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Abstract
Flowchart-grounded troubleshooting dialogue
(FTD) systems, which follow the instructions
of a flowchart to diagnose users’ problems in
specific domains (e.g., vehicle, laptop), have
been gaining research interest in recent years.
However, collecting sufficient dialogues that
are naturally grounded on flowcharts is costly,
thus FTD systems are impeded by scarce train-
ing data. To mitigate the data sparsity issue,
we propose a plan-based synthetic data genera-
tion (PlanSDG) approach that generates diverse
synthetic dialog data at scale by transforming
concise flowchart into dialogues. Specifically,
its generative model employs a variational-
base framework with a hierarchical planning
strategy that includes global and local latent
planning variables. Experiments on the Flo-
Dial dataset show that synthetic dialogue pro-
duced by PlanSDG improves the performance
of downstream tasks, including flowchart path
retrieval and response generation, in particular
on the Out-of-Flowchart settings. In addition,
further analysis demonstrate the quality of syn-
thetic data generated by PlanSDG in paths that
are covered by current sample dialogues and
paths that are not covered.

1 Introduction

Flowchart-grounded Troubleshooting Dialogue
(FTD) systems (Leake et al., 2005; Boye, 2007;
Williams, 2007; Paek and Pieraccini, 2008; Ja-
narthanam and Lemon, 2008; Wei et al., 2018;
Raghu et al., 2021), which communicate with users
to help them diagnose problems through the guid-
ance of a flowchart, have been gaining interest in re-
cent years. FTD systems face additional challenges
to those faced by typical task-oriented dialogue sys-
tems (Wen et al., 2017; Budzianowski et al., 2018),
e.g., FTD systems must accurately follow the in-
structions of a flowchart, actively detect the root
cause of issues, and provide users with reasonable
solutions by following an action instruction along
with the path in a flowchart (Figure 1).
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Figure 1: A sample flowchart-grounded troubleshooting
dialogue. Agent follows the path of a flowchart to help
user diagnose problems.

Collecting sufficiently large flowchart-related di-
alogue corpora for FTD is challenging, since it
requires domain experts with relevant knowledge.
This problem also applies to a crowd-sourced FTD
corpus, such as FloDial (Raghu et al., 2021), whose
collection still involved a great deal of human ef-
fort. Despite this, the 1,789 dialogues in FloDial
(§ 3.1) cover only 65% of the paths in the underly-
ing flowcharts on average (Figure 2). An alternative
approach to obtaining additional dialogues could
involve crawling through websites. However, most
of these data obtained in this manner focus on anec-
dotes and subjective opinions (Dai et al., 2022),
and are thus unsuitable for FTD systems.

In this paper, we propose PlanSDG: a Plan-based
Synthetic Data Generation approach that generates
synthetic dialogues from flowchart paths. Specifi-
cally, PlanSDG takes as input a path extracted from
an underlying flowchart, and generates a dialogue
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Figure 2: Statistics on the percentage (%) of (un)covered
paths in the FloDial (containing ten flowcharts in two
domains: Vehicle and Laptop) – each flowchart pertains
to a specific problem. In total, more than 35% of paths
are not covered by dialogue instances.

session consisting of dialogue acts and utterances.
PlanSDG is formalised as a probabilistic generative
model with structured planning latent variables,
specifically global and local latent variables, that
guide the generation process. The global latent
variables are responsible for modeling the dialogue
acts between the dialogue turns, providing a high-
level sketch. To be able to model these global
variables, we manually labeled the dialogue acts
for the utterances in the FloDial dataset. The local
latent variables control the diversity of generated
synthetic dialogues during sentence realization.

We conducted extrinsic and intrinsic evaluations
of our approach on the FloDial corpus, as well as
follow-up ablation studies. Our extrinsic evalua-
tion shows that the retrieval and generative mod-
els trained on the synthetic dialogues produced
by PlanSDG achieve better performance than other
augmentation methods in terms of the downstream
tasks: flowchart path retrieval and response gen-
eration, particularly on the Out-of-Flowchart set-
tings. Our intrinsic evaluation, which examines the
quality of the synthetic dialogues, indicates that
PlanSDG outperforms strong baseline models in
term of diversity and faithfulness. Our ablation
studies demonstrate the effectiveness of our pro-
posed global and local latent planning variables.
Further analysis demonstrate the quality of syn-
thetic data generated by PlanSDG in uncovered
paths that are included by flowchart but not in dia-
logues.

