) a unified PAC-Bayesian moti-
vated informativeness measure, PABI (He et al.,
2021), that characterizes the uncertainty reduction
provided by incidental supervision signals. We
share studies in Qasemi et al. (2022) and Ning et al.
(2019) that demonstrate PABI’s effectiveness by
quantifying the value added by various types of
incidental signals to sequence tagging tasks. Fi-
nally, we will highlight the gaps that are yet to be
closed in these lines, and point out future research
directions on this topic.

2.6 Indirect Supervision from
Multi-modalities [30min]

In the previous section, we discuss how to lever-
age indirect supervision from text data. Next, we
will extend our discussion to introduce methods
that leverage indirect supervision in multimodal
data for cross-modality tasks. We will take vision-
language tasks, such as answering complex high-
level question about images (Zellers et al., 2019),
as an example. We will first introduce methods that
learn to align visual tokens and text tokens based
on image caption data (Tan and Bansal, 2019; Li

et al., 2019; Tan and Bansal, 2020). The cross-
modality knowledge learned from indirect supervi-
sion can be used to solve various text, image, and
mixed modality tasks. We will then introduce ap-
proaches that use only indirect supervision from
object recognition models to learn text-image align-
ment from unaligned language and vision Data (Li
et al., 2021). Finally, we will discuss methods
for learning to ground elements of language to im-
age regions without explicit supervision (Li et al.,
2022b; Zhang et al., 2022).

2.7 Future Research Directions [15min]
Indirect supervision is the key to coping with a
variety of NLP tasks that are not equipped with
enough labeled data. We will conclude the tuto-
rial by presenting further challenges and potential
research topics, such as (i) explaining the model
predictions when the supervision is indirect (Rajani
et al., 2020; Lu et al., 2022b), (ii) injecting inci-
dental signals that express human knowledge but
cannot be learned by pretrained language models
from natural texts (Yu et al., 2022), and (iii) task
instructions as supervision (Wang et al., 2022).

3 Specification of the Tutorial

The proposed tutorial is considered a cutting-edge
tutorial that introduces new frontiers in indirectly
supervised NLP. The presented topic has not been
covered by any ∗CL tutorials in the past 4 years.

Audience and Prerequisites Based on the level
of interest in this topic, we expect around 150 par-
ticipants. While no specific background knowledge
is assumed of the audience, it would be best for the
attendees to know about basic deep learning tech-
nologies, pre-trained language models (e.g. BERT).
A reading list that could help provide background
knowledge to the audience before attending this
tutorial is given in Appx. §A.2.

Breadth We estimate that at least 60% of the
work covered in this tutorial is from researchers
other than the instructors of the tutorial.

Diversity Considerations This tutorial will
cover indirect supervision from beyond text. We
will also cover content around how indirect supervi-
sion can be applicable to a variety of low-resourced
tasks. Our presenter team has a diverse background
from both academia (including assistant, associate,
distinguished professors, and a senior Ph.D. stu-
dent) and industry (a senior scientist at AWS AI).
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Our instructor team will promote our tutorial on so-
cial media to diversify our audience participation.

Material Access Online Open Access
All the materials are openly available at
https://cogcomp.seas.upenn.edu/
page/tutorial.202307

4 Tutorial Instructors

The following are biographies of the speakers. Past
tutorials given by us are listed in Appx. §A.1.

Wenpeng Yin is an Assistant Professor in the
Department of Computer Science and Engineer-
ing at Penn State University. Prior to joining
Penn State, he was a tenure-track faculty mem-
ber at Temple University (1/2022-12/2022), Se-
nior Research Scientist at Salesforce Research
(8/2019-12/2021), a postdoctoral researcher at
UPenn (10/2017-7/2019), and got his Ph.D. de-
gree from the Ludwig Maximilian University of
Munich, Germany, in 2017. Dr. Yin’s research
focuses on natural language processing with three
sub-areas: (i) learning from task instructions; (ii)
information extraction; (iii) learning with limited
supervision. Additional information is available at
www.wenpengyin.org.

