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Abstract

Conventional approaches to learning word em-
beddings (Mikolov et al., 2013; Pennington
et al., 2014) are limited to relatively few lan-
guages with sufficiently large training corpora.
To address this limitation, we propose an alter-
native approach to deriving word embeddings
for Wolastoqey and Mi’kmaq that leverages
definitions from a bilingual dictionary. More
specifically, following Bear and Cook (2022),
we experiment with encoding English defini-
tions of Wolastoqey and Mi’kmaq words into
vector representations using English sequence
representation models. For this, we consider us-
ing and fine-tuning sentence-RoBERTa models
(Reimers and Gurevych, 2019). We evaluate
our word embeddings using a similar method-
ology to that of Bear and Cook using evalua-
tions based on word classification, clustering
and reverse dictionary search. We additionally
construct word embeddings for higher-resource
languages — English, German and Spanish
— using our methods and evaluate our em-
beddings on existing word-similarity datasets.
Our findings indicate that our word embed-
ding methods can be used to produce mean-
ingful vector representations for low-resource
languages such as Wolastoqey and Mi’kmaq
and for higher-resource languages.

1 Introduction

Word embeddings (Mikolov et al., 2013; Penning-
ton et al., 2014) are real-numbered vector repre-
sentations of the meanings of words and are a
fundamental component of many natural language
processing (NLP) systems. Although word em-
beddings can often be learnt while training NLP
systems end-to-end, pretrained word embeddings
have been shown to bolster the performance of NLP
systems in tasks such as machine translation (Qi
et al., 2018) and information retrieval (Roy et al.,
2018). Despite their utility, quality word embed-
dings can be difficult to obtain as they generally
require large corpora of running text to train. This

represents a significant limitation of conventional
word embedding methods as, due to these data re-
quirements, quality word embeddings can only be
learnt for relatively few languages. Today, a ma-
jority of languages spoken around the world are
low-resource (Arppe et al., 2016), and thus lack the
text resources required to train high quality word
embeddings. As this is the case, an alternative em-
bedding approach is desirable to make better use
of what data exists for low-resource languages.

In the case of Wolastoqey (also referred to as
Passamaquoddy-Maliseet) and Mi’kmaq, there sim-
ply isn’t enough data available in these languages
to train quality word embeddings using conven-
tional methods. Wolastoqey and Mi’kmaq are both
low-resource Eastern Algonquin languages. There
are currently approximately 300 remaining first lan-
guage speakers of Wolastoqey and 7k speakers of
Mi’kmaq (Statistics Canada, 2017) in Canada. Due
to the low-resource state of these languages, devel-
oping language technologies for Wolastoqey and
Mi’kmaq is challenging because there are no large
corpora or annotated datasets available in these lan-
guages to train NLP systems. Despite not having
large corpora or datasets available, both a bilin-
gual Wolastoqey–English dictionary, known as the
Passamaquoddy-Maliseet Dictionary (Francis and
Leavitt, 2008), and a bilingual Mi’kmaq-English
dictionary, known as the Mi’gmaq/Mi’kmaq On-
line Dictionary (Haberlin et al., 1997), are available.
These dictionaries contain English definitions for
Wolastoqey and Mi’kmaq headwords and consist
of a total of 18.6k and 6.5k entries, respectively. In
our work, we experiment with using these dictionar-
ies to construct word embeddings for Wolastoqey
and Mi’kmaq.

Previous work has demonstrated that bilingual
lexicons and monolingual corpora can be lever-
aged to train cross-lingual word embeddings for
low-resource languages. For example, Adams et al.
(2017) showed that, by combining a large English
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corpus with a small Yongning Na corpus, and by
replacing words with their translations using a
small bilingual lexicon, a pseudo-bilingual corpus
can be created which can be used to train cross-
lingual word embeddings. We do not consider
this approach in our work because Wolastoqey and
Mi’kmaq are polysynthetic languages, and as such,
many tokens that occur in a corpus would not be ex-
pected to be found as dictionary headwords, which
limits the applicability of this approach.

Instead, we look towards approaches based on
sequence representation. Prior work has demon-
strated that, by leveraging bilingual dictionaries,
useful vector representations can be constructed for
Nêhiyawêwin (Plains Cree) words. By averaging
word embeddings corresponding to words that ap-
pear in English definitions of Nêhiyawêwin words,
embeddings can be obtained which can be used to
effectively cluster Nêhiyawêwin words (Harrigan
and Arppe, 2021) and map them to preconstructed
ontologies (Dacanay et al., 2021).