2 Plan-based Synthetic Data Generation

2.1 Task Formulation

The goal of PlanSDG is to take a sampled path
from the flowchart, and generate a complete syn-
thetic dialogue as well as the dialogue acts. In

this paper, we only have access to a (relatively
small) training set T = {(x,a,y)i}mi=1, where
x = {x1, x2, . . . , xn} is a flowchart path. A
path includes tuples of nodes and edges from the
flowchart. Each xi ∈ x on the path corresponds to
a sub-dialogue yi = [yi,0, · · · , yi,|yi|] ∈ y, where
yi,j is an utterance associated with a dialogue act
ai,j ∈ a. For example in the flowchart path in
Figure 1, the node “battery over 12V” (x3) corre-
sponds to the sub-dialogue starting from the turn
“Does the voltage of . . .” and ending to the turn
“The car battery does not . . .” (y3,0 to y3,3), where
each turn is associated with a dialogue act.

Given a flowchart path x, our proposed data
augmentation method PlanSDG generates synthetic
dialogue acts â and dialogues turns ŷ, and pro-
duces the synthetic dataset TSyn = {(x, â, ŷ)i}ni=1

where n could be much larger than m (e.g., 10x).
Our goal is that the downstream retrieval and gen-
erative dialogue models trained using T ∪ TSyn
outperform the models trained using only T .

2.2 Flowchart Path Extraction
As shown in Figure 1, the flowcharts used in this
paper consist of decision nodes and action nodes.
The decision nodes include a question, and they are
connected with other nodes by the user responses
(e.g., Yes, No). The action nodes at the bottom of
the flowcharts indicate the recommended actions.

For training PlanSDG, we directly extract the
flowchart paths for the dialogues in the training
set. For syntactic data generation, to ensure full
coverage for the flowchart paths, we extract the
flowchart paths by Depth-First-Search from the
top decision node to the bottom action nodes. The
resulting flowchart paths are then used as the inputs
for PlanSDG.

2.3 Synthetic Dialogue Generation
PlanSDG is designed to generate diverse and high-
quality synthetic dialogues from the extracted
flowchart paths. Even though the input flowchart
paths include textual questions, user responses and
final actions, conditioning only on this information
could result in tedious conversations consisting of
rigid sequences of question-answer pairs. Starting
from a node in a flowchart, there could be many
feasible open-ended dialogues. To facilitate cover-
age of this dialogue space, we employ intermedi-
ate latent variables in PlanSDG. Dialogue acts are
an intuitive choice to characterise these variables,
as they describe the basic function of a dialogue
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Figure 3: Detailed framework of PlanSDG, including path extraction and synthetic dialogue generation.

turn/utterance (e.g., inform, clarification), and re-
flect users’ intentions (Stolcke et al., 2000; Bunt,
2011). We denote them by global latent variables
za
i , responsible for modeling the dialogue act tran-

sition process over the turns. We further introduce
local latent variables zy

ij , responsible for generat-
ing lexically diverse utterances for each turn. As
such, PlanSDG is formally a probabilistic gener-
ative model with structured latent variables (Fig-
ure 3), explained below in more details.

Global Planning over Dialogue Acts. We inject
stochasticity into the global planning process us-
ing a continuous latent variable in each dialogue
turn za

i , which is assumed to follow the isotropic
Gaussian distribution (Kingma and Welling, 2014).
We first sample zai from its prior distribution
pz

a

θ (za
i |xi), and then generate a sequence of di-

alogue acts auto-repressively:

za
i ∼ pz

a

θ (za
i |xi) (1)

ai,j = paθ(.|ai,j−1, xi, z
a
i ) (2)

where paθ(ai,j |ai,j−1, z
a
i ,h

x
i ) is a 2-layer MLP

with the softmax on top. We train pz
a

θ (za
i |xi) to

approximate the posterior distribution qϕ(z
a
i |xi, yi)

using Gaussians in the training phase. The parame-
ters in the prior and posterior distributions, µp

a, σp
a,

µq
a and σq

a, are parameterised as follows:

µp
a = MLPp

θ(h
x
i ),

σp
a = softplus(MLPp

θ(h
x
i )),

µq
a = MLPq

ϕ([h
x
i ,h

y
i ]),

σq
a = softplus(MLPq

ϕ([h
x
i ,h

y
i ])),

where MLP(·) denotes a multi-layer per-
ceptron, softplus(·) is a smooth approx-
imation to ReLU, which ensures posi-
tiveness. hx

i = AvgPool(Enc(xi)) and

hy
i = AvgPool(Enc([yi,0, · · · , yi,k])), which al-

lows za
i to capture the global utterance information

associated with xi. Finally, the Evidence Lower
Bound (ELBO) is computed as follows:

Lglobal = −DKL(qϕ(z
a
i |xi, yi)||pz

a

θ (za
i |xi))

+Eza
i ∼qϕ [

∑

j

log paθ(ai,j |ai,j−1, z
a
i , xi)],

where DKL(·|·) denotes the Kullback-Leibler di-
vergence (Kullback and Leibler, 1951).

