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Abstract

In this paper, we present a parallel Spanish-
Mazatec and Spanish-Mixtec corpus for ma-
chine translation (MT) tasks, where Mazatec
and Mixtec are two indigenous Mexican lan-
guages. We evaluated the usability of the col-
lected corpus using three different approaches:
transformer, transfer learning, and fine-tuning
pre-trained multilingual MT models. Fine-
tuning the Facebook M2M100-48 model out-
performed the other approaches, with BLEU
scores of 12.09 and 22.25 for Mazatec-Spanish
and Spanish-Mazatec translations, respectively,
and 16.75 and 22.15 for Mixtec-Spanish and
Spanish-Mixtec translations, respectively. The
findings show that the dataset size (9,799 sen-
tences in Mazatec and 13,235 sentences in
Mixtec) affects translation performance and
that indigenous languages work better when
used as target languages. The findings em-
phasize the importance of creating parallel cor-
pora for indigenous languages and fine-tuning
models for low-resource translation tasks. Fu-
ture research will investigate zero-shot and
few-shot learning approaches to further im-
prove translation performance in low-resource
settings. The dataset and scripts are avail-
able at https://github.com/atnafuatx/
Machine-Translation-Resources.

1 Introduction

Natural Language Processing (NLP), a sub-field
of Artificial Intelligence (AI), has been attracting
a lot of attention in terms of research and devel-
opment as a result of the surge in the number of
applications it has in a variety of different indus-
tries (Kalyanathaya et al., 2019). Machine Trans-
lation (MT), Sentiment or Opinion Analysis, POS
Tagging, Question Classification (QC) and Answer-
ing (QA), Chunking, Named Entity Recognition
(NER), Emotion Detection, and Semantic Role La-
beling are currently highly researched areas in vari-
ous high-resource languages (Tonja et al., 2023a).

The domain of machine translation (MT) is ad-
vancing at a rapid pace due to the growing preva-
lence of computational tasks and the expanding
global reach of the Internet, which caters to diverse,
multilingual communities (Kenny, 2018). MT sys-
tems have demonstrated remarkable translation out-
comes for language pairs that possess abundant re-
sources, such as English-Spanish, English-French,
English-Russian, and English-Portuguese. How-
ever, in scenarios with limited or no resources, MT
systems encounter difficulties due to the primary
obstacle of inadequate training data for certain lan-
guages (Mager et al., 2018; Tonja et al., 2021, 2022,
2023b).

Low-resource languages have been suffering
from a lack of new language technology designs.
When the resources are limited and only a small
amount of unlabeled data is available, it is very hard
to reach a true breakthrough in creating powerful
novel methods for language applications (Tonja
et al., 2022), the problem becomes worse if there
is no parallel dataset for certain languages.

Mexico is a multicultural and multilingual coun-
try with 68 officially recognized indigenous lan-
guages, 238 variants, and Spanish, a widely used
language spoken by 90 percent of the population
(Mager et al., 2021). Few language technologies
have been developed for indigenous languages spo-
ken in Northern and Southern America; moreover,
many indigenous languages spoken in the Ameri-
cas face a risk of extinction (Mager et al., 2018).

Indigenous language speakers often experience
feelings of shame or reluctance to use their na-
tive languages, primarily due to limited opportu-
nities for application in the presence of pervasive,
dominant majority languages (Hornberger, 2008;
Skutnabb-Kangas, 2000). This phenomenon can
be attributed to social and cultural pressures that
prioritize the use of majority languages over minor-
ity languages, thereby marginalizing indigenous
linguistic communities and undermining the value
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of their linguistic heritage (Hinton, 2011).
In this paper, we introduce the first parallel cor-

pus for machine translation tasks for two indige-
nous languages that are spoken in Mexico and
benchmark experimental results. The contributions
of our work are the following:

• We introduce the first parallel corpus for ma-
chine translation for Mazatec and Mixtec lan-
guages.

• We evaluate the performance of the collected
corpus and present benchmark results by us-
ing transformers, transfer learning, and fine-
tuning approaches.

• We open-source the parallel corpus and the
scripts used in this paper.

The rest of the paper is organized as follows: Sec-
tion 2 describes previous research related to this
study, Section 3 describes the properties of Maza-
tec and Mixtec languages, Section 4 describes the
statistics of the collected dataset, Section 5 de-
scribes models used for baseline experiments and
their results, and Section 6 describes the conclusion
of the paper.