Bear and Cook (2022) extended the methodology
of Harrigan and Arppe (2021) and Dacanay et al.
(2021) to construct word embeddings for Wolas-
toqey. They used the average of word2vec em-
beddings to represent words from their dictionary
definitions, as well as RoBERTa, and sentence-
RoBERTa models to encode definitions into vector
representations. These embeddings were then eval-
uated based on word classification tasks focused
on predicting part-of speech, animacy, and transi-
tivity; semantic clustering; and reverse dictionary
search. In each evaluation, it was found that ap-
proaches using these embeddings outperformed
task-specific baselines, indicating that sentence-
transformer models can outperform approaches
based on word embeddings for this purpose.

As this approach has been shown to perform rel-
atively well, in this paper, we build upon the work
of Bear and Cook (2022) by fine-tuning sequence
representation models for this task. More specifi-
cally, we propose fine-tuning sentence-RoBERTa
models on monolingual dictionary definitions to
determine if doing so could improve the overall
quality of the representations. Using these fine-
tuned models, we construct word embeddings for
Wolastoqey and Mi’kmaq from English definitions
in the Passamaquoddy-Maliseet Dictionary and
Mi’gmaq/Mi’kmaq Online Dictionary.

Following Bear and Cook (2022), we evaluate
our Wolastoqey and Mi’kmaq word embeddings

on word classification tasks focused on predicting
part-of speech, animacy, and transitivity as well as
semantic clustering and reverse dictionary search.
We compare our word embeddings against task-
specific baselines and embeddings produced using
the techniques of Bear and Cook. To assess if this
technique is viable for other higher-resource lan-
guages, we also construct word embeddings for En-
glish, Spanish and German, and evaluate the perfor-
mance of our models on word similiarity datasets,
comparing against previously reported results.

2 Methodology

To obtain embeddings for Wolastoqey and
Mi’kmaq words, we experiment with encod-
ing English definitions of Wolastoqey words
in the Passamaquoddy-Maliseet Dictionary, and
Mi’kmaq words in the Mi’gmaq/Mi’kmaq On-
line Dictionary, into vector representations. To
construct vector representations from English
definitions, we consider fine-tuning and using
sentence-transformer models, masked language
models specifically trained for sequence represen-
tation. More specifically, we consider fine-tuning
sentence-RoBERTa models using three training reg-
imens from Reimers and Gurevych (2019). We
compare our embeddings constructed with this ap-
proach to those created using the methodology of
Bear and Cook (2022).

In our work, we fine-tune our sentence-
RoBERTa models on the dataset of Hill et al.
(2016). This dataset consists of word–definition
pairs collected from several English dictionaries
and WordNet (Miller, 1995). In our experiments,
we use the training and development splits from
Zheng et al. (2020). This gives us a training set con-
sisting of a total of 667.5k word–definition pairs
corresponding to 45k unique types and a develop-
ment set consisting of 75.8k definitions correspond-
ing to 5k unique types. However, due to the data
requirements of our fine-tuning regimens, we filter
out any definitions corresponding to words with
only one unique definition and filter out duplicate
definitions from both our training and development
sets. This reduces our effective training corpus
size to 664.7k definitions corresponding to 42.5k
unique types, and our development set to 75.6k
definitions corresponding to 4.7k unique types. We
use our development set to ensure overfitting does
not occur and to monitor training performance.

To fine-tune our sentence-RoBERTa models,
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we continue training from the nli-roberta-base-v2
model available in the sentence transformer 2.1.0
library.1 This model represents a checkpoint that
has been pretrained on a large natural language
inference dataset, constructed by combining the
Stanford NLI corpus (Bowman et al., 2015) and
the multi-genre NLI corpus (Williams et al., 2018).
We consider fine-tuning three models using the
softmax, cosine, and triplet loss training objectives
outlined in Reimers and Gurevych (2019). Each
of these training objectives requires the model to
be trained in a Siamese configuration in which two
or more examples are passed through the network
independently before being compared to compute
training loss at a given time-step.

The softmax training objective is based on clas-
sification. In our work, the classification task we
fine-tune our model on is determining if two defi-
nitions correspond to the same word. To construct
training pairs for this fine-tuning regimen, we pair
each definition in our training set with another defi-
nition to form either a positive or negative training
example. We assign half of our definitions another
definition corresponding to the same word, forming
a positive pair, and we assign the other half defi-
nitions that do not correspond to the same word,
forming negative pairs. This gives us 664.7k train-
ing examples, equal to the number of definitions in
our training corpus.