Local Planning for Utterance Generation.
Given the dialogue act ai,j generated from za

i , we
focus on generating lexically diverse dialogue utter-
ances that are faithful to the flowchart. We sample
zyi,j from its prior distribution conditioned on ai,j
and xi, as follows:

zy
i,j ∼ pz

y

θ (zy
i,j |xi, ai,j) (3)

We train pz
y

θ (zy
i,j |xi, ai,j) to approximate the pos-

terior distribution qϕ(z
y
i,j |xi, ai,j , yi,j), assuming

that both distributions are Gaussian. They are pa-
rameterised as follows:

µp
y = MLPp

θ(h
x
i ,h

a
i,j),

σp
y = softplus(MLPp

θ(h
x
i ,h

a
i,j)

µq
y = MLPq

ϕ(h
x
i ,h

a
i,j ,h

y
i,j),

σq
y = softplus(MLPq

ϕ(h
x
i ,h

a
i,j ,h

y
i,j)),

where hai,j = AvgPool(Enc(ai,j)). In contrast
with global planning, here we use the ground-truth
utterance yi,j for training to allow PlanSDG to focus
on the local information. Finally, the ELBO for the
local planning variable is:
Llocal =

−DKL(qϕ(z
y
i,j |xi, ai,j , yi,j)||pz

y

θ (zy
i,j |xi, ai,j))

+Ezy
i,j∼qϕ

[log pθ(yi,j |yi,j−1, xi, ai,j , z
y
i,j)].
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PlanSDG generates each utterance yi,j based on
hz
i,j , xi and yi,j−1, as follows:

yi,j = Dec(hy
i,j−1,h

x
i ,h

z
i,j),

where hz
i,k = Concat([ha

i,j , z
y
i,j ]) is the concate-

nation of the global and local planning variables.
Enc and Dec are based on the Transformer archi-
tecture, and their parameters are initialized from a
pre-trained Seq2Seq model (e.g., BART).

2.4 Training Objective
To summarise, the probabilistic generative model
of PlanSDG performs the following steps to pro-
duce a dialogue from a flowchart path x. For each
xi ∈ x on the path, it starts by sampling the global
latent variable za

i ∼ pz
a

θ (.|xi), and then iteratively
samples the turns yi,j as follows:

• Sample the dialogue act:
ai,j ∼ paθ(.|ai,j−1, xi, z

a
i )

• Sample the local latent variable:
zy
i,j ∼ pz

y

θ (.|xi, ai,j)
• Sample the utterance:
yi,j ∼ pyθ(.|yi,j−1, xi, ai,j , z

y
i,j)

Hence, the probability of generating a conversa-
tion and the corresponding dialogue acts given the
flowchart path can be written as follows:

pθ(y,a|x) =
∏

i

∫
d(za

i )p
za

θ (za
i |xi) (4)

×
∏

j

∫
d(zy

i,j)p
a
θ(ai,j |ai,j−1, xi, z

a
i )

×pz
y

θ (zy
i,j |xi, ai,j)p

y
θ(yi,j |yi,j−1, xi, ai,j , z

y
i,j)

The overall training objective of PlanSDG is the
sum of the ELBOs: L = Lglobal + Llocal. This is
based on the variational approach to overcome the
challenges of integration over the latent variables
in the likelihood objective (Equation 4). We use the
re-parametrization trick in (Kingma and Welling,
2014) to optimise the training objective.

3 Experiments

3.1 Setup
Dataset We use the FloDial dataset (Raghu et al.,
2021) for our experiments. FloDial is a trou-
bleshooting dialogue corpus containing 1,789 di-
alogues grounded on ten individual flowcharts1

1There is no path interaction or overlap between two indi-
vidual flowcharts.
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Figure 4: Statistics of dialogue act proportions in the
FloDial dataset.

from two main domains: vehicle and laptop (five
flowcharts in each domain). FloDial has two differ-
ent settings: In-Flowchart and Out-of-Flowchart.
In the In-Flowchart setting, both the training
and test data are grounded on the same sets of
flowcharts, while in the Out-of-Flowchart setting,
the test dialogues are based on the flowcharts that
are not included in the training stage.

Dialogue Act Labeling As the original FloDial
dataset does not contain dialogue act labels, we
manually label the dialogue act for each utterance.
We investigated several widely-used dialogue act
datasets, including Switchboard2, AMI3 and Mul-
tiWoz.4 From these datasets, we select the most
commonly used set of dialogue acts (i.e., cover
74.38% of the dialogue acts in these datasets) that
are compatible with the FloDial dataset, including
{statement, inform, yes-no-question, clarification,
thanking, closing, suggestion}, and conduct anno-
tation5 for the FloDial dataset. Figure 4 shows the
detailed statistics of the labeled dialogue acts.

