@inproceedings{stopponi-etal-2023-evaluation,
title = "Evaluation of Distributional Semantic Models of {A}ncient {G}reek: Preliminary Results and a Road Map for Future Work",
author = "Stopponi, Silvia and
Pedrazzini, Nilo and
Peels, Saskia and
McGillivray, Barbara and
Nissim, Malvina",
editor = "Anderson, Adam and
Gordin, Shai and
Li, Bin and
Liu, Yudong and
Passarotti, Marco C.",
booktitle = "Proceedings of the Ancient Language Processing Workshop",
month = sep,
year = "2023",
address = "Varna, Bulgaria",
publisher = "INCOMA Ltd., Shoumen, Bulgaria",
url = "https://aclanthology.org/2023.alp-1.6",
pages = "49--58",
abstract = "We evaluate four count-based and predictive distributional semantic models of Ancient Greek against AGREE, a composite benchmark of human judgements, to assess their ability to retrieve semantic relatedness. On the basis of the observations deriving from the analysis of the results, we design a procedure for a larger-scale intrinsic evaluation of count-based and predictive language models, including syntactic embeddings. We also propose possible ways of exploiting the different layers of the whole AGREE benchmark (including both human- and machine-generated data) and different evaluation metrics.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="stopponi-etal-2023-evaluation">
<titleInfo>
<title>Evaluation of Distributional Semantic Models of Ancient Greek: Preliminary Results and a Road Map for Future Work</title>
</titleInfo>
<name type="personal">
<namePart type="given">Silvia</namePart>
<namePart type="family">Stopponi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nilo</namePart>
<namePart type="family">Pedrazzini</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saskia</namePart>
<namePart type="family">Peels</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Barbara</namePart>
<namePart type="family">McGillivray</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Malvina</namePart>
<namePart type="family">Nissim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Ancient Language Processing Workshop</title>
</titleInfo>
<name type="personal">
<namePart type="given">Adam</namePart>
<namePart type="family">Anderson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shai</namePart>
<namePart type="family">Gordin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bin</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yudong</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marco</namePart>
<namePart type="given">C</namePart>
<namePart type="family">Passarotti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>INCOMA Ltd., Shoumen, Bulgaria</publisher>
<place>
<placeTerm type="text">Varna, Bulgaria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We evaluate four count-based and predictive distributional semantic models of Ancient Greek against AGREE, a composite benchmark of human judgements, to assess their ability to retrieve semantic relatedness. On the basis of the observations deriving from the analysis of the results, we design a procedure for a larger-scale intrinsic evaluation of count-based and predictive language models, including syntactic embeddings. We also propose possible ways of exploiting the different layers of the whole AGREE benchmark (including both human- and machine-generated data) and different evaluation metrics.</abstract>
<identifier type="citekey">stopponi-etal-2023-evaluation</identifier>
<location>
<url>https://aclanthology.org/2023.alp-1.6</url>
</location>
<part>
<date>2023-09</date>
<extent unit="page">
<start>49</start>
<end>58</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Evaluation of Distributional Semantic Models of Ancient Greek: Preliminary Results and a Road Map for Future Work
%A Stopponi, Silvia
%A Pedrazzini, Nilo
%A Peels, Saskia
%A McGillivray, Barbara
%A Nissim, Malvina
%Y Anderson, Adam
%Y Gordin, Shai
%Y Li, Bin
%Y Liu, Yudong
%Y Passarotti, Marco C.
%S Proceedings of the Ancient Language Processing Workshop
%D 2023
%8 September
%I INCOMA Ltd., Shoumen, Bulgaria
%C Varna, Bulgaria
%F stopponi-etal-2023-evaluation
%X We evaluate four count-based and predictive distributional semantic models of Ancient Greek against AGREE, a composite benchmark of human judgements, to assess their ability to retrieve semantic relatedness. On the basis of the observations deriving from the analysis of the results, we design a procedure for a larger-scale intrinsic evaluation of count-based and predictive language models, including syntactic embeddings. We also propose possible ways of exploiting the different layers of the whole AGREE benchmark (including both human- and machine-generated data) and different evaluation metrics.
%U https://aclanthology.org/2023.alp-1.6
%P 49-58
Markdown (Informal)
[Evaluation of Distributional Semantic Models of Ancient Greek: Preliminary Results and a Road Map for Future Work](https://aclanthology.org/2023.alp-1.6) (Stopponi et al., ALP-WS 2023)
ACL