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Abstract

We present CamelParser2.0, an open-source
Python-based Arabic dependency parser tar-
geting two popular Arabic dependency for-
malisms, the Columbia Arabic Treebank
(CATiB), and Universal Dependencies (UD).
The CamelParser2.0 pipeline handles the pro-
cessing of raw text and produces tokenization,
part-of-speech and rich morphological features.
As part of developing CamelParser2.0, we ex-
plore many system design hyper-parameters,
such as parsing model architecture and pre-
trained language model selection, achieving
new state-of-the-art performance across diverse
Arabic genres under gold and predicted tok-
enization settings.

1 Introduction

Dependency parsing is a natural language process-
ing (NLP) task used to analyze the grammatical
structure of a sentence by identifying and repre-
senting the relationships between its words. De-
pendency parsing assigns a directed tree structure
to the sentence, with words as nodes and syntac-
tic dependencies as edges (see Figure 1). Depen-
dency parsing, and syntactic parsing in general,
has long been considered an important NLP en-
abling technology and analysis tool (Jurafsky and
Martin, 2009). The interest in using syntactic struc-
tures in NLP in the neural age remains, e.g., as
analytical tools for studying large language mod-
els (Kulmizev, 2023), for guided data augmenta-
tion for Neural Machine Translation (Duan et al.,
2023), Semantic Role Labeling (Tian et al., 2022),
and Grammatical Error Correction (Li et al., 2022;
Zhang et al., 2022).

There have been previous developments in Ara-
bic dependency parsing (Habash and Roth, 2009;
Marton et al., 2013; Zhang et al., 2015; Shahrour
et al., 2016; Al-Ghamdi et al., 2023). However,
they are not based on state-of-the-art (SOTA) de-
velopments in neural dependency parsing and pre-
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Figure 1: An example CATiB dependency tree (Habash
et al., 2009) for the short question ? Aî
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whl syšrHwnhA?2‘and will they explain it?’.

trained language models, nor can they be easily in-
tegrated into larger project pipelines. Furthermore,
they are not trained on larger and more diverse tree-
banks that have been developed recently. Many
have only been tested with gold tokenization, not
as part of a full pipeline from sentence to tree – a
notable exception is the work of Zhang et al. (2015)
who modeled segmentation and parsing jointly.

In this work, we investigate the effect of many
system design hyper-parameters including parsing
model architecture, pretrained language model se-
lection, and training data configurations to achieve
unprecedented dependency parsing performance
on multiple Arabic genres. Hence, we present
CamelParser2.0, an open-source dependency pars-
ing pipeline that achieves SOTA performance on
Columbia Arabic Treebank (CATiB) and Universal
Dependencies (UD) parsing of Arabic across mul-
tiple genres from Modern Standard Arabic (MSA)
and Classical Arabic (CA).

Our contributions are: (1) achieving new state-
of-the-art on both CATiB and UD formalisms
in multiple Arabic genres on all metrics; (2) de-
veloping and releasing an open-source Python-
based pipeline for Arabic parsing;1 and (3) bench-
marking a large number of hyper-parameters to
ensure the best system design choices.

1https://github.com/CAMeL-Lab/camel_parser
2HSB Arabic transliteration (Habash et al., 2007)

https://github.com/CAMeL-Lab/camel_parser


2 Related Work

2.1 Dependency Parsing
There are two main approaches to dependency
parsing: transition-based (Yamada and Matsumoto,
2003; Nivre et al., 2006) and graph-based (McDon-
ald et al., 2005). Both approaches have recently
been implemented with neural models to improve
performance. For example, Dozat and Manning
(2016) develop a graph-based parser that uses a
biaffine attention mechanism on a neural model to
achieve SOTA/near SOTA results on six different
languages including Czech, a morphologically rich
language with flexible word order. On the other
hand, Mohammadshahi and Henderson (2019) de-
velop a transformer mechanism that conditions on
graphs to be used with a neural transition-based
parser to achieve SOTA results on 13 languages.
The evaluations that guide the development of these
architectures are mainly carried out on higher re-
source languages, such as English and other Euro-
pean languages.

In this work, we investigate how neural depen-
dency parsing performs on Arabic given its rela-
tively fewer resources, especially in certain classi-
cal genres, such as pre-Islamic texts.