Evaluation Settings In this paper, we conduct
following evaluation: 1) Extrinsic Evaluation: We
aim to verify whether the synthetic data generated
from the baselines and PlanSDG are useful for im-
proving the performance of FTD. To precisely mea-
sure FTD performance, we use the same evaluation
metrics as Raghu et al. (2021): Perplexity (PPL)
and BLEU (Papineni et al., 2002) for response gen-
eration, and R@1 and R@5 for flowchart node
retrieval.6 2) Intrinsic Evaluation: We aim to
confirm if our proposed model PlanSDG generate
more diverse and faithful pseudo-dialogues than

2https://catalog.ldc.upenn.edu/LDC97S62
3https://groups.inf.ed.ac.uk/ami/corpus/
4https://github.com/budzianowski/multiwoz
5https://github.com/zhanhl316/

flowchart-dialogue-with-DA
6In order to diagnose problems, at each step, the agent

must retrieve the most relevant node from flowchart database.
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Augmentation In-Flowchart Out-of-Flowchart

Model PPL ↓ BLEU ↑ R@1 ↑ R@5 ↑ PPL ↓ BLEU ↑ R@1 ↑ R@5 ↑
FloNet 4.93 19.36 0.834 0.957 17.08 9.53 0.529 0.765

EDA 5.67 19.65 0.837 0.956 16.84 9.79 0.535 0.772
Back-Tran 4.88 19.93 0.839 0.952 19.26 10.67 0.538 0.781
GPT-2 4.37 20.69 0.844 0.958 15.93 13.70 0.574 0.813
BART 4.52 21.11 0.852 0.965 12.48 13.94 0.581 0.826

PlanSDG w/o Lglobal 4.61 20.75 0.847 0.963 14.25 14.17 0.583 0.829
PlanSDG w/o Llocal 4.48 21.06 0.843 0.956 12.45 13.83 0.579 0.832
PlanSDG 4.35∗ 21.18∗ 0.853∗ 0.968∗ 12.64 14.73∗∗ 0.609∗∗ 0.841∗∗

DialoGPT 4.19 20.93 0.849 0.961 14.66 12.63 0.557 0.793
BlenderBot 4.06 21.26 0.847 0.960 13.06 12.89 0.562 0.804

Table 1: Extrinsic evaluation: Performance of augmented synthetic dialogue data generated by different models in
In-Domain and Out-of-Domain settings. Results are based on the augmentation of 10x the amount of data. Scores
marked with “⋆” and “⋆⋆” respectively indicate a significance of p-value < 0.05 and p-value < 0.01 in the t-test
after Benjamini-Hochberg (BH) correction for false discovery rate (Benjamini and Hochberg, 1995).

the baseline models. To investigate the quality of
generated synthetic data from PlanSDG and other
baseline models, we use ROUGE (Lin, 2004) to
assess fluency, Distinct (Li et al., 2016) and Self-
BLEU (Zhu et al., 2018) for diversity, and Em-
bedding Metrics (Average, Extrema, Greedy) and
BART-Score (Yuan et al., 2021) for faithfulness.

Baselines Our baseline is FloNet (Raghu et al.,
2021) which only uses the original training data
T . Given the newly generated synthetic data TSyn
from PlanSDG and other synthetic data generation
models, we train the same FloNet model with T ∪
TSyn under the same set of hyper-parameters. We
compare PlanSDG with the following synthetic data
generation models:

• EDA (Wei and Zou, 2019) is a rule-based
approach by synonym replacement, random
insertion, random swap, and random deletion.

• Back-Tran (Sennrich et al., 2016) is the clas-
sical back translation algorithm rooted from
the machine translation task.

• Generic pre-trained language models in-
cluding GPT-2 (Radford et al., 2019),
BART (Lewis et al., 2020).

• Conversational pre-trained models including
DialoGPT (Zhang et al., 2020b) and Blender-
Bot (Roller et al., 2021).

We use the large version for all pre-trained mod-
els. To make a fair comparison, we incorporate
annotated dialogue acts for both PlanSDG and other
synthetic data pre-trained models.

Implementation Details We utilize the state-of-
the-art pre-trained text generation model BART
to initialize the encoder and decoder of PlanSDG,
for both prior and posterior, encoder and genera-
tor. For fair comparison with baseline models, we
use the BARTlarge for our model. In preliminary
experiments, we find that fine-tuning outperforms
prompt-tuning (Li and Liang, 2021) for generating
valid dialogue data. For training process, we use
AdamW (Loshchilov and Hutter, 2019) for gradi-
ent optimization, learning rate 0.001. batch size 8
in our experiments. We fine-tune PlanSDG for 50
epochs and the maximum length for utterances is
set to 64. To mitigate the posterior collapse issue,
we adopt the KL thresholding strategy (Kingma
et al., 2016) that maximizes the KL term with a
constant β = 0.17.