The cosine training objective is based on regres-
sion. More specifically, in this fine-tuning regimen,
we attempt to match the cosine similarity between
two output vectors to some ground truth label. To
obtain examples, we form training pairs similarly
to how we did for the softmax fine-tuning regi-
men. However, instead of assigning a binary label
to pairs, we assign a ground truth cosine similar-
ity. For positive pairs, this is simply equal to 1.0.
However, for negative pairs, to obtain ground-truth
cosine similarities, we use the cosine similarities
computed from vectors in a word2vec model. For
this purpose, we use a word embedding model that
has been trained on a Google News corpus consist-
ing of roughly 100 billion words.2 We obtain these
embeddings using gensim 3.8.3 (Řehůřek and So-
jka, 2010). For each negative sample, the ground-
truth cosine similarity used for training is set to
the cosine similarity calculated using the embed-
dings for the words each definition corresponds to.

1https://www.sbert.net/
2https://code.google.com/archive/p/word2vec/

In this training configuration, loss is calculated as
the mean squared error between the cosine similar-
ity of the two input vectors and the ground truth
reference.

Finally, triplet loss considers three inputs, in our
case definitions, at a given timestep. More specif-
ically, this training scheme requires an anchor, as
well as two additional inputs that act as positive
and negative instances. When fine-tuning with this
training objective, we attempt to learn weights such
that the representations produced for each anchor
are closer to their corresponding positive than neg-
ative instance. As this is the case, to form training
examples, we treat each definition in our training
set as an anchor and assign each an accompany-
ing positive instance — a definition corresponding
to the same word — and a negative instance — a
definition corresponding to a different word. Like
before, this gives us a total of 664.7k training ex-
amples to fine-tune our model with.

For each training technique considered, we fine-
tune our models using the default training parame-
ters of the sentence-transformers library. We fine-
tune our models for a single epoch, as, training for
three epochs appeared to degrade performance on
our word classification tasks in early testing. After
fine-tuning, we are left with three models, each
fine-tuned using a different training regimen.

To construct word embeddings using these mod-
els, we first preprocess our input definitions using
the same preprocessing steps as Bear and Cook
(2022). Namely, we consider removing bracketed
content from our input definitions, as, in the dic-
tionaries we use in our work, this typically con-
sists of topical information that does not contribute
to the core meaning of definitions. We then pass
our preprocessed input definitions to our sentence-
RoBERTa models to obtain a vector representation
based on the mean output vectors of our sentence-
RoBERTa models.

3 Word Classification

Following Bear and Cook (2022), we evaluate our
word embeddings on word classification tasks to
determine if they are capable of capturing informa-
tion about the syntactic properties of words. We
consider three word classification tasks focused on
predicting, 1.) part-of-speech, 2.) noun animacy
and 3.) verb type. For each task, we train logistic
regression classifiers to predict the syntactic labels
of words from their embeddings.
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3.1 Experimental Setup

To construct datasets for these evaluations, we
use gold-standard labels from the Passamaquoddy-
Maliseet Dictionary and Mi’gmaq/Mi’kmaq Online
Dictionary. For our part-of-speech classification
tasks, we consider a total of 18k entries from the
Passamaquoddy-Maliseet Dictionary, consisting of
53 pronouns, 231 preverbs, 570 particles, 13.7k
verbs and 3.3k nouns, for Wolastoqey and 6.4k
entries from the Mi’gmaq/Mi’kmaq Online Dictio-
nary, consisting of 16 pronouns, 119 particles, 4.6k
verbs and 1.6k nouns, for Mi’kmaq. For our noun
animacy classification tasks, we remove any entries
corresponding to words that can occur as both ani-
mate and inanimate. In total, we use 1.7k animate,
and 1.3k inanimate nouns for Wolastoqey and 756
animate, and 806 inanimate, nouns for Mi’kmaq.

In both Wolastoqey and Mi’kmaq, verbs are cat-
egorized into four distinct groups based on their
combination of animacy and transitivity. More
specifically, Wolastoqey and Mi’kmaq verbs can be,
animate intransitive, inanimate intransitive, transi-
tive animate, or transitive inanimate. We remove
any entries that correspond to more than one of
these categories. This gives a total of 5.3k ani-
mate intransitive, 2.1k inanimate intransitive, 3k
transitive animate, and 2.7k transitive inanimate
Wolastoqey verbs, and 2k animate intransitive, 753
inanimate intransitive, 1k transitive animate and
847 transitive inanimate Mi’kmaq verbs, for our
verb type classification tasks.

To conduct this evaluation, we first construct
embeddings for each Wolastoqey and Mi’kmaq
word using our proposed methodology. We then
train logistic regression classifiers for each task
and method. For this evaluation, we implement
our logistic regression classifiers using scikit-learn
0.24.2. We use the default training parameters of
this library, except max-iterations, which we set to
6000, so that all models finish converging. We train
and evaluate in a 10-fold cross validation setup. We
use macro-averaged accuracy, precision, recall, and
F1-score as our evaluation metrics and compare our
models to a most-frequent class baseline as well as
the pretrained sentence-RoBERTa based approach
proposed by Bear and Cook (2022) as it has been
shown to achieve strong performance in this task.