2.2 Arabic Treebanks
The primary treebank for Arabic syntactic analysis
is the Penn Arabic Treebank (PATB) (Maamouri
et al., 2004), which uses a phrase structure gram-
mar. It has been converted to a dependency rep-
resentation that uses two different formalisms:
CATiB (henceforth, PATB-CATiB) (Habash and
Roth, 2009), and UD (NUDAR Treebank) (Taji
et al., 2017). The two formalisms are compared in
some detail by Taji et al. (2017).

The first dependency treebank developed for Ara-
bic is the Prague Arabic Dependency Treebank
(PADT) (Smrž et al., 2002). PADT is in part based
on PATB; and it was later extended to UD (hence-
forth, PADT-UD).3 Since then, several treebanks
have been developed such as the Columbia Arabic
Treebank (CATiB) (Habash and Roth, 2009), Quran
Corpus (Dukes and Buckwalter, 2010), i3rab tree-
bank (Halabi et al., 2021), and Arabic Poetry Tree-
bank (ArPoT) (Al-Ghamdi et al., 2021). Most re-
cently, Habash et al. (2022) released the Camel
Treebank (CamelTB), which is a multi-genre Ara-
bic dependency treebank in the CATiB formalism

3https://github.com/UniversalDependencies/UD_
Arabic-PADT/

spanning CA texts from the 6th Century to MSA
texts from the 21st century. PADT (Smrž et al.,
2002), CATiB (Habash et al., 2009), and UD (Nivre
et al., 2017) are dependency tree representations
with different POS tags, dependency relation labels,
and attachment rules.

In this work, we make use of recent develop-
ments in Arabic treebanking to explore the per-
formance of different parsing model architectures,
with different training dataset configurations, and
with different dependency formalisms (CATiB and
UD) on multiple Arabic genres, and under gold and
predicted tokenization conditions.

2.3 Arabic Parsing

Regarding evaluating parser design in Arabic de-
pendency parsing, the work done by Marton et al.
(2013) examines the impact of morphological fea-
tures on dependency parsing performance under
both gold and predicted conditions. They observe
differences in feature importance when using pre-
dicted features due to changes in prediction accu-
racy for each examined feature. They find that
definiteness, person, number, gender, and undia-
critized lemma are most helpful under predicted
conditions. Their results are observed using Malt-
Parser, a transition-based model, with a feature-
based SVM classifier (Nivre et al., 2006), which
differs from the recent neural SOTA models that
learn features from the training data implicitly.

Kankanampati et al. (2020) leverage the Easy-
First LSTM-based architecture proposed by Kiper-
wasser and Goldberg (2016), but experiment with
sharing tree representations and BiLSTM layers
between CATiB and UD formalisms to achieve sig-
nificant error reduction on both.

More recently, Al-Ghamdi et al. (2023) em-
ploy an approach that treats dependency parsing
as a sequence labeling task (Strzyz et al., 2019).
They apply various pretrained BERT models un-
der different fine-tuning and architectural setups.
They explore the performance of this approach
on (a) PADT (Smrž et al., 2002), (b) part 2 of
PATB in the CATiB formalism (Maamouri et al.,
2004; Habash and Roth, 2009), and (c) ArPoT (Al-
Ghamdi et al., 2021).

To our knowledge, the current state-of-the-art
in terms of publicly available dependency parsing
systems in Arabic is the CamelParser1.0 for the
CATiB formalism (Shahrour et al., 2016), and UD-
Pipe 2 for the UD formalism (Straka, 2018).

https://github.com/UniversalDependencies/UD_Arabic-PADT/
https://github.com/UniversalDependencies/UD_Arabic-PADT/
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Figure 2: A diagram of the CamelParser2.0 pipeline paired with a simple example of raw text input. The POS tags
and morphological features are added to the output after parsing the tokenized sentences.