Muhao Chen is an Assistant Research Profes-
sor of Computer Science at USC, where he di-
rects the Language Understanding and Knowl-
edge Acquisition (LUKA) Group. His research fo-
cuses on data-driven machine learning approaches
for natural language understanding and knowl-
edge acquisition. His work has been recognized
with an NSF CRII Award, a Cisco Faculty Re-
search Award, an ACM SIGBio Best Student Paper
Award, and a Best Paper Nomination at CoNLL.
Muhao obtained his PhD degree from UCLA De-
partment of Computer Science in 2019, and was
a postdoctoral researcher at UPenn prior to join-
ing USC. Additional information is available at
http://luka-group.github.io.

Ben Zhou is a fourth-year Ph.D. student at the
Department of Computer and Information Science,
University of Pennsylvania. Ben’s research inter-
ests are distant supervision extraction and experi-
ential knowledge reasoning, and he has more than
5 recent papers on related topics. He is a recipient
of the ENIAC fellowship from the University of
Pennsylvania, and a finalist of the CRA outstanding

undergraduate researcher award. Additional infor-
mation is available at http://xuanyu.me/.

Qiang Ning is currently a senior applied sci-
entist at AWS AI (2022-). Prior to that, Qiang
was an applied scientist at Alexa AI (2020-2022)
and a research scientist at the Allen Institute for
AI (2019-2020). Qiang received his Ph.D. from
the University of Illinois at Urbana-Champaign
in 2019 in Electrical and Computer Engineer-
ing. Qiang’s research interests span in informa-
tion extraction, question answering, and the ap-
plication of weak supervision methods in these
NLP problems in both theoretical and practical
aspects. Additional information is available at
https://www.qiangning.info/.

Kai-Wei Chang is an associate professor in the
Department of Computer Science at the Univer-
sity of California Los Angeles. His research in-
terests include designing robust, fair, and account-
able machine learning methods for building reli-
able NLP systems. His awards include the EMNLP
Best Long Paper Award (2017), the KDD Best
Paper Award (2010), and the Sloan Resaerch Fel-
lowship (2021). Kai-Wei has given tutorials at
NAACL 15, AAAI 16, FAccT18, EMNLP 19,
AAAI 20, EMNLP 21, MLSS 21 on different re-
search topics. Additional information is available
at http://kwchang.net.

Dan Roth is the Eduardo D. Glandt Distin-
guished Professor at the Department of Computer
and Information Science, UPenn, the NLP Lead
at AWS AI Labs, and a Fellow of the AAAS,
ACM, AAAI, and ACL. In 2017 Roth was awarded
the John McCarthy Award, the highest award the
AI community gives to mid-career AI researchers.
Roth was recognized “for major conceptual and
theoretical advances in the modeling of natural lan-
guage understanding, machine learning, and rea-
soning.” Roth has published broadly in machine
learning, NLP, KRR, and learning theory, and has
given keynote talks and tutorials in all ACL and
AAAI major conferences. Roth was the Editor-in-
Chief of JAIR until 2017, and was the program
chair of AAAI’11, ACL’03 and CoNLL’02; he
serves regularly as an area chair and senior program
committee member in the major conferences in his
research areas. Additional information is available
at www.cis.upenn.edu/~danroth.
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A Appendix

A.1 Past Tutorials by the Instructors

The presenters of this tutorial have given the follow-
ing tutorials at leading international conferences in
the past.

• Muhao Chen:

– NAACL’22: New Frontiers of Information Extrac-
tion.
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– EMNLP’21: Robustness and Adversarial Exam-
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– NAACL’22: New Frontiers of Information Extrac-
tion.
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– COLING’12: A Tutorial on Temporal Informa-

tion Extraction and Shallow Temporal Reasoning.
– NAACL’12: A Tutorial on Constrained Condi-

tional Models: Structured Predictions in NLP.
– NAACL’10: A Tutorial on Integer Linear Pro-

gramming Methods in NLP.
– EACL’09: A Tutorial on Constrained Conditional

Models.
– ACL’07: A Tutorial on Textual Entailment.