3.2 Results

Results are shown in Table 1 for Wolastoqey and
Table 2 for Mi’kmaq. We observe that, for all

Part of Speech
Method Accuracy P R F1
Most Freq. 0.767 0.153 0.200 0.174
sRoBERTa 0.974 0.828 0.801 0.809
Cosine 0.976 0.858 0.829 0.839
Softmax 0.976 0.855 0.829 0.838
Triplet 0.979 0.862 0.823 0.837

Noun Animacy
Most Freq. 0.552 0.276 0.500 0.355
sRoBERTa 0.801 0.800 0.798 0.798
Cosine 0.804 0.804 0.804 0.803
Softmax 0.789 0.791 0.787 0.787
Triplet 0.806 0.805 0.805 0.804

Verb Type
Most Freq. 0.406 0.101 0.250 0.144
sRoBERTa 0.951 0.953 0.953 0.953
Cosine 0.921 0.926 0.925 0.925
Softmax 0.932 0.936 0.934 0.935
Triplet 0.947 0.950 0.950 0.950

Table 1: Results for each Wolastoqey word classification
task using each embedding method, and a most-frequent
class baseline. The best result for each task and metric
is shown in boldface.

Part of Speech
Method Accuracy P R F1
Most Freq. 0.730 0.182 0.250 0.211
sRoBERTa 0.973 0.823 0.795 0.800
Cosine 0.973 0.847 0.839 0.834
Softmax 0.976 0.844 0.819 0.823
Triplet 0.977 0.861 0.841 0.841

Noun Animacy
Most Freq. 0.516 0.258 0.500 0.340
sRoBERTa 0.764 0.766 0.764 0.763
Cosine 0.783 0.786 0.782 0.782
Softmax 0.777 0.777 0.776 0.776
Triplet 0.784 0.785 0.784 0.783

Verb Type
Most Freq. 0.439 0.110 0.250 0.152
sRoBERTa 0.865 0.861 0.860 0.860
Cosine 0.845 0.843 0.840 0.840
Softmax 0.850 0.849 0.845 0.846
Triplet 0.872 0.868 0.868 0.867

Table 2: Results for each Mi’kmaq word classification
task using each embedding method, and a most-frequent
class baseline. The best result for each evaluation metric
and task is shown in boldface.
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tasks and evaluation metrics, all of our models out-
perform a most-frequent class baseline. This indi-
cates that these approaches to representing Wolasto-
qey and Mi’kmaq words capture information about
these syntactic properties.

We observe fine-tuning sentence-RoBERTa on
English dictionary definitions leads to improved
performance on classification tasks involving
Wolastoqey nouns, however, it decreases perfor-
mance on our Wolastoqey verb classification task.
Of our fine-tuned sentence-RoBERTa models, the
model trained with the triplet training objective
performs the best on each Wolastoqey task except
part-of-speech classification.

For Mi’kmaq, we again see that fine-tuning
sentence-RoBERTa with our cosine and softmax
training objectives results in a decrease in perfor-
mance on verb classification but increases perfor-
mance on part-of-speech and noun animacy classifi-
cation. However, here we observe that our sentence-
RoBERTa model fine-tuned with triplet loss outper-
forms all other models considered in all classifica-
tion tasks in terms of accuracy and F1 score. From
these results, and the results from our Wolastoqey
evaluation, of our fine-tuned models, the model
trained with our triplet loss is best able to repre-
sent Wolastoqey and Mi’kmaq words from their
definitions.

4 Clustering

Here we explore using our embedding models to se-
mantically cluster Wolastoqey and Mi’kmaq words.
For this experiment, we largely follow the evalu-
ation procedures of Bear and Cook (2022). For
Wolastoqey, we reproduce the experiments of Bear
and Cook for the purpose of comparison.

4.1 Experimental Setup

To perform our clustering evaluations, we require
ground-truth labels to compare our results to. In
the case of Wolastoqey, we consider using the
same dataset as Bear and Cook (2022) for this pur-
pose. More specifically, we consider obtaining
categorical labels from Wolastoqewatu,3 a web-
site designed to help teach Wolastoqey, and Wolas-
toqey Latuwewakon,4 a mobile application de-
signed to teach Wolastoqey vocabulary. For Wolas-
toqewatu, we use the glossary categories as la-
bels, while for Wolastoqey Latuwewakon, we use

3https://wolastoqewatu.ca
4https://wolastoqey-latuwewakon.web.app/

the top-level categories from the categories tab.
We filter out words that appear in multiple cate-
gories and cross-reference the remaining words
with the Passamaquoddy-Maliseet Dictionary to
obtain word–category pairs. In total, using this ap-
proach, we are left with 1154 entries from Wolas-
toqewatu that correspond to 20 unique categories
and 78 entries from Wolastoqey Latuwewakon that
correspond to 6 unique categories.

