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Abstract

The Bavarian Academy of Sciences and Hu-
manities aims to digitize its Medieval Latin
Dictionary. This dictionary entails record cards
referring to lemmas in medieval Latin, a low-
resource language. A crucial step of the digiti-
zation process is the Handwritten Text Recog-
nition (HTR) of the handwritten lemmas found
on these record cards. In our work, we intro-
duce an end-to-end pipeline, tailored to the me-
dieval Latin dictionary, for locating, extract-
ing, and transcribing the lemmas. We employ
two state-of-the-art (SOTA) image segmenta-
tion models to prepare the initial data set for
the HTR task. Furthermore, we experiment
with different transformer-based models and
conduct a set of experiments to explore the ca-
pabilities of different combinations of vision
encoders with a GPT-2 decoder. Additionally,
we also apply extensive data augmentation re-
sulting in a highly competitive model. The best-
performing setup achieved a Character Error
Rate (CER) of 0.015, which is even superior
to the commercial Google Cloud Vision model,
and shows a more stable performance.

1 Introduction

The Medieval Latin Dictionary (MLW)1 deals with
Latin texts that were created between 500 and 1280
in the German-speaking region. The foundations
for this project have been developed from 1948 on-
wards and since then, the dictionary has been con-
tinuously published in individual partial editions
since 1959. The basis of the dictionary consists of
50 selected texts that have been fully transcribed
onto DIN-A6 record cards (cf. Fig. 1) constitut-
ing about 40% of the note material. Later, another
2,500 texts were excerpted and transcribed manu-
ally onto DIN-A6 record cards, using a typewriter.
In addition, there are so-called "index cards", a
type of record card, that helps to uncover often

1In German: Mittellateinisches Wörterbuch (MLW)

Figure 1: Record card from the MLW data set.

hundreds of additional references. In total, it is
estimated that 1.3 million reference points have
been recorded for the MLW. These record cards
were sorted alphabetically by the first letter of the
keyword (lemma), and serve as the foundation for
creating a dictionary. Around 200,000 record cards
have been scanned and annotated with their respec-
tive lemma. The accurate extraction and transcrip-
tion of the lemma present a challenge, which is
further compounded by the limited resources avail-
able for medieval Latin.
Our contributions are as follows: (1) We present
a novel end-to-end HTR pipeline specifically de-
signed for detecting and transcribing handwritten
medieval Latin text. Notably, it surpasses com-
mercial applications currently considered SOTA
for related tasks. (2) We train a lemma-detection
model without relying on human-annotated bound-
ing boxes. (3) We conduct extensive experiments
to compare various vision encoders and evaluate
the effectiveness of data augmentation techniques.

2 Related Work

We provide an overview for HTR, which is the
main challenge of this work. For object detection,
which is an intermediate step of this work, we refer
to Zaidi et al. (2021) for a detailed overview.
Connectionist Temporal Classification (CTC)
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(Graves et al., 2006) is a technique in which a
neural network – initially a Recurrent Neural Net-
work (RNN) but other networks might also be used
(Chaudhary and Bali, 2022) – is trained to predict a
matrix of conditional transition probabilities. The
input image, represented as a vector representation
through a Convolutional Neural Network (CNN),
is fed to the network, and for each input (i.e. the ac-
tivation maps of the CNN) the network predicts the
character. CTC, combined with CNNs and RNNs,
often yielded competitive results, such as shown by
Puigcerver (2017) and Bluche and Messina (2017).
Furthermore, approaches applying only CNNs and
CTC also exist (Chaudhary and Bali, 2021, 2022).
Easter2.0 achieved competitive results on IAM
(Marti and Bunke, 2002), a frequently used HTR
data set consisting of English handwritten text.
A recent work that achieved SOTA results on IAM
is TrOCR (Li et al., 2022), based on the transformer
(Vaswani et al., 2017), consisting of a vision en-
coder and a text decoder. This deviated from previ-
ous approaches where primarily CNNs and RNNs
were used. This development is closely linked to
the emergence of the transformer in the vision do-
main (Dosovitskiy et al., 2021; Bao et al., 2022).
Barrere et al. (2022) introduce another transformer
model also using CTC, with the main difference
to TrOCR being a different embedding technique
for visual features based on a CNN. The results
have also been shown to be competitive on the
IAM data set. Diaz et al. (2021) compare encoder-
decoder models’ performance on HTR, using dif-
ferent models in the encoder and decoder parts, e.g.
a transformer encoder plus a CTC-based decoder.
Furthermore, they found that enriching this archi-
tecture with a language model yields SOTA results
on IAM. The TrOCR framework has already been
successfully applied to historical data akin to our
task. Ströbel et al. (2022) fine-tune a TrOCR in-
stance to handwritten Latin from the 16th century
(Stotz and Ströbel, 2021, referred to as Gwalther),
achieving competitive results.