A.2 Recommended Paper List

The following is a reading list that could help pro-
vide background knowledge to the audience before
attending this tutorial:

• Wenpeng Yin, Jamaal Hay, Dan Roth. Benchmark-
ing Zero-shot Text Classification: Datasets, Evalu-
ation and Entailment Approach. EMNLP 2019.

• Oscar Sainz, Itziar Gonzalez-Dios, Oier Lopez de
Lacalle, Bonan Min, Eneko Agirre. Textual Entail-
ment for Event Argument Extraction: Zero- and
Few-Shot with Multi-Source Learning. Findings
of NAACL 2022.

• Wenzheng Zhang, Wenyue Hua, Karl Stratos. En-
tQA: Entity Linking as Question Answering. ICLR
2022.

• Keming Lu, I-Hung Hsu, Wenxuan Zhou, Mingyu
Derek Ma, Muhao Chen. Summarization as Indi-
rect Supervision for Relation Extraction. EMNLP -
Findings, 2022.

• Sarah Wiegreffe, Jack Hessel, Swabha
Swayamdipta, Mark O. Riedl, Yejin Choi.
Reframing human-AI collaboration for generating
free-text explanations. NAACL, 2022.

• Ben Zhou, Kyle Richardson, Xiaodong Yu, Dan
Roth. Learning to decompose: Hypothetical ques-
tion decomposition based on comparable texts.
EMNLP, 2022.

• Hangfeng He, Mingyuan Zhang, Qiang Ning, and
Dan Roth. Foreseeing the Benefits of Incidental
Supervision. EMNLP 2021.

• Kaifu Wang, Qiang Ning, and Dan Roth. Learn-
ability with Indirect Supervision Signals. NeurIPS
2020.
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• Rowan Zellers, Yonatan Bisk, Ali Farhadi, and
Yejin Choi. From recognition to cognition: Visual
commonsense reasoning. CVPR 2019.

• Hao Tan and Mohit Bansal. Vokenization: Improv-
ing language understanding with contextualized,
visual-grounded supervision. EMNLP 2020.
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1 Description

Language models (LMs) such as GPT-3 (Brown
et al., 2020) and PaLM (Chowdhery et al., 2022)
have shown impressive abilities in a range of natu-
ral language processing (NLP) tasks. However, re-
lying solely on their parameters to encode a wealth
of world knowledge requires a prohibitively large
number of parameters and hence massive compute,
and they often struggle to learn long-rail knowl-
edge (Roberts et al., 2020; Kandpal et al., 2022;
Mallen et al., 2022). Moreover, these paramet-
ric LMs are fundamentally incapable of adapting
over time (De Cao et al., 2021; Lazaridou et al.,
2021; Kasai et al., 2022), often hallucinate (Shus-
ter et al., 2021), and may leak private data from the
training corpus (Carlini et al., 2021). To overcome
these limitations, there has been growing interest
in retrieval-based LMs (Guu et al., 2020; Khan-
delwal et al., 2020; Borgeaud et al., 2022; Zhong
et al., 2022; Izacard et al., 2022b; Min et al., 2022),
which incorporate a non-parametric datastore (e.g.,
text chunks from an external corpus) with their
parametric counterparts. Retrieval-based LMs can
outperform LMs without retrieval by a large mar-
gin with much fewer parameters (Mallen et al.,
2022), can update their knowledge by replacing
their retrieval corpora (Izacard et al., 2022b), and
provide citations for users to easily verify and eval-
uate the predictions (Menick et al., 2022; Bohnet
et al., 2022).

Previously, retrieval and LMs have been studied
mostly separately, and only recently researchers
have integrated them and built systems in which
retrieval and LMs interact more organically, and a
number of retrieval-based LMs have been proposed
due to growing interest. They differ in their neural
architectures (e.g., the granularity of retrieval units,
how to integrate retrieved information), learning
algorithms, and different uses in downstream ap-
plications. In this tutorial, we aim to provide a

comprehensive and coherent overview of recent
advances in retrieval-based LMs. We will start
by first providing preliminaries covering the foun-
dations of LM (e.g., masked LMs, autoregressive
LMs) and retrieval systems (e.g., nearest-neighbor
search methods widely used in neural retrieval sys-
tems; Karpukhin et al. 2020). We will then focus
on recent progress in architectures, learning ap-
proaches, and applications of retrieval-based LMs.