To obtain gold-standard labels for our Mi’kmaq
clustering evaluation, we use categories from the
Mi’gmaq/Mi’kmaq Online Dictionary, which con-
tains a glossary consisting of words grouped into
topically-organized categories. We use these cate-
gories as ground truth references for our clustering
evaluation. Using these labels, we create an evalua-
tion set consisting of 6465 items corresponding to
237 classes. However, unlike our aforementioned
Wolastoqey datasets, words in this evaluation set
frequently correspond to more than one class. As
this is the case, we do not remove these words from
the evaluation set.

To cluster the words in each dataset, we use K-
means, setting the number of clusters to the number
of classes in each dataset (i.e., 20 for Wolastoqe-
watu, 6 for Wolastoqey Latuwewakon, and 237 for
the Mi’kmaq dictionary dataset). For this, we use
the default parameters of the scikit-learn 0.24.2
implementation of K-means. We evaluate the clus-
tering using BCubed precision, recall, and F1-score.
We compare our proposed methods to the pre-
trained sentence-RoBERTa approach of Bear and
Cook (2022) to determine if our fine-tuning procee-
dures improve over pretrained sentence-RoBERTa
models for this task.

4.2 Results

Results are shown in Table 3. We observe that ad-
ditionally fine-tuning sentence-RoBERTa on mono-
lingual dictionary definitions results in mixed im-
provements. On the Wolastoqewatu dataset, the
only model that substantially outperforms our pre-
trained sentence-RoBERTa model across metrics
is the softmax model. However, this does not
hold true for the Wolastoqey Latuwewakon dataset,
where all models fine-tuned using monolingual
dictionary definitions outperform the pretrained
sentence-RoBERTa model in terms of BCubed F1
score.

We observe different trends on our Mi’kmaq
evaluation. Here, we observe that our pretrained
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Wolastoqewatu
Method BCubed P BCubed R BCubed F1
s-RoBERTa 0.371 0.324 0.346
Cosine 0.348 0.296 0.320
Softmax 0.392 0.334 0.360
Triplet 0.391 0.316 0.349

Wolastoqey Latuwewakon
Method BCubed P BCubed R BCubed F1
s-RoBERTa 0.668 0.496 0.569
Cosine 0.706 0.546 0.615
Softmax 0.732 0.553 0.630
Triplet 0.722 0.515 0.601

Mi’gmaq/Mi’kmaq Online Dictionary
Method BCubed P BCubed R BCubed F1
s-RoBERTa 0.347 0.122 0.181
Cosine 0.259 0.080 0.122
Softmax 0.329 0.108 0.162
Triplet 0.343 0.113 0.170

Table 3: Clustering evaluation results for each embed-
ding method on each dataset. The best result for each
evaluation metric and dataset is shown in boldface.

sentence-RoBERTa model substantially outper-
forms all other models in each evaluation metric,
and that fine-tuning sentence-RoBERTa results in
worse performance on all metrics.

Unlike the Wolastoqewatu and Wolastoqey
Latuwewakon datasets, which consist mostly of
nouns, the Mi’kmaq dataset is primarily composed
of verbs. This could be why we see different trends
in the results on this dataset. The finding that pre-
trained sentence-RoBERTa outperforms our fine-
tuned models on our Mi’kmaq evaluation is con-
sistent with the findings from 3.2 that our fine-
tuned cosine and softmax models generally per-
formed better than pretrained sentence-RoBERTa
on Mi’kmaq classification tasks involving nouns,
but, worse than pretrained sentence-RoBERTa on
our verb classification task (Table 2). The find-
ings for our triplet model, which performed slightly
better on Mi’kmaq verb classification experiments
than our pretrained sentence-RoBERTa model, are,
however, not consistent with this.

5 Reverse Dictionary

Here we use our Wolastoqey and Mi’kmaq word
representations to create reverse dictionary search
systems. Such systems could potentially help
Wolastoqey and Mi’kmaq learners to more-easily
access language resources.

5.1 Datasets
We build datasets for our reverse dictionary
search evaluations based on the principle that
the English definition for a Wolastoqey word

in the Passamaquoddy-Maliseet Dictionary, or a
Mi’kmaq word in the Mi’gmaq/Mi’kmaq Online
Dictionary, is expected to be similar to an alterna-
tive English definition for that word from another
dictionary. In this evaluation, we use alternative
English definitions for Wolastoqey and Mi’kmaq
words as simulated queries, which we compare
against search spaces composed of reference defini-
tions from the Passamaquoddy-Maliseet Dictionary
and Mi’gmaq/Mi’kmaq Online Dictionary.