2 Related works

Due to an increase in the enormous amount of data
for different languages, machine translation is cur-
rently one of the most researched areas in NLP
and has shown promising results in high-resource
languages (Tonja et al., 2022). There are different
MT approaches that have been used by different re-
searchers, neural machine translation (NMT)is one
of the current state-of-the-art approaches trained
on huge datasets containing sentences in a source
language and their equivalent target language trans-
lations (Belay et al., 2022). Basically, NMT takes
advantage of huge translation memories with hun-
dreds of thousands or even millions of translation
units (Forcada, 2017). However, NMT for low-
resource languages still under-performs due to the
scarcity of parallel datasets (Tonja et al., 2022,
2023b).

Many researchers explored different approaches
to solving low-resource machine translation prob-
lems. Zoph et al. (2016) proposed a transfer learn-
ing method to improve the MT performance of
low-resource languages. The authors first train a
high-resource language pair (the parent model),
then transfer some of the learned parameters to

the low-resource pair (the child model) to initial-
ize and constrain training. The data augmentation
approach proposed by Fadaee et al. (2017), targets
low-frequency words by generating new sentence
pairs containing rare words in new, synthetically
created contexts. Pourdamghani and Knight (2019)
proposed using high-resource language resources
to improve MT performance for low-resource lan-
guages without requiring any parallel data. Copy-
ing monolingual data of the target language is pro-
posed by Currey et al. (2017) to improve the per-
formance of low-resource MT. Tonja et al. (2023b)
proposed the use of source-side monolingual data
as another way of improving low-resource MT per-
formance. Transfer learning method, where one
first trains a "parent" model for a high-resource
language pair and then continues training on a low-
resource pair only by replacing the training corpus
was proposed by Kocmi and Bojar (2018). Mixing
low-resource language resources during training,
as proposed by Tonja et al. (2022) showed an im-
provement in MT performance for low-resource
languages.

There have been promising research works done
for indigenous languages; Feldman and Coto-
Solano (2020) presented an NMT model and a
dataset for the Bribri Chibchan language for Bribri-
Spanish translation. Kann et al. (2022) compiled
AmericasNLI, a natural language inference dataset
covering 10 indigenous languages of the Ameri-
cas. They conducted experiments with pre-trained
models, exploring zero-shot learning in combi-
nation with model adaptation. Oncevay (2021)
proposed the first multilingual translation mod-
els for four languages spoken in Peru: Aymara,
Ashaninka, Quechua, and Shipibo-Konibo, provid-
ing both many-to-Spanish and Spanish-to-many
models, outperformed pairwise baselines. Zheng
et al. (2021) presented a low-resource MT sys-
tem that improves translation accuracy using cross-
lingual language model pre-training. The authors
used an mBART implementation of fairseq to pre-
train on a large set of monolingual data from a
diverse set of high-resource languages before fine-
tuning on 10 low-resource indigenous American
languages: Aymara, Bribri, Asháninka, Guaraní,
Wixarika, Náhuatl, Hñähñu, Quechua, Shipibo-
Konibo, and Rarámuri. On average, their pro-
posed system achieved BLEU scores that were 1.64
higher and chrF scores that were 0.0749 higher
than the baseline. Nagoudi et al. (2021) introduced
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IndT5, the first Transformer language model for 10
Indigenous American languages: Aymara, Bribri,
Asháninka, Guaraní, Wixarika, Náhuatl, Hñähñu,
Quechua, Shipibo-Konibo, and Rarámuri. To train
IndT5, they built IndCorpus–a new dataset for ten
indigenous languages and Spanish.

3 Languages

3.1 Mazatec

The Mazatec language comprises a collection of
closely related indigenous languages spoken pri-
marily in the Northern region of Oaxaca, with
smaller populations in the adjacent states of Puebla
and Veracruz in Mexico. Approximately 200,000
individuals speak Mazatec; however, this number
may fluctuate depending on which particular di-
alects or linguistic variations are taken into account
(Léonard et al., 2019).