3 Data

Our data set comprises 114,653 images, holding
3,507 distinct lemmas. All images are in RGB,
but not uniform in size. The information on the
corresponding lemma is available on the image
level. Most lemmas start with the letter "s", fol-
lowed by a large number of lemmas starting with
the letters "m", "v", "t", "u", "l", and "n". We

observe lemmas from a length of one character up
to 19 characters, with an average length between
five and six characters. A total of 2,420 lemmas
(69%) appear on ten record cards or less; 854 lem-
mas (24.4%), on 10 to 100 record cards, and just
233 lemmas (6.6%) on more than 100 record cards.
1,123 lemmas (36.7%) only occur on one card.

4 Lemma Extraction Pipeline

4.1 Visual Detection

Since the lemmas are always located in the up-
per left corner, but not annotated with their ex-
act locations, training a custom object detection
model for extraction is not feasible. In order to
still retrieve the locations of the bounding boxes
for some lemmas, we use the One For All (OFA)
transformer (Wang et al., 2022), fine-tuned on Ref-
COCO (Kazemzadeh et al., 2014). To ensure the
quality of the extracted lemma, we experiment
with multiple prompts and examine their results
(cf. Appendix A). After obtaining a training data
set of 20,000 instances, we train a YOLOv8 model
(Jocher et al., 2023) based on the You Only Look
Once (YOLO) architecture (Redmon et al., 2016).
The model predictions from our YOLO model, are
then subject to two post-processing steps to ensure
the quality of the images:
For 17,674 images (15.42% of the data), the model
predicted multiple bounding boxes. We visually
examined the cases and found that other handwrit-
ten text was often recognized as a lemma, some-
times scattered throughout the record cards (cf. Fig.
5, Appendix B). We further visually examined 202
cases where no bounding box was detected, stem-
ming mostly from machine writing or scanning
errors. For some images that follow the standard
layout of the record cards, the model also failed.
We disregard this set constituting less than 0.2% of
the entire data set.
Taking all aspects into account, we introduce two
rules to determine the appropriate bounding box:
(1) choose the largest bounding box in (2) the up-
per left quarter of the entire image. The result after
applying these rules is displayed in Figure 6 (Ap-
pendix B). The final data set consists of 114,451
samples, exhibiting a difference of the 202 samples
to the initial 114,653 image-label pairs. We make
our data available on HuggingFace.2

2https://huggingface.co/misoda

https://huggingface.co/misoda
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4.2 HTR Model
We use a transformer as the main model akin to
TrOCR. For the encoder, we consider three differ-
ent architectures, while we use GPT-2 (Radford
et al., 2019) as a decoder model for all setups. All
models are trained from scratch, although we use
pre-trained image processors for the encoder mod-
els and train a tokenizer for our custom alphabet.
Tokenizer We use a customized byte-level BPE to-
kenizer (Sennrich et al., 2016) (trained on the labels
from our data) for the dictionary’s vocabulary.
Vision Encoders We consider three different en-
coder architectures, namely Vision Transformer
(ViT) (Dosovitskiy et al., 2021), Bidirectional
Encoder representation for Image Transformers
(BEiT) (Bao et al., 2022), and Shifted Window
Transformer (Swin) (Liu et al., 2021).
Text Decoder We use the GPT-2 (Radford et al.,
2019) architecture, a decoder-only transformer,
which we train from scratch, i.e., we do not use
the pre-trained weights since we deal with a spe-
cific task in a low-resource language setting.
Implementation Details We use the Hugging-
Face transformers library (Wolf et al., 2020) and
PyTorch (Paszke et al., 2019) to train the HTR
pipeline. Our codebase, containing all scripts (ex-
periments and training) is available via GitHub3,
and the final model is on pypi.4 All the experiments
were conducted using a Tesla V100 GPU (16 GB).