A taxonomy of architectures We introduce a
taxonomy of architectures of retrieval-based LMs
based on a variety of dimensions. Retrieval-based
LMs can be categorized by the granularity of re-
trieved units stored in the datastore: either 1) a
chunk of text (Borgeaud et al., 2022; Izacard et al.,
2022b), or 2) a token (Khandelwal et al., 2020;
Zhong et al., 2022; Min et al., 2022), or 3) an en-
tity mention (Févry et al., 2020; de Jong et al.,
2022). We also plan to cover techniques for refin-
ing data stores and improving similarity search (He
et al., 2021; Alon et al., 2022). At the same time,
retrieval-base LMs can be categorized based on
how the retrieved information is integrated with
the parametric encoder: 1) whether retrieved com-
ponents are concatenated with the original input
text (Lewis et al., 2020; Guu et al., 2020; Izacard
et al., 2022b), 2) whether the retrieved components
are latent and integrated into the intermediate lay-
ers of Transformers (de Jong et al., 2022; Févry
et al., 2020; Borgeaud et al., 2022), or 3) distribu-
tion of tokens from the retrieved components and
the LMs are interpolated (Khandelwal et al., 2020;
Zhong et al., 2022; Yogatama et al., 2021).

Scalable learning algorithms Then, we discuss
the training approaches of retrieval-based LMs.
Since a retrieval datastore is typically very large,
how to train retrieval-based LMs effectively and
efficiently remains challenging. We first discuss
pipelined approaches that train retrieval compo-
nents and LMs separately, either through large-

41



scale pre-training (Izacard et al., 2022a) or multi-
task instruction tuning (Asai et al., 2022). Several
other works train retrieval-based LMs with a fixed
retrieval module (Borgeaud et al., 2022; Yogatama
et al., 2021). We then discuss joint training under
reasonable resource requirements: either through
in-batch approximations to a full datastore, or up-
dating the datastore with updated parameters asyn-
chronously. The former uses fractions of the full
corpus that are carefully designed during joint train-
ing (Zhong et al., 2022; de Jong et al., 2022; Min
et al., 2022). The latter, on the other hand, aims to
use full corpus during training with asynchronous
index update for every certain time steps (Izacard
et al., 2022b; Guu et al., 2020).

Adaption to downstream tasks After discussing
the basic building blocks of retrieval-based LMs,
we show how retrieval-based LMs are adapted to
downstream applications. We first briefly summa-
rize the two approaches to adapt a model to a new
task: zero-shot or few-shot prompting without any
parameter updates (Shi et al., 2022; Wang et al.,
2022), and fine-tuning on target task data (Lewis
et al., 2020). We then discuss methods designed
to build more powerful retrieval-based LMs for
certain downstream tasks, such as dialogue (Shus-
ter et al., 2021), semantic parsing (Pasupat et al.,
2021), and machine translation (Khandelwal et al.,
2021; Zheng et al., 2021).

Up to this point, our tutorial has mainly fo-
cused on retrieving and integrating English plain
text. At this end, we will cover recent exten-
sions of retrieval-based LMs beyond English text,
including multilingual (Asai et al., 2021), multi-
modal (Chen et al., 2022; Yasunaga et al., 2022)
and code (Parvez et al., 2021) retrieval. These
works often extend dense retrieval models to enable
retrieval between heterogeneous input spaces (e.g.,
cross-lingual, cross-modal) and have shown that
referring retrieved knowledge leads to knowledge-
intensive generation.

Finally, we will use an exercise to showcase the
effectiveness of retrieval-based LMs. We con-
clude our tutorial by discussing several important
questions and future directions, including (1) how
we can further improve the scalability of retrieval-
based LMs without sacrificing performance, (2)
when retrieval-based LMs are particularly useful
in the era of rapidly evolving LMs, and (3) what is
necessary to enable applications of retrieval-based
LMs for more diverse domains.