3.2 Extrinsic Evaluation

Main Results Table 1 summarizes the augmen-
tation experiment results using 10 times (10x)
for both baseline data augmentation models and
PlanSDG. In both settings, the performance of re-
sponse generation and flowchart node retrieval
tasks trained with the synthetic data from PlanSDG
are boosted up, especially in the Out-of-Flowchart
setting. Specifically, PlanSDG outperforms rule-
based EDA and naive Back-Tran methods by a
large margin, demonstrating that widely-used data
augmentation methods cannot handle the FTD sit-
uations. While comparing with strong pre-trained
models (e.g, GPT-2, BART), synthetic data gener-
ated by our model have better augmentation per-

7The code will be made available upon publications.
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Data Size In-Flowchart Out-of-Flowchart

PPL ↓ BLEU ↑ R@1 ↑ R@5 ↑ PPL ↓ BLEU ↑ R@1 ↑ R@5 ↑
FloNet (1x) 4.93 19.36 0.834 0.957 17.08 9.53 0.529 0.765

2x Data 5.26 20.72 0.843 0.956 13.27∗∗ 11.75∗ 0.546∗∗ 0.819∗∗

5x Data 4.28 21.06∗ 0.851∗ 0.961 15.63∗∗ 14.01∗∗ 0.595∗∗ 0.837∗∗

10x Data 4.35∗ 21.18∗ 0.853∗ 0.968 12.64∗∗ 14.73∗∗ 0.609∗∗ 0.841∗∗

Table 2: Extrinsic performance. FloNet (1x) is the dataset of the baseline model (Raghu et al., 2021). 2x, 5x and
10x means that we extend the original FloDial training set with different amounts of synthetic data. Scores marked
with “⋆” and “⋆⋆” indicate a significance of p < 0.05 and p < 0.01 in the t-test with BH correction respectively.

Model Uncovered path within flowchart

PPL ↓ BLEU ↑ R@1 ↑ R@5 ↑
FloNet 12.94 11.05 0.597 0.815

EDA 12.36 11.69 0.598 0.804
Back-Tran 13.67 12.18 0.608 0.827
GPT-2 9.82 14.61 0.632 0.854
BART 8.46 15.29 0.637 0.852

PlanSDG 8.26∗ 15.90∗∗ 0.654∗∗ 0.868∗

Table 3: Augmentation performance on Uncovered path
in the flowchart (In-Flowchart using 10x augmented
synthetic data.). Scores marked with “⋆” and “⋆⋆” indi-
cate a significance of p < 0.05 and p < 0.01 in the t-test
with BH correction respectively.

formance. We see that PlanSDG is more effective
in the Out-of-Flowchart setting, though it is on-
par or better than the baselines in the In-Flowchart
setting. In the out-of-Flowchart setting, PlanSDG
achieves at least 5.6% and 4.8% for BLEU and
R@1 metric than baseline models. Surprisingly,
model performance supported by PlanSDG even
surpass those models supported by DialoGPT and
BlenderBot which use large-scaled dialogue data
for pre-training. This result suggests that with
small training data, PlanSDG can generalize well to
the domains not encountered (i.e., dialogue) in its
pre-training stage.

Analysis on Synthetic Data Size Table 2
presents the augmentation performance using dif-
ferent size of synthetic data. FloNet (1x) only uses
original training data. As shown in Table 2, the
FloNet model performance keeps improving along
with the data size expansion. Especially in the Out-
of-Flowchart setting, augmentation performance
improve significantly comparing to the FloNet (1x)
model. These results demonstrate that PlanSDG
can effectively learn from existing training data
and produce diverse and relevant synthetic data
rather than introducing noise information.

Analysis on Uncovered Path To verify the effec-
tiveness of PlanSDG on uncovered path, we conduct
additional experiments on a novel uncovered path
setting. As discussed above, the existing training
data only cover 65% of the flowchart path in the
FloDial dataset. We split these training datasets
into training (80%), as covered path, and testing
(20%), as uncovered path. Table 3 summarizes
the results on the uncovered path setting. PlanSDG
achieves the best augmentation performance com-
paring to other augmentation baseline models. The
positive results demonstrate that PlanSDG is capa-
ble enhance the model performance on those un-
covered flowchart paths.

Ablation on Latent Variables We conduct abla-
tion study for the components of local and global
planning variables described in Section 2.3. As
shown in Table 1, the elimination of local and
global planning variables undermine the perfor-
mance of PlanSDG, showing the positive contribu-
tion of these two latent variables in generating di-
versity and relevant synthetic data. Specifically,
the ablation of local planning variable leads to
more performance degradation than the ablation
of global in terms of flowchart node retrieval task,
showing the importance of local variable in con-
trolling the diversity on sentence realization, which
further impact the training on downstream tasks.

3.3 Intrinsic Evaluation

In this section, we directly verify the quality of syn-
thetic data by using various of automatic metrics.