5 Experiments

5.1 Standard Training Settings
After shuffling the data, we randomly split it into
a train (85% – 97,283 samples) and a test (15%
– 17,168 samples) set. In the train split, 94.53%
(3,315) of the lemmas are present. For all train-
ing procedures, we use the AdamW optimizer
(Loshchilov and Hutter, 2019) and did not engage
in hyperparameter tuning. Further details are re-
ported in Appendix C. For standard training, the
model is trained using a data set that includes the
cut images from the record cards as input and their
respective lemmas as the labels to be predicted. We
train each of the models for a total of 5 epochs.
We assess the model performance using the CER,
which is computed by summing up edit operations
and dividing by the label length. To account for
the varying length, we further utilize the weighted
CER.

3https://github.com/slds-lmu/mlw-htr
4https://pypi.org/project/mlw-lectiomat/

5.2 Data Augmentation

To increase the diversity of the training data, we
apply random rotation, blurring, or modifications
related to color perception. For the augmentation
setting, we increase the number of epochs to 20
(compared to 5 for the standard training). We
use three different augmentation pipelines, one of
which is randomly chosen with p = 1

3 .
Pipeline A applies blurring and modifications to
sharpness. The intensity of these modifications
is determined randomly and can range from no
modification to higher intensity. Pipeline B alters
brightness, contrast, saturation, sharpness, and hue.
The specific alterations for each instance are again
determined randomly, also including the possibility
of no modifications at all. Pipeline C combines
the modifications from the previous two. In addi-
tion to the described techniques, all augmentation
pipelines include random masking, where rectan-
gles of the images are blackened, and random rota-
tion within a range of -10 to 10 degrees.
Decoder Pre-Training We experiment with de-
coder pre-training (10 epochs) on a corpus of the
concatenated lemmas to incorporate prior knowl-
edge about medieval Latin. After pre-training, we
combine it with the encoder and continue training
for 20 epochs as described in Section 5.1, using the
same augmentation techniques outlined before.

5.3 Experimental Results

The main results of our work are reported in Ta-
ble 1. The BEiT+GPT-2 architecture achieved the
best results in case of the standard training regime,
exhibiting a CER of 0.258, followed by Swin+GPT-
2 (0.349) and ViT+GPT-2 (0.418). Applying the
augmentation pipelines notably improves model
performance compared to the standard training for
all three models. The best model with augmen-
tation is Swin+GPT-2, achieving a CER of 0.017.
As for the other two models, the CER is 0.073 for
ViT+GPT-2 and 0.110 for BEiT+GPT-2.

ViT Swin BEiT

Standard 0.418 0.349 0.258
+ Data Augmentation 0.073 0.017 0.110
+ Decoder Pre-Training 0.049 0.018 0.114

Table 1: CERs for different encoder configurations.

Pre-training of the decoder does, on average, not
lead to further improvement. ViT+GPT-2 is the
exception, for which the CER drops to 0.049. We

https://github.com/slds-lmu/mlw-htr
https://pypi.org/project/mlw-lectiomat/


106

observe no improvements for the other models. To
summarize, the best results are achieved when us-
ing a Swin+GPT-2 model with data augmentations,
reaching a CER value of 0.017.

5.4 Ablation Study

To investigate the impact of data augmentation, we
perform three ablations, removing individual steps
from the augmentation pipelines. To quantify the
individual effects of each augmentation technique,
we train the model without a specific augmentation
method and report the resulting CER.

Swin+GPT-2 (Full augmentation pipelines) 0.017

w/o masking augmentation 0.015
w/o rotation augmentation 0.021
w/o color augmentation 0.017

Table 2: CER-Results of different model configurations.

Excluding the masking step from the pipeline leads
to an actual improvement of model performance
while excluding random rotations or color-related
augmentations results do not (cf. Tab. 2).

5.5 Google Cloud Vision Comparison

Figure 2: Comparison of Swin+GPT-2 to GCV.