Our work is closest in high-level design to
CamelParser1.0, which uses the MADAMIRA
morphological disambiguation system based on
SVM classifiers and morphological analyzers
(Pasha et al., 2014) and an SVM-based parsing
system called MaltParser (Nivre et al., 2006). It re-
ported results on Penn Arabic Treebank (Maamouri
et al., 2004), which is limited to the newswire genre.
Since these results were reported, significant ad-
vancements have been made in both dependency
parsing and morphological analysis through the
use of pretrained language models like BERT and
neural model architectures (Dozat and Manning,
2016; Inoue et al., 2022); and more datasets in
Arabic genres beyond newswire have been cre-
ated (Habash et al., 2022). We use CAMeL Tools
(Obeid et al., 2020) as part of the implementation
of CamelParser2.0.

By utilizing the aforementioned developments
in Arabic treebanking and neural dependency pars-
ing, we experiment on PATB-CATiB, CamelTB,
NUDAR, and PADT to improve the dependency
parsing performance in Arabic in multiple MSA
and CA genres and across the CATiB and UD for-
malisms. Due to a different experimental setup and
data scope explored by Al-Ghamdi et al. (2023),
we cannot directly compare our results on all met-
rics and datasets; however, we observe that our
approach outperforms their reported results on the
test set of PADT. Additionally, by comparing our
findings to the existing SOTA pipelines, Camel-
Parser1.0 and UDPipe 2, as well as the reported
results in Kankanampati et al. (2020), we observe
that CamelParser2.0 sets the new SOTA in Arabic
dependency parsing for both gold and predicted
tokenization settings.

3 The CamelParser2.0 Pipeline

In this section, we present the details of the Camel-
Parser2.0 pipeline (Figure 2). The pipeline ac-
commodates varying levels of pre-processing in
the input. Depending on the extent to which the
input has been pre-processed, the pipeline conducts
morphological disambiguation. Once input tokens
have been identified, they are passed to the depen-
dency parsing system which outputs dependency
arcs and labels. The dependency relations are then
combined with the form and additional part-of-
speech tags and morphological features, which are
either specified in the input or generated in the
morphological disambiguation step, to output a
CoNLL-X/CoNLL-U file format (Buchholz and
Marsi, 2006; De Marneffe et al., 2014).

3.1 Input Formats

Before parsing begins, the input to the pipeline
is directed to the proper step based on its format.
Currently, we support the following input formats.

Raw Text Raw Arabic text is first cleaned by nor-
malizing Unicode characters, removing diacritics
and other characters that are not Arabic, ASCII, or
Latin-1, and performing whitespace tokenization
(Obeid et al., 2020). The text is then passed to the
Morphological Disambiguation step (Figure 2).

Pre-Tokenized and Tagged Text Files contain-
ing token and optional Part-of-Speech (POS) tag
tuples are supported. The input is passed to the
parser directly. Since the parser does not require
POS tags, they will not be produced if only tok-
enized text is provided.



CoNLL-X/CoNLL-U The pipeline also accepts
input in the CoNLL-X/CoNLL-U tab-separated file
format (Buchholz and Marsi, 2006; De Marneffe
et al., 2014).

3.2 Tokenization and POS tagging

When the input is already tokenized, we pass that
information onto the dependency parsing system.
As for raw untokenized text, we make use of a Mor-
phological Disambiguation system which predicts
the tokens and the POS tags of these tokens (see
Figure 2). The user determines whether to use a
more accurate but more resource-intensive BERT
unfactored disambiguator (Inoue et al., 2022) or a
lighter Maximum Likelihood Estimation (MLE)
disambiguator, both of which are included in
CAMeL Tools (Obeid et al., 2020). We then extract
the tokens, lemmas, and primary POS tags (CATiB
or UD), as well as a set of morphological features
provided by CAMeL Tools: MADA POS, position-
marked proclitics and enclitics (prc3, prc2, prc1,
prc0, enc0), person, gender, number, aspect, voice,
mood, state, case, and rationality. We add a feature
token_type to signify if the token is a baseword
or clitic (indicated by its location, e.g., prc2).

3.3 Dependency Parsing

The next component of our parsing pipeline is
the dependency parsing model, which expects to-
kenized Arabic data as input. We use the SuPar
Biaffine Dependency Parser (Zhang, 2021), which
is based on the work of Dozat and Manning (2016)
with a key difference. Instead of using a GLoVe
vector-based encoding layer, we generate word em-
beddings using a BERT model. To achieve this, a
BERT model is used to generate WordPiece-level
embeddings by summing up the last four layers
of the BERT model (Devlin et al., 2018). Then,
to generate the token-level embeddings, the corre-
sponding WordPieces’ embeddings of each token
are pooled using a mean.