Automatic Metrics We show the automatic in-
trinsic evaluation results on synthetic dialogue
in Table 4. PlanSDG outperforms the baselines
in terms of ROUGE-L, Dist-2/3, Embedding and
BART-Score. For BLEU-4 the results of PlanSDG
are close to the baseline models. The significant
improvement obtained by PlanSDG for Dist-2/3 in-
dicates that our model is able to generate more
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Model BU-4 ↑ RG-L ↑ Dist-2 ↑ Dist-3 ↑ Self-B ↓ BART-S ↓ Emb (Avg/Extr/Gre) ↑
GPT-2 26.8 43.1 0.267 0.425 0.328 -2.590 88.1/68.7/84.1
BART 29.7 47.2 0.351 0.541 0.271 -2.164 87.2/67.5/83.3
DialoGPT 24.7 40.1 0.366 0.563 0.257 -2.328 89.3/62.5/82.6
BlenderBot 19.3 35.6 0.308 0.497 0.283 -2.051 82.6/59.3/78.6

w/o Lglobal 27.3 49.1 0.382 0.574 0.249 -2.156 87.1/68.3/84.7
w/o Llocal 27.8 47.6 0.365 0.568 0.261 -2.321 85.7/68.2/83.8
PlanSDG 28.5 51.2⋆⋆ 0.397∗∗ 0.602∗∗ 0.225∗∗ -2.037⋆ 86.1/69.4⋆/85.7∗∗

Table 4: Intrinsic evaluation results for pseudo dialogue generation. The metrics BLEU-4, ROUGE-L, Distinct-2/3,
Self-BLEU, BART-score and Embedding are abbreviated as BU-4, RG-L, Dist-2/3, Self-B, BART-S and Emb
respectively. The best results are highlighted with bold. Scores marked with “⋆” and “⋆⋆” indicate a significance of
p < 0.05 and p < 0.01 in the t-test with BH correction respectively.

diverse texts than the baselines – a result of our
latent variable modeling. The high scores of Em-
bedding and BART-Score indicate that our model
also has the capacity to generate utterances that are
semantically coherent with the input flowchart.

Ablation on Latent Variables We first show the
ablation study of different training objectives in Ta-
ble 4. We observe a certain performance drop when
removing global planning latent variable Lglobal or
local planning latent variable Llocal during fine-
tuning. Specifically, the removal of Llocal results in
a significant drop in Dist-2/3 metric, showing that
the local planning latent variable, together with dia-
logue act, is responsible for utterance diversity. We
then highlight that the significance of dialogue act
plays an important role in high-level sketch. The
absence of Lglobal also results in a drop of perfor-
mance in terms of BLEU-4, RG-L and Dist-2/3,
showing that global planning latent variable play
an important role in both relevance and diversity
of the generated synthetic data. Thus, the combina-
tion of Lglobal and Llocal guarantees the quality of
generated synthetic dialogues.

3.4 Case Study
In this section, we conduct a case study towards the
output of PlanSDG when given covered path and
uncovered path as inputs, respectively. The output
examples are given in Table 5.

Covered path We first focus on the PlanSDG
outputs (Gen-1 and Gen-2) for covered flowchart
path. By interpolating the latent variables, PlanSDG
is able to generate diverse utterances along with
the corresponding dialogue act sequences. For in-
stance, in addition to generating a series of "yes-
no-question" dialogue acts during the problem di-
agnosis process, PlanSDG can incorporate other
dialogue acts as well, such as " clarification " and

Covered Flowchart paths : car won’t start → starter crank? Yes → Engine fires? No

→ Spark to plugs? No → Spark from coil? No → 12V+ at coil primary? No
→ Ignition system wiring, voltage regulator.

Gen-1:
user: My family and children were very happy for the week end trip in my Honda CR-V.
When everything was packed and we got seated the car would not simply start. (statement)
agent: After the key is turned does the starter crank? (yes-no-q)
user: Yes, The starter cranks when the key is turned (inform)
agent: When you turn the key, does the engine fire right up? (yes-no-q)
user: No, When the key is turned the engine does not fire up. (inform)
agent: Are the sparks able to reach the plug? (yes-no-q)
user: How do I check if it is able to reach the plug? ( clarification )
agent: Hold the metal clip of the spark plug wire with a screw driver after pulling it and

ask your assistant to crank it over. A bright spark will be visible to you. ( suggestion )
user:No, I’m not seeing any evidence of that. The sparks aren’t reaching the plug. (inform)
agent: Did spark come out of the ignition coil? (yes-no-q)
user:There is no spark near the ignition coil. (inform)
agent: Does the voltmeter reading show 12 volt+ at the primary coil? (yes-no-q)
user:No, the voltmeter reading does not show 12 volt + at the primary coil. (inform)
agent: There are a couple of suggestions. Either your car ignition system wiring or the
voltage regulator is at fault. (suggestion)