As there are relatively few data sources con-
taining English definitions for Wolastoqey and
Mi’kmaq words, we use a similar approach to
Bear and Cook (2022) to obtain alternative def-
initions for the Wolastoqey and Mi’kmaq words
in our search spaces. We leverage the fact that
many definitions in the Passamaquoddy-Maliseet
Dictionary and Mi’gmaq/Mi’kmaq Online Dictio-
nary are composed of a single-word. More specifi-
cally, we use an English dictionary, namely Word-
Net (Miller, 1995), to find alternative definitions for
each Wolastoqey and Mi’kmaq word corresponding
to a single-word definition in the Passamaquoddy-
Maliseet Dictionary and Mi’gmaq/Mi’kmaq On-
line Dictionary. For each single-word definition
in the Passamaquoddy-Maliseet Dictionary and
Mi’gmaq/Mi’kmaq Online Dictionary that also oc-
curs as a lemma in WordNet, we use the definition
for the first WordNet synset associated with that
lemma as a simulated query for this evaluation. Us-
ing the Wolastoqey word amalhihpuwakon, defined
as ‘dessert’ in the Passamaquoddy-Maliseet Dictio-
nary, as an example, we would use the WordNet
definition ‘a dish served as the last course of a meal’
as an alternative definition for this word.

To expand the number of simulated queries avail-
able for our evaluations, we also use this approach
to obtain alternative definitions for words that cor-
respond to definitions that become single-words
after certain words are removed. As dependent
nouns and verbs are given in a third person form
in the Passamaquoddy-Maliseet Dictionary and
the Mi’gmaq/Mi’kmaq Online Dictionary, to ob-
tain alternative definitions for these words, when
identifying single word definitions, we remove the
words s/he and h/ (abbreviations for she/he and
her/his, respectively) as well as it from definitions
in the Passamaquoddy-Maliseet Dictionary and all
instances of he/she, him/her, it, and him/her/it from
definitions in the Mi’gmaq/Mi’kmaq Online Dic-
tionary.
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As both dictionaries contain definitions for a
number of names, we remove all dictionary head-
words corresponding to English names from both
the pool of single-word definitions, as well as our
search spaces, using a list of English names ob-
tained from NLTK (Bird et al., 2009). In total, our
approach gives 1091 Wolastoqey words and 1424
words from the Mi’gmaq/Mi’kmaq Online Dictio-
nary, with alternative English definitions available
in WordNet. We compare these alternative defini-
tions to search spaces consisting of 17.9k Wolasto-
qey words and 6.4k Mi’kmaq words obtained from
the Passamaquoddy-Maliseet Dictionary and the
Mi’gmaq/Mi’kmaq Online Dictionary respectively.

5.2 Experimental Setup
To perform our reverse dictionary search evalua-
tions, we construct vector representations for both
the definitions in our search spaces and our sim-
ulated queries using our proposed embedding ap-
proaches. Using these vector representations, we
calculate the cosine distances between each simu-
lated query and each definition in its corresponding
search space. We then use the resulting rank of the
word corresponding to the simulated queries to cal-
culate our evaluation metrics. Specifically, we con-
sider median rank, mean reciprocal rank (MRR),
and accuracy@k, for k = 1, 5, 10, 20, 50, 100.

5.3 Results
Results are shown in Table 4. Of our fine-tuned
models, we observe that the model trained with the
triplet loss training objective performs best, sub-
stantially improving over both the cosine and soft-
max models in terms of median rank and MRR
for both languages. This model also outperforms
pretrained sentence-RoBERTa for each evaluation
metric and language, except for median rank on
Mi’kmaq.

Despite all models outperforming the random
baseline, the findings for our best model, the
sentence-RoBERTa model fine-tuned using triplet
loss, do not suggest that this could yet be used as
a practical reverse dictionary search system. For
example, the accuracy@100 of 0.544 for Wolasto-
qey indicates that only roughly half the time is this
approach able to rank the correct word among the
top-100. The disparity in length and complexity be-
tween our query definitions from WordNet and the
single-word definitions from the Passamaquoddy-
Maliseet Dictionary, and the Mi’gmaq/Mi’kmaq
Online Dictionary, used in this evaluation could

contribute towards making this experimental setup
a particularly challenging task.

