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Abstract

This paper presents PlayGround’s submission
to the AmericasNLP 2023 shared task on ma-
chine translation (MT) into indigenous lan-
guages. We finetuned NLLB-600M, a multilin-
gual MT model pre-trained on Flores-200, on
10 low-resource language directions and exam-
ined the effectiveness of weight averaging and
back translation. Our experiments showed that
weight averaging, on average, led to a 0.0169
improvement in the ChrF++ score. Addition-
ally, we found that back translation resulted in
a 0.008 improvement in the ChrF++ score.

1 Introduction

We participated in the AmericasNLP 2023
(Ebrahimi et al., 2023) shared task with the goal
of advancing previous studies (Mager et al., 2021)
on indigenous American languages. The task is
to translate Spanish into 10 indigenous languages,
including Ashaninka, Aymara, Bribri, Guarani,
Hñähñu, Nahuatl, Quechua, Raramuri, Shipibo-
Konibo, and Wixarika. Additionally, there was
another language, Chatino1, for which we did not
participate in.

We started with the monolingual and bilingual
data from Mager et al. (2021) and finetuned NLLB-
600M, a multilingual pre-trained MT model from
Meta’s No Language Left Behind (NLLB) project
(NLLBTeam et al., 2022) both bilingually and mul-
tilingually. On top of that, we employed weight
averaging and back translation. For back transla-
tion, we additionally filtered the back translated
sentence pairs to improve the data quality.

We demonstrate that training on model weights
averaged from multiple checkpoints improves trans-
lation quality, as indicated by a 0.0169 increase in
the ChrF++ score on average, without requiring ad-
ditional computation resources. Additionally, we
found that back translation can enhance translation

1https://scholarworks.iu.edu/dspace/handle/
2022/21028

quality for low-resource languages, although it is
sensitive to the quality of synthetic data. To address
this, we introduced a data filtering technique to im-
prove the quality of synthetic data. With filtered
back translation, our system achieved an average
improvement of 0.008 in the ChrF++ score. Fur-
thermore, our study reveals that multilingual fine-
tuning achieves comparable translation quality to
bilingual fine-tuning for low-resource languages.

We selected the bilingual model with weight
averaging and back translation as our final submis-
sion. The implementation of this study is available
in our Git repository2.

2 Methods

2.1 Data

We adopted the data preparation method described
by the University of Helsinki’s submission to Amer-
icasNLP 2021 (Vázquez et al., 2021) for our sys-
tem. The details of the dataset can be found in
Table 1. Our model training utilized the filtered
parallel data (referred to as parallel data), which
consisted of the training data provided by the orga-
nizers as well as additional data collected by the
University of Helsinki (Vázquez et al., 2021). In
order to generate synthetic parallel data (referred to
as synthetic data), we employed monolingual data
and applied back translation techniques (refer to
Section 2.3). The development data was used for
model selection purposes.

2.2 Pre-trained Model

Our models are based on the NLLB-600M Seq2Seq
pre-training scheme introduced by the NLLB team
(NLLBTeam et al., 2022). For tokenization, we
utilize the SentencePiece tokenizer (Kudo and
Richardson, 2018), following the NLLB config-
uration. The NLLB model was initially trained on

2https://github.com/KaieChen/ameircasnlp2023
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Lang Filtered Monoling Dev
Ashaninka 3858 13195 883
Aymara 8352 16750 996
Bribri 7303 0 996
Guarani 14483 40516 995
Hñähñu 7049 537 599
Nahuatl 17431 9222 672
Quechua 228624 60399 996
Raramuri 16529 0 995
Shipibo-Konibo 28854 23595 996
Wixarika 11525 511 994

Table 1: Number of segments in dataset. Filtered data
and monolingual data are collected and filtered by Uni-
versity of Helsinki team (Vázquez et al., 2021) from
AmericasNLP 2021.

the Flores-200 dataset, which consists of Aymara,
Guarani, Quechua, and Spanish.

2.3 Fine-tuned Models

We fine-tune NLLB-600M using the data men-
tioned in Table 1. For both X-to-Spanish and
Spanish-to-X directions, we fine-tune NLLB-600M
using filtered parallel data in both bilingual and
multilingual way. This produces 20 bilingual mod-
els and 2 multilingual models.

We leverage the above X-to-Spanish models to
generate back translated data to enrich the training
corpus. Then we further fine-tune the Spanish-to-X
models with parallel dataset extended with back
translated sentence pairs.

The final models are obtained with weight aver-
aging since the training can be unstable with insuf-
ficient data.

2.3.1 Back Translation
In order to make use of monolingual data in in-
digenous languages, we employed back transla-
tion. Specifically, we froze the decoder layers of
NLLB model and performed fine-tuning of an X-
to-Spanish model using parallel data. Then, we
utilized this model to generate synthetic sentences.

Data filtering: Synthetic sentences may con-
tain noise. To address this issue, we implement
a data filter to select a subset of synthetic sen-
tences that will expand the original parallel dataset
(Ranathunga et al., 2023). In our task, we initially
fine-tuned a Spanish-to-X model using the parallel
data. Subsequently, we evaluated this model on the
synthetic sentences and selected the top N samples
with the lowest cross-entropy loss. The value of N

is determined by the following:

N = min(|Ypar|, |Ysyn|) (1)

where |Ypar| represents the number of segments
in the parallel dataset, and |Ysyn| represents the
number of segments in the synthetic dataset.