Gen-2:
user: I am unable to start my Lincoln Continental. I think the problem is major, because
I’ve only had the car for a week. (statement)
agent:Does turning the key make the starter crank? (yes-no-q)
user: It cranks when I turn the key. (inform)
agent: Can you tell me if the engine fires on turning the key? (yes-no-q)
user: The engine doesn’t fire on turning the key. (inform)
agent:Is the spark reaching the plugs? (yes-no-q)
user: Spark isn’t reaching the plugs. (inform)
agent: Is there any kind of spark from the ignition coil? (yes-no-q)
user: It’s not coming from there. (inform)
agent: Is the reading more than 12 volt at the primary coil? (yes-no-q)
user: No, the reading is not more than 12 volt at the primary coil. (inform)
agent: The problem is the car ignition system wiring or voltage regulator is not working.
Hope I was helpful. (suggestion)

Uncovered Flowchart paths : laptop wireless problem. → See Wireless Network? No →
Switch on, enabled? Yes → outer active, in range? No → Get router wireless activity,
LED blinking, try laptop in same room
user: I am unable to connect to the wireless network with my Lenovo. Any solution
I can fix this? (statement)
agent: Can you see the wireless network you want to connect to? (yes-no-q)
user: How do I check if my laptop to see the wireless network? (clarification)
agent: Click on the network icon, then you can see it. (Suggestion)
user: Sorry, man, it isn’t showing up. (inform)
agent: Ok, Is the wireless adapter switched ON? (yes-no-q)
user: Yes, of course. It’s switched on. (Inform)
agent: Is the router in range and active? (yes-no-q)
user:No, I checked my network router and it’s within range and working. (inform)
agent: Make sure the router is turned ON and its wireless activity LED is blinking.
You should be able to connect in this way. (suggestion)

Table 5: Pseudo dialogue generation case by our
PlanSDG model, including covered path and uncovered
path.

" suggestion ". This will further lead to the diver-
sity in their corresponding utterance generation. In
addition, although being diverse, both example dia-
logues still maintain high faithfulness towards the
input flowchart path.
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Model Faith. Rel. Info. kappa
EDA 1.37 1.85 2.09 0.64
Back-Tran 1.62 2.27 2.18 0.59
GPT-2 2.24 2.53 2.65 0.56
BART 2.19 2.59 2.16 0.59
PlanSDG 2.33 2.60 2.54 0.57

Table 6: Human Evaluation. Annotators are required to
judge each instances individually generated by baselines
and our model.

Uncovered Paths As only 65% flowchart paths
are covered in the FloDial training data, we
conduct a further qualitative analysis to explore
whether PlanSDG can generate acceptable synthetic
dialogues for those uncovered paths. As shown in
the bottom case in Table 5, we can tell from the ex-
ample that basic requirements such as fluency, nat-
uralness, and faithfulness have been fulfilled. We
hypothesise that, through fine-tuning on those cov-
ered dialogue instances, dialogue systems trained
on PlanSDG augmented data acquire and memorize
relevant domain knowledge in flowcharts. There-
fore, these dialogue systems will likely to have bet-
ter performance compared to the ones which have
not seen training data instances for the uncovered
flowchart paths.

3.5 Human Evaluation

We have shown that our proposed PlanSDG method
can achieve better performance in both extrinsic
and intrinsic evaluations. However, the automatic
metrics do not necessarily reflect human preference
of the generated text. We therefore select 150 out-
put samples for each baseline synthetic models and
PlanSDG model. For each individual sample, we
ask three annotators to judge from three aspects:
Faithfulness, Relevance and Informativeness. The
scale ranges from 0 (low) to 3 (high). Table 6
summarizes human evaluation results. The kappa
scores indicate that the annotators came to a fair
agreement in the judgement. Compared to base-
line models, our PlanSDG approach achieves higher
performance on its generated synthetic dialogues.
Thus, synthetic data from PlanSDG also aligns well
with human preferences.

4 Related Work

4.1 Troubleshooting Dialogue Systems

Troubleshooting dialogues typically appear in
problem-solving scenarios between a novice and an
expert (Boye, 2007; Williams, 2007; Janarthanam
and Lemon, 2008). In such scenarios, experts with

domain knowledge help novices by asking a se-
ries of questions to identify the problem, while the
novice mostly supplies answers. Recently, Wei
et al. (2018) built an end-to-end system for patient
diagnosis, and a flowchart-grounded troubleshoot-
ing dialogue scenario was proposed by (Raghu
et al., 2021). However, these methods are only
explored in limited domains and datasets (e.g., com-
puter, car), while PlanSDG is a general approach to
synthesize pseudo dialogues.