To compare the results of our model, we decided
to use Google Cloud Vision (GCV) a highly com-
petitive HTR model, which has proven effective
in practical applications (Thammarak et al., 2022).
GCV often predicts extra characters and/or suffixes
that are not part of the true lemma, which is why
we post-process the predictions by GCV for a fair
comparison by deleting extra characters and words
after the first word or after a ’-’ or a ’(’. Figure
2 shows the comparison of our model with GCV.
The violin plots of the (unweighted) CERs show
a concentration of the CER values around 0 for
both models. For our model, the most extreme
values are at a CER of 3, for GCV the maximum
is nearly twice as high and we observe an overall
higher standard deviation compared to our model.

To conclude, our best model exhibits a weighted
CER of 0.0153, while GCV only reaches 0.1045.
Overall, our model correctly predicts 97,09% of all
lemmas, while GCV only does so for 78.26%.

5.6 Performance of other HTR systems
Table 3 illustrates the CERs of other systems on
different HTR data sets. Ströbel et al. (2022) use
Gwalther, while all other papers evaluate their sys-
tems on IAM. Our model achieves the lowest CER.
However, it must be considered that we did not
evaluate the same data set, which makes a direct
comparison impossible. In contrast to the other
transformer-based models, our best model uses
Swin as an encoder.

Model CER Data set Architecture

Ours (Best) 0.0153 MLW Transformer

TrOCR Large (Ströbel et al., 2022) 0.0255 Gwalther Transformer
TrOCR Large (Li et al., 2022) 0.0289 IAM Transformer
EASTER2.0 (Chaudhary and Bali, 2022) 0.0621 IAM CNN+CTC
Light Transformer (Barrere et al., 2022) 0.0570 IAM CNN+Transformer
Self-Att.+CTC+LM (Diaz et al., 2021) 0.0275 IAM Trf.+CTC+ LM

Table 3: Performance of contemporary HTR systems.

6 Conclusion and Outlook

Since the record cards include much more infor-
mation than the one we extracted, we recommend
further research into various extraction techniques.
With the recent publication of Segment Anything
Model, Kirillov et al. (2023) introduce a model that
might be able to extract further features from the
record cards with much higher accuracy.
We present a novel end-to-end pipeline for the Me-
dieval Latin dictionary. Our library includes an
image-detection-based model for lemma extrac-
tion and a tailored HTR model. We experiment
with training different configurations of transform-
ers using the ViT, BEiT, and Swin encoders while
using a GPT-2 decoder. Employing data augmen-
tation, our best model (Swin+GPT-2) achieves a
CER of 0.015. The evaluation of the results ex-
hibits a weaker performance on longer lemmas
and on lemmas that appear less frequently in the
training data. Further experiments with generative
models to produce synthetic data (not reported in
the paper) were not successful, however, we rec-
ommend further research into this direction. To
conclude, our approach presents a promising HTR
solution for Medieval Latin. Future research can
build upon our work, and explore its generalizabil-
ity to other languages and data sets by making use
of our pip-installable Python package.

https://cloud.google.com/vision?hl=de
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Limitations

Our approach has several limitations that can be
addressed to improve its efficiency further. There
are issues regarding the data set (cf. Sec. 3) that
might be reflected in the model’s performance. As
discussed in Section 3, some lemmas are stroked
out partially or entirely, introducing a notable noise
to the data. Further, handwritten comments or other
annotations have been added to some of the record
cards, and some images are not correctly labeled,
which might have distorted the recognition capabil-
ities of our model.

Since our pipeline was mostly trained on data
from the S-series of the dictionary, many words
starting with other letters were not seen by the
model during training. Therefore, the performance
of the proposed approach, when applied to other
series, remains somewhat uncertain. As elaborated
in section 6, the model tends to perform weaker on
unseen lemmas. Further, there are indications that
the model might perform worse on longer lemmas.

The lemma-detection model (YOLOv8) is not
guaranteed to predict the correct bounding box for
the lemma consistently. Errors at this early stage
of the pipeline may severely impact the result. Al-
though the failure rate for the training dataset in
which no bounding box was predicted is close to
zero, the problem can still appear during inference.