Finally, we combined the selected synthetic data
with the parallel data and proceeded to perform
additional fine-tuning of the NLLB model.

2.3.2 Weight Averaging
Studies have shown that averaging the weights of
multiple finetuned models can enhance accuracy
(Wortsman et al., 2022). In our training approach,
the weights of the next epoch are trained based on
the average of the model weights from the previous
K epochs. For inference, we compute the final
model by averaging the model weights from the last
K epochs. The model can be defined as follows:

NLLB(x; Θt) = NLLB(x;
1

K

K∑

k=1

Θt−k) (2)

where Θt represents the model parameters at epoch
t.

This technique shares similarities with training
different models using various hyperparameters
(Wortsman et al., 2022; Xu et al., 2020). How-
ever, as we only need to train a single model, this
technique can be particularly efficient for large lan-
guage models. The effectiveness of this approach
is further discussed in Section 3.

2.3.3 Hyperparameters
In the fine-tuning process, we froze the encoder
layers of the NLLB model, considering its prior
training on a vast amount of Spanish sentences. We
optimized the model using AdamW (Loshchilov
and Hutter, 2017) with hyperparameters β =
(0.9, 0.999), ϵ = 10−6. We employed a learning
rate of 3×10−4 for a total of 10, 000 iterations. For
regularization, we utilized the same dropout rate
as the original NLLB model and a weight decay
of 0.01. Furthermore, for weight averaging, we set
the value of K to be 5.

2.4 Evaluation
We report the results using ChrF++ (Popović,
2017), following the evaluation script3 provided
by the AmericasNLP 2023 shared task. ChrF++

3https://github.com/AmericasNLP/
americasnlp2023
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Target language Baseline (Test) Multi Multi+ Multi++ Bi Bi++ Bi++ (Test)
Wixarika 0.304 0.277 0.294 0.294 0.266 0.279 0.288
Hñähñu 0.147 0.129 0.133 0.138 0.144 0.141 0.148
Aymara 0.283 0.291 0.328 0.326 0.336 0.326 0.300
Shipibo-Konibo 0.329 0.224 0.238 0.253 0.261 0.283 0.277
Nahuatl 0.266 0.241 0.252 0.275 0.282 0.283 0.237
Guarani 0.336 0.304 0.316 0.321 0.315 0.303 0.331
Asháninka 0.258 0.222 0.238 0.272 0.269 0.286 0.280
Quechua 0.343 0.324 0.341 - 0.337 - 0.344
Rarámuri 0.184 0.161 0.175 - 0.184 - 0.145
Bribri 0.165 0.210 0.237 - 0.231 - 0.148

Table 2: Result in ChrF++ on develop dataset, except for baseline and Bi++(test). Baseline model is the best
submission for AmericasNLP 2021. The effectiveness of weight averaging (Multi+ and Bi+) and back translation is
compared (Multi++ and Bi++). We also compared the performance of bilingual (Bi) and multilingual (Multi).

captures the character-level performance, making
it particularly suitable for evaluating the polysyn-
thetic properties observed in many indigenous lan-
guages (Zheng et al., 2021).

3 Results

The results are presented in Table 2 for both the
development and test datasets. Our Bi++ model
demonstrates improvements in four languages:
Hñähñu, Aymara, Asháninka, and Quechua, com-
pared to the Baseline model provided by the orga-
nizer. In general, the trends in results for the de-
velopment and training datasets are similar, except
for Rarámuri and Bribri. This discrepancy may
be attributed to the test dataset containing more
unknown tokens, to which our model is sensitive.

Previous study (Mager et al., 2021) has pri-
marily focused on fine-tuning bilingual machine
translation models. However, the results from our
Multi++ and Bi++ models demonstrate the promis-
ing potential of multilingual fine-tuning (Tang et al.,
2020). On average, the ChrF++ score for Multi++
is only 0.0012 lower than that of Bi++.

We also compared the effectiveness of weight
averaging and back translation. Weight averaging
improved translations for all target languages. On
average, Multi+ achieved a ChrF++ score that was
0.0169 higher than Multi. These results indicate
that our simple technique can enhance low-resource
machine translation without requiring additional
computational resources.

However, the impact of back translation varied
across languages, as observed in the results for
Multi+ and Multi++. On average, the implemen-
tation of back translation resulted in a 0.008 im-

provement in the ChrF++ metric. For Wixarika
and Aymara, there was a slight drop in the ChrF++
scores after back translation. Despite performing
data filtering, the quality of synthetic data largely
depends on the performance of the X-to-Spanish
model.

In summary, our fine-tuning technique has
shown improvements in performance. However,
with further refinements and design enhancements,
there is potential for our model to achieve higher
levels of performance.

4 Conclusion

In this paper, we presented our submission to the
AmericasNLP 2023 shared task. Our system uti-
lized the NLLB-600M pre-trained model to trans-
late Spanish into 10 indigenous languages. We also
investigated the potential of multilingual translation
models, which showed promising results. Addition-
ally, we found that averaging model weights from
previous epochs proved to be an efficient and effec-
tive approach. While back translation demonstrated
performance improvements, further methods are
necessary to address noisy data. These findings
highlight the positive outcomes of our study and
provide valuable insights for future advancements
in low-resource machine translation techniques.
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