4.2 Data Augmentation for Dialogue

Data augmentation for dialogue-related tasks has
been explored in several previous works: Quan and
Xiong (2019) presented sentence and word-level
data augmentation approaches for end-to-end task-
oriented dialogues; Hou et al. (2018) presented
a seq2seq framework to augment dialogue utter-
ances for dialogue language understanding, includ-
ing a ranking system to produce diverse utterances;
Zhang et al. (2020a) proposed a Multi-Action Data
Augmentation (MADA) model, which uses dialog
states to summarize the dialog history, and then
maps dialog states to their system actions. Data
augmentation methods for spoken dialogue and lan-
guage understanding, including generative latent
variable models, were investigated in (Hou et al.,
2018; Kim et al., 2019; Yoo et al., 2019). However,
most of the previous works focus on data augmen-
tation for discriminative tasks. Kann et al. (2022)
used retrieval-based data augmentation to improve
response generation performance in open-domain
dialogues, which heavily rely on relevant exter-
nal resource. Given the limited relevant external
resource in FTD, the retrieval-based data augmen-
tation method cannot be applied for FTD systems.

5 Conclusions

In this paper, we explore the synthetic dialogue
generation as a data augmentation approach with
pre-trained model for flowchart-grounded trou-
bleshooting dialogue systems. In further, in or-
der to incorporate dialogue-specific features effi-
ciently, we present a planning-based generative
model PlanSDG for generating synthetic dialogues
on troubleshooting dialogue task. The generated
augmented dataset is then used to train an FTD sys-
tems. Experiments on the FloDial benchmark show
the effectiveness of our proposed method. In the
future, we plan to generalise our method to more
complex dialogues, and apply it to other tasks.
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A Appendix

A.1 Derivation of Variational Lower Bound

logpθ(a,y|x)

= log
∫
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∫
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98

https://doi.org/10.18653/v1/2020.acl-demos.30
https://doi.org/10.18653/v1/2020.acl-demos.30
https://doi.org/10.18653/v1/2020.acl-demos.30
https://doi.org/10.1145/3209978.3210080
https://doi.org/10.1145/3209978.3210080


Domain Vehicle
ticking brake battery wont_start engine

#Dialog 178 188 196 174 168
#path 15 19 18 17 14

Domain Laptop
drive overheating power lcd wireless

#Dialog 192 186 188 178 196
#path 16 13 15 15 15

Table 7: #Dialog and #sub-path denote the number of
dialogue session, and the number of sub-paths of each
corresponding flowchart.

A.2 Details about FloDial Dataset
The FloDial dataset is collected for the trou-
bleshooting situations, where the interactions be-
tween user and agent are carried to diagnose user’s
problem in specific domain. FloDial contains two
main domain: vehicle and laptop. Each domain
contains 5 sub-problems. For each sub-problem,
there is a corresponding flowchart. Dialogues are
conducted based on these flowcharts. Details about
each sub-problems and flowchart are shown in Ta-
ble 7. FloDial contains 1,789 dialogue sessions
in total. In the experiments of FloDial paper, they
construct two settings: In-Flowchart and Out-of-
Flowchart settings. The test set of In-Flowchart
setting contains the dialogue in 8 sub-problems (in-
cluding ticking, brake, battery, wont_start, drive,
overheating, power and lcd), which maintains the
same domain with training set. Beside, the test
set of Out-of-Flowchart setting only contains 2
sub-problems (engine, wireless), while all other 8
sub-problems are treated as training set. An ex-
ample of flowchart in car_wont_start domain is
shwon in Figure 5

Besides, as the original FloDial dataset does not
contain any dialogue act information, we manu-
ally label the dialogue act for each dialogue ut-
terance. The selection of dialogue acts is based
on the investigation on previous work, includ-
ing Switchboard (https://catalog.ldc.upenn.
edu/LDC97S62), AMI (https://groups.inf.ed.
ac.uk/ami/corpus/), MultiWoz (Budzianowski
et al., 2018) and etc. Finally, we chose seven
most frequent dialogue, which also compatible
with the FloDial dataset. These dialogue acts in-
clude: {statement, inform, yes-no-question, clar-
ification, thanking, closing and suggestion}. The
percentage of each dialogue act in the FloDial is:
statement: 11.6%, inform: 34.7%, yes-no-question:
26.2%, clarification: 9.8%, thanking: 6.2%, clos-
ing: 4.3% and suggestion: 7.2%.

Figure 5: The flowchart example of car_wont_start do-
main. The figure is directly downloaded from the web-
site:https://www.ifitjams.com/, the original source
of FloDial dataset.

99

https://catalog.ldc.upenn.edu/LDC97S62
https://catalog.ldc.upenn.edu/LDC97S62
https://groups.inf.ed.ac.uk/ami/corpus/
https://groups.inf.ed.ac.uk/ami/corpus/
https://www.ifitjams.com/