6 Word Similarity

Although our primary interest is methods for learn-
ing Wolastoqey and Mi’kmaq word representations,
here we consider whether the proposed approach
to encoding dictionary definitions can also be ap-
plied to represent words in higher-resource lan-
guages. Word similarity datasets are available for
many languages and are commonly used to eval-
uate how well word embedding models are able
to capture the similarity or relatedness between
words. Here we consider constructing word embed-
dings for English, German and Spanish using our
proposed methodologies and evaluating on word
similarity datasets. As these datasets are frequently
used in other works, where available, we compare
against previously reported results for word2vec
baselines.

6.1 Experimental Setup

In our experiments, we choose to use one Span-
ish, one German and two English word similarity
datasets. For English, we consider SimLex-999
(Hill et al., 2015) as well as the MEN dataset (Bruni
et al., 2014). We use these datasets, as SimLex-
999 reflects word similarity, whereas the MEN
dataset reflects relatedness. For the MEN dataset,
we consider using the full 3000 word pair version
of this dataset in our evaluation. For Spanish, we
consider using a translation of WordSim-353 (ES-
WS353, Finkelstein et al., 2002; Hassan and Mihal-
cea, 2009) and we use GUR350 (Gurevych, 2005)
for German.

We construct embeddings for the words in
these datasets using the same approach used
to obtain word embeddings for Wolastoqey and
Mi’kmaq in our prior evaluations. However, here
we do not remove bracketed text from defini-
tions, a pre-processing step motivated specifically
based on common patterns in definitions of the
Passamaquoddy-Maliseet Dictionary. To construct
our English word embeddings, we consider us-
ing dictionary definitions from WordNet. As
our method requires English definitions for non-
English words, for words in the Spanish and Ger-
man evaluation sets, we construct embeddings
using web-scraped definitions from the Collins
Spanish–English and German–English online dic-
tionaries (HarperCollins, 2011).
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Wolastoqey Search Space
Method Median MRR Acc@1 Acc@5 Acc@10 Acc@20 Acc@50 Acc@100
Random 9164 0.000 0.000 0.000 0.000 0.000 0.002 0.005

Bear and Cook (2022) 107 0.081 0.027 0.128 0.183 0.260 0.397 0.495
Cosine 311 0.056 0.025 0.072 0.118 0.170 0.269 0.350

Softmax 87 0.098 0.044 0.140 0.213 0.302 0.412 0.518
Triplet 70 0.109 0.050 0.155 0.239 0.332 0.448 0.544

Mi’kmaq Search Space
Method Median MRR Acc@1 Acc@5 Acc@10 Acc@20 Acc@50 Acc@100
Random 3300 0.001 0.000 0.000 0.000 0.002 0.006 0.015

Bear and Cook (2022) 27 0.174 0.086 0.263 0.364 0.464 0.568 0.634
Cosine 108 0.111 0.060 0.148 0.215 0.301 0.409 0.493

Softmax 37 0.181 0.099 0.261 0.343 0.435 0.545 0.633
Triplet 28 0.198 0.107 0.296 0.386 0.466 0.581 0.667

Table 4: Median rank, MRR, and accuracy@k for each threshold considered, for reverse dictionary experiments
using each approach to representing Wolastoqey and Mi’kmaq words and a random baseline.

As it is expected that a number of words will not
have definitions in the dictionaries we use, we set
the embedding of any word without a definition to
a vector of zeroes.

To evaluate how well our embeddings perform,
we calculate cosine similarities for word pairs in
each dataset using our embedding models. We
then calculate the Spearman correlation between
the predicted cosine similarities and the human
annotated similarity scores for each dataset.

To establish a baseline, for SimLex-999, ES-
WS353, and GUR350, we compare our models
to previously reported results. More specifically,
for SimLex-999, we compare our models to the
word2vec results published by (Hill et al., 2015).
For ES-WS353 and GUR350, we compare our
models to the skipgram results reported in Bo-
janowski et al. (2017). For the MEN dataset, we
calculate a baseline for comparison directly using
a word2vec model. Here we use the same Google-
News word2vec embeddings as in Section 2. As
many words in the MEN dataset use British English
spelling, and this word2vec model uses primarily
American English spelling, we convert any British
English word-forms not found in this embedding
model to their American English equivalent.

6.2 Results

Results are shown in Table 5. We observe that on
all datasets, except SimLex-999, our proposed em-
bedding approaches do not outperform the chosen
word2vec baselines. Despite this, all our models,
achieve statistically significant correlation on all
word similarity datasets considered. We observe
that pretrained sentence-RoBERTa outperforms a
word2vec baseline on SimLex-999, but fails to do
so on the MEN dataset. This could indicate that

Method Simlex-999 MEN ES-WS353 GUR350
Baseline 0.414 0.78 0.57 0.61

sRoBERTa 0.423 0.568 0.297 0.538
Cosine 0.374 0.524 0.313 0.494

Softmax 0.416 0.560 0.334 0.579
Triplet 0.420 0.560 0.303 0.506

Table 5: Spearman correlations between cosine simi-
larities and human-annotated similarity scores for each
method on each dataset. The best correlation for each
dataset is shown in boldface.

these embeddings better capture word similarity
than relatedness.