The output of this step is the dependency rela-
tions and labels of the input text. The POS and
morphological features are integrated in the final
dependency representation in an output postpro-
cessing step (see Figure 2).

In this paper, for comparison purposes, we also
report on using the MaltParser system introduced
by Nivre et al. (2006) which is employed by the
previous SOTA parsing system for Arabic, Camel-
Parser1.0 (Shahrour et al., 2016).

4 Experimental Setup

Our experimental setup involves training multiple
dependency parsing models with different training
data configurations which are then evaluated on
multi-genre development and test sets under both
gold and predicted tokenization settings to gauge
accuracy and robustness across multiple genres in
Arabic. The details of the various experimental
setups are outlined below.

4.1 Data

The data we use to train and evaluate includes
PATB-CATiB and CamelTB (CATiB representa-
tion), and PADT-UD and NUDAR (UD represen-
tation). Table 1 lists the corpora and their sub-
corpora and indicates their genres, variety (MSA or
CA), and sizes. We note that PADT-UD text data
contains a subset of PATB. CamelTB has a vari-
ety of different sub-corpora across multiple genres,
some of which are similar to PATB (WikiNews and
QALB). The PATB (PATB-CATiB and NUDAR)
was split according to the recommendations by
Diab et al. (2013). We follow the recommendations
of the creators of PADT for its data splits.4 We split
the CamelTB data according to the recommenda-
tions by Habash et al. (2022) in CamelTB v1.1.5

In our experiments, we examine a number of
training data combinations to provide the best ro-
bustness and accuracy across multiple Arabic gen-
res. We do not train on individual CamelTB genres
because of the limited amount of data we have; but
we report results for them. Similar to Kankanam-
pati et al. (2020), we exclude all non-projective
trees in the training, but not in the dev and test.

4.2 Metrics

Dependency Parsing Accuracy Evaluation of
dependency parsing models is done primarily
through three metrics:

• Labeled Attachment Score (LAS): The per-
centage of tokens with correct head/parent and
correct label/relation to that parent.

• Unlabeled Attachment Score (UAS): The
percentage of tokens with correct head/parent.

• Label Score (LS): The percentage of tokens
with correct label/relation.

LAS is the primary metric we report on.
4https://github.com/UniversalDependencies/UD_

Arabic-PADT/
5http://treebank.camel-lab.com/

https://github.com/UniversalDependencies/UD_Arabic-PADT/
https://github.com/UniversalDependencies/UD_Arabic-PADT/
http://treebank.camel-lab.com/


Rep Corpus Text Source Var Cent Genre Sents Words Tokens

PATB-CATiB 19,738 628,598 738,889

CamelTB Total 13,337 187,884 241,910

PATB-CATiB+CamelTB Total 33,075 816,482 980,799

UD
PADT-UD 7,664 17,357 113,500
NUDAR 19,738 628,598 738,889

C
ATiB

C
am

elT
B

Penn Arabic Treebank (Parts 1-2-3) MSA 21st News
Odes Suspended Odes (Mu’allaqat) CA 6th Poetry 784 7,465 10,170
Quran Quranic Surahs CA 7th Quranic 572 11,699 15,791
Hadith Hadiths from Sahih Bukhari CA 7th Prophetic Sayings 1,190 12,467 15,745
1001 One Thousand and One Arabian Nights CA 12th Stories 1,145 11,831 17,109
Hayy Hayy ibn Yaqdhan (Ibn Tufail) CA 12th Philosophical Novel 1,198 19,674 26,583
OT Old Testament MSA 19th Bible Translation 535 9,097 11,788
NT New Testament MSA 19th Bible Translation 573 9,593 12,293
Sara Sara (Al-Akkad) MSA 20th Novel 1,585 35,356 46,375
ALC Arabic Learner Corpus MSA 21st Student Essays (L2) 727 9,221 12,047
BTEC Basic Traveling Expressions Corpus MSA 21st Phrasebook 2,000 15,935 18,602
QALB QALB Corpus MSA 21st Online Commentary 923 11,454 14,139
WikiNews WikiNews MSA 21st News 996 18,314 21,481
ZAEBUC Zayed Bilingual Undergraduate Corpus MSA 21st Student Essays (L1) 1,109 15,778 19,787

Prague Arabic Dependency Treebank MSA 21st News
NYUAD UD Arabic Treebank MSA 21st News

Table 1: The various datasets we experiment with in developing CamelParser2.0. Rep (Representation) specifies
the treebank formalism. Var is the Arabic variant. Cent is the century. Sents is the number of sentences.