Mazatec belongs to the Oto-Manguean language
family, a large family of indigenous Mesoamer-
ican languages which also includes Mixtec, Za-
potec, Otomi, among others (Vielma Hernández,
2017). Linguistic characteristics of Mazatec in-
clude tonal distinctions (Garellek and Keating,
2011), complex consonant clusters, and a rich
morphology (Léonard et al., 2012). The Maza-
tec languages are known for their agglutinative
structure, where words are formed by combining
multiple morphemes, each with a distinct meaning
(Vielma Hernández, 2017).

3.1.1 Writing system
Vowels - Mixtec has five basic vowels, similar to
those in Spanish:

• a (as in "car"),

• e (as in "bet"),

• i (as in "bit"),

• o (as in "bore"),

• u (as in "boot").

These vowels can also appear nasalized, indi-
cated by a tilde (ã, ẽ, ĩ, õ, ũ), and long, indicated
by a colon (a :, e :, i :, o :, u :). Tones can be
associated with vowels, too.

Consonants - The Mazatec consonant inventory
includes the following sounds:

• Stops: p, t, k, b, d, g,

• Affricates: ts, tS, dz, dZ,

• Fricatives: s, S, h, z, Z,

• Nasals: m, n, ng,

• Approximants: w, j (pronounced as "y" in
"yes"),

• Lateral approximant: l,

• Rhotics: r.

Numerals/Numbers - Mazatec uses a vesimal
numeral system (base-20). Here are the numbers 1
to 10 in Mazatec: (1) - kia, (2) - chj1, (3) - tsi, (4)-
sti, (5) - nka, (6) - tsj1, (7) - kja, (8) - chj1n, (9) - tsi,
(10) - sti.

Word order - Typically, Mazatec exhibits a
VSO (Verb-Subject-Object) word order; however,
alternative structures such as SVO can also occur
depending on the sentence, the focus of the state-
ment, and the context.

Example sentence:
Kitsaara kji xi makjíñeni kua apana (I gave a pill

for the headache to my father) - VSO order

3.2 Mixtec
The Mixtec language comprises a group of closely
related indigenous languages predominantly spo-
ken in the region known as La Mixteca, which
spans the states of Oaxaca, Puebla, and Guerrero in
Southern Mexico. Estimates indicate that there are
approximately 500,000 speakers of Mixtec; how-
ever, this number may fluctuate depending on the
specific dialects or language varieties considered
(Josserand, 1983).

As Mazatec, Mixtec is a member of the Oto-
Manguean language family (Rensch, 1977; Pike
and Cowan, 1961; Hollenbach, 2000) possessing
the characteristic mentioned in Section 3.1. It also
shares the phonemic system with Mixtec (see vow-
els and consonants inventory in Section 3.1.1) as
well as the word order features and the base-20
number system. Here are numbers from 1 to 10 in
Mixtec: (1)- in, (2) - ña’a, (3) - ta’a , (4) - na’a, (5)
- ma’a, (6) - chiko, (7) - chikue, (8) - chikuiin, (9) -
chikunña’a, (10) - ndo’o.

And here are a couple of examples sentences:

• Ka’nu ña’a nuu ntaa (Sitting on the plain) -
VSO order

• Ña’a nuu ntaa ka’nu (On the plain, sitting) -
SVO order
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Note that the Mixtec language has many di-
alects, so the phonetic inventory, numerals, word
order, and example sentences provided here may
vary across different Mixtec-speaking communities.
The examples given here are intended to provide a
general overview of the language’s features

4 Parallel Dataset

Data is one of the crucial building blocks of any
NLP application (Belay et al., 2022; Tonja et al.,
2023a), and a parallel corpus is essential to the suc-
cess of any machine translation task. For Mazatec
and Mixtec, we were unable to find publicly avail-
able datasets for the MT task. We collected datasets
for these two indigenous Mexican languages from
two main domains: religious and constitution. We
also collected additional resources for the Mixtec
language from different textbooks which have a
similar translation to Spanish. Table 1 shows the
statistics of the collected parallel corpus for Maza-
tec and Mixtec.

Text Alignment - We took a base directory path
where text files were stored as input. Then we
read and merged the content of all text files in the
directory, and obtained a list of lists containing
the content of each file. We proceeded to iterate
through each file in the directory and read their con-
tents line by line. Each line was normalized using
the Unicode Normalization Form KC (NFKC) be-
fore being appended to the resulting list. We added
a function that takes a language code lang as in-
put, which determines the filename of the text file
to be read from a predefined folder. The function
read the file line by line, normalized each line us-
ing NFKC, and concatenated the lines into a single
string. The result was returned as an array.