We did neither experiment with the initial
TrOCR architecture nor did we fine-tune a pre-
trained TrOCR instance for this task. However, the
results of Ströbel et al. (2022) suggest a strong per-
formance of TrOCR. Thus, we recommend training
it on the MLW data set.
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Appendix

A Annotatong the Bounding Boxes

This Appendix holds the details of the Visual De-
tection part of the pipeline, described in Section
4.1, and the challenges we were confronted with.

A.1 The Task

To annotate the bounding boxes, the model is pro-
vided with a prompt describing the lemma and the
image. The model then returns a bounding box for
the requested object, which is the lemma in our
case. Different prompts are described in Table 4.

Prompt 1 Cursive text upper left

Prompt 2 Handwritten cursive word upper left

Prompt 3
Length: 1-5: Blue drawing in the upper left
Other: Handwritten cursive word upper left

Prompt 4
Length: 1-6: Blue drawing in the upper left
Other: Handwritten cursive word upper left

Table 4: Different prompts used for OFA.

A.2 Assumption about Bounding Boxes

Since we do not have any ground truth about the
bounding boxes, we rely on heuristics to verify
the correctness of the boxes. One such heuristic is
the assumed linear relationship between the lemma
length and the bounding box’s width. While the
height of the boxes is assumed to be similar across
instances, the lemma length must significantly im-
pact the bounding box’s width. To verify the results
of the annotation process, we use box plots to vi-
sualize the relationship between lemma length and
width (cf. Fig. 3a – 3d).

A.3 Initial Implementation and Results

We use the RefCOCO-OFA model5 and modify it
four our purposes. Prompt one (cf. Tab. 4) is used
to obtain the lemmas for all images.

After running the model on the first instances
with Prompt 1, we find that the relationship be-
tween the box’s width and the lemma length does
not look as expected. Figure 3 illustrates this prob-
lem. Investigating the short lemmas, we observe
that the model often fails to annotate the record
cards appropriately. Often other textual objects are
annotated, or the bounding box stretches through-
out the entire record card.

5Huggingface: OFA-Base-RefCOCO

(a) First Prompt

(b) Second Prompt

(c) Third Prompt

(d) Fourth and final Prompt
Figure 3: Box-Plots for the width of the bounding boxes
based on the lemma’s length.

A.4 Two Different Prompts for Shorter and
Longer Lemmata

After different experiments, Prompt 2 turned out
to work appropriately for shorter lemmas, but was,
however, not suitable for longer ones. To combine
the strength of both prompts, we apply a condi-
tional prompt based on the length of the lemma
using different cut-offs (5 or 6 characters). We find
that using Prompt 4 is the best-suited approach.
The analysis of the relationship between the bound-

https://huggingface.co/OFA-Sys/ofa-base-refcoco-fairseq-version
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ing box widths and the length of the lemma for
different prompts can be seen in Figure 3.

B YOLO: Training and Inference

B.1 Training Results

Figure 4: YOLO Training Results.

B.2 Multiple Lemmas Detected by YOLO

Figure 5: All bounding boxes from instances where
YOLO has detected more than one bounding box.

Figure 6: Bounding boxes of all instances to which the
rule largest bounding box in the upper left corner was
applied to.

C Training details

We used the defaults from transformers (4.26.1),
if not reported otherwise.

C.1 Standard Training

Parameter Value
Seed 42
Optimizer AdamW
Epochs 5
Decoder GPT-2
Encoder {BEIT, Swin, ViT}
Batch Size (Train & Test) 64

Table 5: Parameters for the standard training.

C.2 Training with Augmentation

Parameter Value
Seed 42
Optimizer AdamW
Epochs {5, 20}
Decoder GPT-2
Encoder {BEIT, Swin, ViT}
Batch Size (Train & Test) 64

Table 6: Parameters for training with augmentation.

C.3 Natural Language Generation

Parameter Value
Max Length 32
Early Stopping True
No Repeat Ngram Size 3
Length Penalty 2.0
Number of Beams 4

Table 7: Parameters for natural language generation.

C.4 Decoder Pre-Training

Parameter Value
Seed 42
Epochs 10
Batch Size (Train & Test) 192

Table 8: Parameters for pre-training of the decoder.