Statistical Significance In certain cases, we
test for statistical significance using a one-tailed
Welch’s t-test following the recommendations of
Dror et al. (2018). We treat each sentence as an
independent experiment and calculate a sentence-
level accuracy of parsing which we use to conduct
the statistical significance testing.

4.3 Tokenization

Previous work on dependency parsing tends to
judge performance purely on gold tokenization
(Marton et al., 2013; Shahrour et al., 2016; Dozat
and Manning, 2016; Mohammadshahi and Hen-
derson, 2019), although there are many recent ex-
ceptions (Shao et al., 2018; More et al., 2019;
Habash et al., 2022). We report on both gold and
predicted tokenization to study the performance
under real-world conditions. We use the BERT
unfactored disambiguator (Inoue et al., 2022) in
CAMeL Tools (Obeid et al., 2020). On our dev
datasets (PATB and CamelTB sub-corpora), the av-
erage predicted word-level tokenization accuracy is
96.8%, with a wide range from WikiNews (99.8%)
to Odes (91.3%), with PATB at 99.1%. This range
of performance is consistent with our expectations
since the CAMeL Tools MSA disambiguator is
trained on PATB train data (news genre).

4.4 Parsing Models

We compare our CamelParser2.0 neural depen-
dency parsing architecture, as described in sec-
tion 3.3 with other pre-existing parsing system
baselines. The first baseline, MaltParser (v1.9.2)
(Nivre et al., 2007), forms the core of the previous
SOTA for dependency parsing in Arabic, Camel-
Parser1.0 (Shahrour et al., 2016). We compare to
it directly and as part of CamelParser1.0 (second
baseline). The third baseline is UDPipe 2, whose
models are currently available from the LINDAT
UDPipe REST Service.6 The last baseline is the
system of Kankanampati et al. (2020); we report
their published numbers where appropriate.

It is important to note that the experimentation
Kankanampati et al. (2020) report on is mainly to
leverage parallel data in two formalisms (CATiB
and UD) and not necessarily to achieve an over-
all SOTA parser for Arabic. Nevertheless, they
achieve impressive results so we compare against
their best reported numbers. We do not lever-
age their multitask learning approach for Camel-
Parser2.0; however, it could prove useful for fu-
ture work to explore combining our approaches by
sharing representations in the Biaffine parsing ar-

6https://ufal.mff.cuni.cz/udpipe/2

https://ufal.mff.cuni.cz/udpipe/2


LAS UAS LS
MaltParser 80.7 83.0 93.4
CamelParser1.0 (Shahrour et al., 2016) 83.8 86.4 93.2
Kankanampati et al. (2020) 86.2 88.1 -
CamelParser2.0 91.3 92.4 97.0

Table 2: Scores of various dependency parsing systems trained on the PATB-CATiB and evaluated on the test set of
PATB-CATiB. CamelParser2.0 achieves the SOTA on all metrics and improves on CamelParser1.0 (Shahrour
et al., 2016) by almost 7.5 points on the LAS. Kankanampati et al. (2020) do not report on the LS.

chitecture proposed by Dozat and Manning (2016)
between different formalisms to further improve
parsing performance across formalisms.

4.5 BERT Model Selection

We also experiment with four pretrained BERT
models. The first three are from CamelBERT (In-
oue et al., 2021): CamelBERT-MSA is pretrained
on MSA data, CamelBERT-CA is pretrained on
CA data, and CamelBERT-MIX is pretrained on
MSA, CA, and Dialectal Arabic data. We make
use of them because they give us an understand-
ing of how pretrained data interplays with parsing
performance on differing genres and variants. Addi-
tionally, they were created under the same settings,
hence, they reduce experimental variation. Further-
more, we make use of AraBERT v2.0 (Antoun
et al., 2020) as it improves upon AraBERTv0.2
which has been shown previously to achieve SOTA
performance on a range of Arabic NLP tasks (Inoue
et al., 2021).