With another function, we added the two lists as
input: one containing the content of the files to be
aligned, and the other containing the filenames for
the output files. We then iterated through the con-
tent list and aligned the text by iterating through the
chapters and paragraphs of each translation. The
aligned text was written to the corresponding out-
put file as tab-separated values (TSV). Then we
defined the root path where the input files were lo-
cated, initialized the name and content arrays, and
called the function that populated the content array
with the pre-processed text. Finally, the function
that writes the file was called to align and write the
output files.

Pre-processing - After aligning the texts of two

indigenous languages with their equivalent trans-
lations in Spanish, we pre-processed the corpus
before splitting it for our experiments. The pre-
processing steps included removing the numbers
and special character symbols such as ;,",?, etc. For
the baseline experiment, we split the pre-processed
corpus into training, development, and test sets in
the ratio of 70:10:20, respectively. Table 2 shows
the split of the dataset used for our experiments.

5 Baseline Experiment and Discussion

In this section, we discuss the models used for the
baseline experiment, the hyper-parameter used, the
benchmark results, and the discussion. We used
three approaches to evaluate the usability of the
collected corpus. These are :-

• Transformer - is a type of neural network
architecture first introduced in the paper At-
tention Is All You Need (Vaswani et al., 2017).
The key innovation of the Transformer archi-
tecture is the attention mechanism, which al-
lows the network to selectively focus on differ-
ent parts of the input sequence when making
predictions. This is in contrast to traditional
recurrent neural networks (RNNs), which pro-
cess input sequentially and are prone to the
vanishing gradient problem.

In the transformer architecture, the input se-
quence is processed in parallel by multiple
layers of self-attention and feed-forward neu-
ral networks. Each layer can be thought of
as a "block" that takes the output of the pre-
vious layer as input and applies its own set
of transformations to it. The self-attention
mechanism allows the network to weigh the
importance of each element in the input se-
quence when making predictions, while the
feed-forward networks help to capture non-
linear relationships between the elements.

Currently, transformers are state-of-the-art ap-
proaches and are widely used in NLP tasks
such as MT, text summarization, sentiment
analysis, etc. We used the base transformer
configuration as described in (Vaswani et al.,
2017) work.

• Transfer learning- refers to the process of
leveraging pre-trained language models to im-
prove the performance of downstream NLP
tasks. Specifically, transfer learning involves
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Source Mazatec (maq) - Spanish (spa) Mixtec (xtn) - Spanish (spa)
#sentences #tokens (maq) #tokens (spa) #sentences #tokens (xtn) #tokens (spa)

Religion 8,203 269,753 187,773 8,208 278,874 183,050
Constitution 1,596 138,504 68,392 1,185 104,497 68,393
Others - - - 3,842 71,628 70,080
Total 9,799 408,257 256,165 13,235 454,999 321,523

Table 1: Parallel dataset distribution of Mazatec-Spanish and Mixtec-Spanish

Language pairs Number of Sentences
Train Dev Test

Mazatec - Spanish 7,056 784 1,959
Mixtec - Spanish 9,529 1,059 2,647

Table 2: Dataset split used in baseline experiments

using a pre-trained model to initialize the
parameters of an MT system and then fine-
tuning the system on a smaller dataset specific
to the target language pair or domain.

Transfer learning can be especially useful
in MT because training a high-quality MT
system from scratch requires a large amount
of data and computational resources, which
may not be available for all language pairs
or domains. By leveraging pre-trained mod-
els, transfer learning allows MT systems to
achieve high performance with fewer data and
fewer resources. For our baseline experiments,
we used English-Spanish as parent model with
two (opus-mt-es-en1 and opus-mt-tc-big-en-
es 2) pre-trained models available from Hug-
ging Face3 trained for English-Spanish on
the OPUS dataset (Tiedemann and Thottin-
gal, 2020) by Helsinki-NLP group.

• Fine tuning - is the process of taking a pre-
trained MT model and adapting it to a specific
translation task, such as translating between
a particular language pair or in a specific do-
main. The process of fine-tuning involves tak-
ing the pre-trained model, which has already
learned representations of words and phrases
from a large corpus of text, and training it on a
smaller dataset of specific task examples. This
involves updating the parameters of the pre-
trained model to better capture the patterns
and structures present in the target translation
task.