2 Tutorial Outline

1. Introduction (15 minutes)

• An overview of the tutorial

• Why retrieval-based LMs?

2. Preliminaries (15 minutes)

• Language models: Auto-regressive LMs vs.
masked LMs

• Dense retrieval methods

• Approximate nearest neighbor search

3. Retrieval-based LMs: A taxonomy of archi-
tectures (40 minutes)

• Granularity of datastore: tokens, entity men-
tions, and chunks of text

• How retrieved information is integrated: in-
corporation in the input layer, intermediate
layers, and the output layer

4. Retrieval-based LMs: Scalable learning algo-
rithms (40 minutes)

• Pipelined training

• Training with In-batch approximations

• Joint training of retrieval and LMs with asyn-
chronous updates of corpus

5. Retrieval-based LMs: Downstream adapta-
tions (40 minutes)

• Adaptation methods: zero-shot/few-shot
prompting and fine-tuning on downstream
tasks

• Downstream applications and task-specific
modifications (e.g., dialogue, semantic pars-
ing)

6. Extensions beyond English text (10 minutes)

• Multilingual retrieval-based LMs

• Multimodal retrieval-based LMs

• Code generation

7. Demostration: An exercise to show retrieval-
augmented LMs (10 minutes)

8. Conclusions and future directions (10 min-
utes)
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3 Tutorial Information

Type of the tutorial Cutting-edge.

Length This is a 3-hour tutorial.

Target audience The tutorial will be accessi-
ble to anyone who has a basic knowledge of ma-
chine learning and natural language processing. We
think the topic will be of interest to both NLP re-
searchers/students in academia and NLP practition-
ers in the industry.

Breadth We estimate that 20% of the work cov-
ered in this tutorial will be by the presenters and
the remaining 80% by others. The papers we will
cover are from both academia and industry.

Diversity considerations. The speakers are from
two academic institutions with an affiliation with
an industry research group, including both a profes-
sor and Ph.D. students. Three out of four speakers
are female. The methods covered by our tutorials
can scale up to various languages or domains, and
we also briefly cover several papers focusing on
multilingual and expert-domain extensions of the
core frameworks. We will reach out to academic
communities such as WiNLP1 and Masakhane2 to
encourage them to attend our tutorial for participa-
tion of diverse audiences. Since retrieval-based
LMs are alternatives to LMs with a significantly
large number of parameters, we expect this tutorial
to be especially useful to researchers with mod-
est resources who do no have access to very large
models.

An estimate of the audience size Given that lan-
guage models are now used in a range of NLP tasks
and retrieval-based approaches have been applied
to diverse domains, we estimate that the number of
audiences will be around 150+.

Venues. We prefer ACL due to the growing in-
terest in the area and the travel constraints of some
of the speakers. EMNLP is our second preferred
choice, and we currently do not consider EACL.

Technical equipment. We would like to have
Internet access to show online demos.

Open access We plan to make all teaching ma-
terial available online and agree to allow the pub-
lication of slides and video recordings in the ACL
anthology.

1http://www.winlp.org/
2https://www.masakhane.io/

Ethical considerations Retrieval-based LMs are
often more powerful and parameter-efficient than
LMs, and do not require full re-training to update
world knowledge, which makes it more energy-
efficient and can reduce carbon footprints. Prior
work also shows that referring to external world
knowledge can reduce harmful biases and hallu-
cinations, although retrieval-based LMs can still
be plausible sounding but incorrect or non-sensical
outputs. We note that, as retrieval-based LMs may
retrieve raw data from a corpus, which can leak
privacy-sensitive information, especially when they
are built on top of a private corpus. We acknowl-
edge this to caution those who manage to apply
retrieval-based LMs to privacy-sensitive domains.

Pedagogical material We plan to do some short
hands-on exercises to let the audience try different
retrieval-based LMs with few-shot prompting using
Colab.

Past tutorials.