Further fine-tuning sentence-RoBERTa does not
improve performance on either English dataset. De-
spite this, all fine-tuned models outperform pre-
trained sentence-RoBERTa on ES-WS353 and our
softmax model outperforms pretrained sentence-
RoBERTa model on GUR350. Definition length
may be a factor here, as the pre-trained sentence-
RoBERTa model performs best on our English
datasets, in which words have an average definition
length of 11 tokens, whereas words in our Spanish
and German datasets have an average definition
length of 1 and 2 tokens, respectively. This would
be consistent with the findings from Table 2, in
which our fine-tuned models performed better in
terms of F1-score on Mi’kmaq classification tasks
involving nouns, which have comparatively short
definitions, and worse on tasks involving verbs
which tend to have longer definitions. However,
definition length alone isn’t enough to explain the
disparity in model rankings, as, in contrast to the
results observed for Mi’kmaq, the softmax model
failed to outperform pretrained sentence-RoBERTa
in Wolastoqey noun animacy classification. As this
is the case, the best model configuration seems
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to be dependant on the language and task being
considered.

7 Conclusions

In this paper, we considered approaches to forming
word embeddings for Wolastoqey and Mi’kmaq
based on their English definitions in bilingual dic-
tionaries. Specifically we considered approaches
to fine-tuning sentence-RoBERTa for this. Our
findings indicate that our proposed approaches can
be used to construct embeddings for Wolastoqey
and Mi’kmaq words that capture syntactic and se-
mantic information, and that fine-tuning often gives
improvements over pre-trained sentence-RoBERTa,
although this improvement is not consistent across
languages, tasks, and approaches to fine-tuning.
Our results from reverse dictionary evaluations in-
dicate that these embeddings cannot yet be used to
build a practical reverse dictionary search system.
We further showed that these approaches can be ap-
plied to form embeddings for higher-resource lan-
guages. Although here these embeddings achieved
significant correlations on word similarity and re-
latedness evaluations, they did not improve over
conventional word2vec embeddings.

In future work, we intend to explore ways to im-
prove the embeddings. Although we observed that
fine-tuning sentence-RoBERTa did not give con-
sistent improvements across tasks, we hypothesize
that an alternative approach could give improve-
ments. Definitions for verbs in the Passamaquoddy-
Maliseet Dictionary in particular tend to be longer,
while definitions for nouns are typically quite short
and often composed of only a single word. This dis-
parity in definition complexity could hinder the ef-
fectiveness of our proposed word embedding tech-
niques. We therefore intend to explore the use of
ULR-BERT (Li and Zhao, 2021), which is capa-
ble of representing words, phrases and sentences
proficiently, for forming improved embeddings for
Wolastoqey and Mi’kmaq words from their English
definitions in bilingual dictionaries.

In addition to using ULR-BERT, we also in-
tend to fine-tune sentence-transformer models that
make use of different network architectures and
pretraining regimens. In our work, we use a single
RoBERTa checkpoint, pretrained on natural lan-
guage inference, as a uniform starting point for fine-
tuning. However, since the release of the original
work on sentence transformers, other models have
been made available through the sentence-BERT

library, for example models based on MPNet (Song
et al., 2020), which have been shown to outperform
sentence-RoBERTa on sentence embedding bench-
marks. As this is the case, the use of these models
in-place of sentence-RoBERTa could potentially
improve the quality of word embeddings produced
using our methodology.

In our work, we demonstrated that we can con-
struct meaningful word embeddings for Wolasto-
qey and Mi’kmaq dictionary headwords. In future
work we will consider evaluating the impact of
these embeddings on down-stream applications.

Limitations

Although improving the performance of our embed-
ding methods is desirable, the most apparent limita-
tion of our work is not the overall quality of repre-
sentations produced, but rather the range of words
our methodologies can be applied to. Currently,
our methodology can only be used to construct
word embeddings for dictionary headwords. This
represents a considerable limitation, as Wolasto-
qey and Mi’kmaq are both polysyntheic languages,
in which speakers often build new words by cre-
atively combining roots. As this is the case, no
dictionary is expected to contain definitions for all
word-forms of these languages. Because of this,
future work is required to extend our approach to
construct embeddings for words that do not appear
in a bilingual dictionary.
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