1https://huggingface.co/Helsinki-NLP/opus-mt-es-en
2https://huggingface.co/Helsinki-NLP/opus-mt-tc-big-en-

es
3https://huggingface.co/

Fine-tuning can be useful in MT because it
allows the pre-trained model to quickly adapt
to a new task without having to train a new
model from scratch. This is especially benefi-
cial when working with limited data or when
there is a need to quickly adapt to changing
translation requirements. We used two com-
monly known pre-trained multilingual MT
models:

– M2M100-48 - is a multilingual encoder-
decoder (seq-to-seq) model trained for
many-to-many multilingual translation
(Fan et al., 2020). We used a model
with 48M parameters due to computing
resource limitations.

– mBART50 - is a multilingual sequence-
to-sequence model pre-trained using the
Multilingual Denoising pre-training ob-
jective (Tang et al., 2020).

Hyper-parameters - For the transformer approach
we tokenized the source and target parallel sen-
tences into subword tokens using Byte Pair Encod-
ing (BPE) (Gage, 1994). The BPE representation
was chosen in order to remove vocabulary overlap
during dataset combinations. For other approaches
we applied the tokenizer of each model, Table 3
shows hyper-parameters used in our baseline exper-
iments.

5.1 Results
Table 4 and Figure 1 shows the benchmark exper-
imental results for bi-directional neural machine
translation for Mazatec(maq) - Spanish(spa) and
Mixtec(xtn) - Spanish(spa). In our baseline ex-
periments, we observed that employing a trans-
former model for low-resource languages shows
sub-optimal results compared to transfer learning
and fine-tuning methodologies. As demonstrated
in Table 4 and Figure 1, the performance of the
transformer was inferior to alternative approaches
utilized in the study. This finding substantiates the
hypothesis that the efficacy of transformer mod-
els is heavily reliant on the availability of exten-
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Approaches Models Parameters

Transformer transformer

- enc_layers: 6
- dec_layers: 6
- heads: 8
- hidden_size: 512
- optimizer: adam
- warmup_steps: 4000
- training_steps: 30000
- learning _rate: 5e-2

Transfer learning
opus-mt-es-en - max_seq_length: 128

- num_train_epochs: 3
- per_device_batch_size: 4
- num_beams: 5

opus-mt-tc-big-en-es

Fine-tuning
mBART50
M2M100-48

Table 3: Hyper-parameters used for baseline experiments

Models xx-spa BLEU score spa-xx BLEU score
maq-spa xtn-spa spa-maq spa-xtn

M1 5.89 6.23 11.41 12.62
M2 6.91 10.47 14.49 13.73
M3 8.45 12.44 19.61 17.27
M4 10.45 15.66 21.2 16.93
M5 12.09 16.75 22.5 22.15

Table 4: Benchmark experimental result for bi-directional Mazatec(maq)-Spanish(spa) and Mixtec(xtn)-Spanish(spa)
neural machine translation, M1, M2, M3, M4, and M5 represents transformer, opus-mt-es-en, opus-mt-tc-big-en-
es,mBART50, and M2M100-48 models respectively.

Figure 1: Benchmark results of selected approaches

sive parallel corpora for machine translation tasks.
Upon further examination of language pair perfor-
mance, we discovered that utilizing indigenous lan-
guages as the target language surpasses the perfor-
mance achieved when using Spanish as the target

language. This observation indicates that translat-
ing from Spanish to indigenous languages is a less
complex task for the model as opposed to translat-
ing indigenous languages to Spanish.

Transfer learning approach showed more
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promising results for the indigenous low-resource
languages than the transformer approach. Out of
the two models used in the transfer learning exper-
iment, the model with transformer-big configura-
tion outperformed the model with transformer-base
configuration. This shows that the transfer learning
approach depends on the size of the model param-
eter. Similarly, when using the transfer learning
approach for indigenous low-resource languages
by utilizing models trained on high-resource lan-
guages, better results were obtained when Spanish
was used as the source language than when Spanish
was used as the target language.