• ACL 2020 tutorial on Open-domain QA (Chen
and Yih, 2020): This tutorial provides com-
prehensive reviews of open-domain question
answering, some of which consist of a re-
triever and a generative model, while we fo-
cus on the recent progress of architectures and
learning algorithms of retrieval-based LMs
for diverse NLP tasks, not limiting its focus
to open-domain QA. Most of the papers will
be discussed in this tutorial have been pub-
lished since the Open-domain QA tutorial
three years ago. Moreover, one of the instruc-
tors, Danqi was an instructor of this ACL 2020
tutorial.

• SIGIR 2022 tutorial on Recent Advances in
Retrieval-Augmented Text Generation (Cai
et al., 2022): This tutorial focuses mainly on
recent retrieval-augmented text generation ap-
proaches with a focus on two applications:
dialogue and machine translation. Our tuto-
rial puts more emphasis on the architecture
and learning methods of retrieval-based LMs
that can be applicable to diverse NLP tasks.

4 Presenters

Akari Asai Akari Asai is a Ph.D. student in the
Paul G. Allen School of Computer Science & En-
gineering at the University of Washington, advised
by Prof. Hannaneh Hajishirzi. Her research lies
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in natural language processing and machine learn-
ing. Her recent research focuses on question an-
swering, retrieval-based LMs, multilingual NLP,
and entity-aware representations. She received the
IBM Fellowship in 2022. She is a lead organizer
of the Workshop on Multilingual Information Ac-
cess (NAACL 2022) and serves as an area chair in
question answering at EACL 2023.

Sewon Min Sewon Min is a Ph.D. student in the
Paul G. Allen School of Computer Science & En-
gineering at the University of Washington, and a
visiting researcher at Meta AI. Her research spans
question answering, representation and retrieval of
factoid knowledge, and language modeling. She
was a co-instructor and a co-organizer of multi-
ple tutorials and workshops at ACL, NAACL-HLT,
EMNLP, NeurIPS and AKBC, including a tuto-
rial on Few-Shot NLP with Pretrained Language
Models (ACL 2022), a tutorial on NLP for Long Se-
quences (NAACL-HLT 2021), and the Workshop
on Semiparametric Methods in NLP (ACL 2022).

Zexuan Zhong Zexuan Zhong is a Ph.D. student
in the Department of Computer Science at Prince-
ton University, advised by Prof. Danqi Chen. His
research interests lie in natural language processing
and machine learning. His recent research focuses
on retrieval-based LMs, generalization of retrieval
models, and efficient models in NLP. He received
a J.P. Morgan PhD Fellowship in 2022.

Danqi Chen Danqi Chen is an Assistant Profes-
sor of Computer Science at Princeton University
and co-leads the Princeton NLP Group. Her re-
cent research focuses on training, adapting, and
understanding large LMs, and developing scalable
and generalizable NLP systems for question an-
swering, information extraction, and conversational
agents. Danqi is a recipient of a Sloan Fellowship,
a Samsung AI Researcher of the Year award, out-
standing paper awards from ACL 2016, EMNLP
2017 and ACL 2022, and multiple industry fac-
ulty awards. Danqi served as the program chair
for AKBC 2021 and (senior) area chairs for many
*ACL conferences. She taught a tutorial on “Open-
domain Question Answering” at ACL 2020.

5 Reading List

• Unsupervised Dense Information Retrieval
with Contrastive Learning (Izacard et al.,
2022a)

• Task-aware Retrieval with Instructions (Asai
et al., 2022)

• Atlas: Few-shot Learning with Retrieval Aug-
mented Language Models (Izacard et al.,
2022b)

• Improving language models by retrieving
from trillions of tokens (Borgeaud et al., 2022)

• Mention Memory: incorporating textual
knowledge into Transformers through entity
mention attention (de Jong et al., 2022)

• Generalization through Memorization: Near-
est Neighbor Language Models (Khandelwal
et al., 2020)

• Nonparametric Masked Language
Model (Min et al., 2022)

• Training Language Models with Memory
Augmentation (Zhong et al., 2022)

• kNN-Prompt: Nearest Neighbor Zero-Shot
Inference (Shi et al., 2022)

• Neuro-Symbolic Language Modeling with
Automaton-augmented Retrieval (Alon et al.,
2022)
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