Fine-tuning approach outperformed the rest of
the approaches used in our baseline experiment
in both translation directions. This shows that us-
ing a multilingual pre-trained translation model for
fine-tuning low-resource languages outperforms
other models. From the two multilingual models
used in the experiment, the M2M100-48 model
outperformed the mBART50 multilingual model.
The M2M100-48 model showed 4.7 and 5.5 BLEU
scores on average for Mazatec (maq)-Spanish
(spa) and Spanish (spa)-Mazatec (maq) translation.
For Mixtec (xtn)-Spanish (spa) and Mixtec (xtn)-
Spanish (spa), the M2M100-48 model showed a
10.2 and 7.5 BLEU score improvement on average
when compared to the other models used in the
experiments. When comparing the results of the
two languages in all the approaches used, Mixtec
(xtn)-Spanish (spa) translation showed better per-
formance than Mazatec (maq)-Spanish (spa) trans-
lation when using Spanish as the target language,
This shows that the availability of the parallel cor-
pora for the language pairs has a high impact on the
performance of the translation models. The overall
results show that using multilingual MT models for
fine-tuning in our selected indigenous low-resource
languages gives promising results.

5.2 Discussion

In our analysis, we conducted an error analysis
to identify the strengths and weaknesses of the
three approaches: transformer, transfer learning,
and fine-tuning. We found that the transformer
approach, which relies on large parallel corpora,
yielded sub-optimal results for low-resource lan-
guages. It struggled to capture the linguistic pat-
terns and structures specific to indigenous lan-
guages. This limitation indicates that the trans-
former model’s performance is highly dependent

on the availability of extensive parallel corpora for
effective machine translation.

On the other hand, the transfer learning approach
showed more promising results for low-resource in-
digenous languages. We observed that models pre-
trained on high-resource languages, such as Span-
ish, and fine-tuned on the indigenous languages
improved translation quality. However, even with
transfer learning, the performance was not satisfac-
tory, and there were errors that persisted across all
three approaches.

The general error that all three approaches
failed to address adequately was the translation
of domain-specific and culturally specific terms
in Mazatec and Mixtec. These languages have
unique vocabulary and cultural nuances that re-
quire a deeper understanding and context to en-
sure accurate translation. The limited availability
of domain-specific parallel corpora for these lan-
guages hampered the models’ ability to capture and
translate such terms effectively.

6 Conclusion

In this paper, we presented a parallel corpus for
two indigenous Mexican languages (Mazatec (maq)
and Mixtec (xtn)) for machine translation tasks and
evaluate the usability of the collected corpus using
three different approaches. From the approaches,
fine-tuning multilingual pre-trained MT models
outperformed the rest of the experiments; Face-
book’s M2M100-48 outperformed all other models
with BLEU scores of 12.09 and 22.25 for maq-spa
and spa-maq, respectively, and 16.75 and 22.15 for
xtn-spa and spa-xtn, respectively. We noticed from
the experimental results that the dataset size has
less impact when using indigenous languages as a
target than the source. This observation highlights
the potential benefits of focusing on developing
and fine-tuning models specifically designed for
translation tasks involving low-resource languages.
Moreover, it underscores the value of creating and
employing parallel corpora tailored to indigenous
languages, as these resources can significantly im-
prove machine translation performance, particu-
larly when used in conjunction with advanced mul-
tilingual pre-trained models.

Our BLEU results for Mizatec and Miztec to
Spanish translation were very low on the best con-
figuration to have any usability in real-life applica-
tions, but the translation in the opposite direction
demonstrated BLEU scores above 22 facilitating
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uses, for example in government apps to present
hints to Mixtec and Mazatec native speakers who
have a low level of Spanish comprehension, in the
government web pages. This could significantly
improve the usefulness of the native language of
the speakers, thus promoting communication of the
language and its preservation.

In future research, we plan to investigate the effi-
cacy of advanced techniques, including zero-shot
and few-shot learning, for low-resource languages
in the context of limited parallel datasets. These
methodologies hold promise for effectively lever-
aging sparse data available in low-resource settings,
as they capitalize on pre-existing knowledge from
related tasks or languages without requiring exten-
sive fine-tuning or additional annotated data. By
exploring these approaches, we aim to uncover po-
tential benefits and improvements in the machine
translation performance of low-resource languages,
thus contributing to developing more robust and
accurate translation systems for underrepresented
linguistic communities.
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