5 Results and Analysis

We present the results of the experiments we con-
ducted as part of developing CamelParser2.0.

5.1 Comparing System Baselines

In Table 2, we report CamelParser2.0’s perfor-
mance against previous SOTA baselines under
the same exact training/testing conditions with
gold tokenization. All systems are trained on
PATB-CATiB training data and evaluated on PATB-
CATiB test. It should be noted that MaltParser
and CamelParser1.0 use the same base algorithms
and implementations; however, CamelParser1.0
does further hyper-parameter optimization and fea-
ture selection to improve performance on Arabic as
opposed to MaltParser which just uses the default
configuration. We also include the best results re-
ported by Kankanampati et al. (2020), however, we
cannot compare our results on the LS as they do not

report them. For CamelParser2.0, we use our base-
line BERT model (CamelBERT-MSA). We observe
that across all metrics, CamelParser2.0 achieves
significant improvements over all the reported sys-
tems including a 46.3%, 44.1%, and 55.9% error
reduction on the LAS, UAS, and LS respectively
when compared to the previous SOTA pipeline
CamelParser1.0. Therefore, we only move for-
ward with testing CamelParser2.0 for the rest of
our experiments.

5.2 Comparing Training Data Configurations

We compare different training datasets and their
combination. We use the same CamelParser2.0
model with CamelBERT-MSA, and report on both
gold and predicted tokenization to determine which
training data configuration yields the best results on
LAS. As seen in Table 3, in the first three columns
under the Gold/Predicted Tokenization and Camel-
BERT headers, the overall trend is that using train-
ing data from both PATB-CATiB and CamelTB
to train the parser yields the best results on all
averages in both the gold and predicted tokeniza-
tion cases. This is unsurprising given the larger
training data size and inclusion of multiple genres.
There are some instances where using a smaller
training configuration is better than using the larger
combined configuration (e.g., Hadith, Hayy, NT);
however, they are not statistically significant. On
average there are larger gains on both accuracy and
robustness to be had from using more training data.

5.3 Comparing BERT Embedding Models

We then experiment with different BERT mod-
els as embedding layers (Table 3). Unsurpris-
ingly, the best-performing models on the MSA and
CA multi-genre data were CamelBERT-MSA and
CamelBERT-CA, not CamelBERT-MIX which was
trained with dialectal data.

We observe the following differences depend-
ing on the BERT model used. There was a sta-



Gold Tokenization Predicted Tokenization
CamelBERT

AraBERT
CamelBERT

AraBERT
MSA CA MIX MSA CA

PATB-CATiB X X X X X X X X X
CamelTB X X X X X X X X X

91.9 92.8 90.7 90.8
89.2 90.1 87.5 88.7
86.2 87.1 85.1 85.1 86.1

91.2 91.2 88.9 88.9
91.0 91.3 89.2 89.8
81.2 78.5

80.2* 75.2*
82.5 83.4 79.7 80.5

88.0 88.0 87.3 87.3
85.4 85.5 82.3 83.5

86.6 87.0 85.0
90.4* 90.2*
91.1 92.0 90.7 91.7

92.2 92.3 91.7 91.8
86.8 87.5 84.9 85.6
87.1 87.8 85.3 86.1
87.3 87.8 85.8 86.3

87.8 85.4 85.6

1001 CA 86.2 90.7 91.2 91.2 84.2 88.9 90.1
ALC MSA 87.3 88.9 88.6 88.9 86.0 87.3 86.5
BTEC MSA 82.0 86.0 85.2 85.0 81.2 84.5
Hadith CA 81.2 90.4 90.2 90.7 79.6 87.9 88.2
Hayy CA 86.6 90.4 90.2 89.3 85.6 88.9 88.7
NT MSA 74.5 81.1 79.8 80.6 80.2 71.8 76.4 77.1 76.9
Odes CA 72.7 76.9 77.7 77.1 78.7 68.6 71.7 72.5 74.8
OT MSA 77.1 82.4 82.3 82.4 74.4 79.4 79.5
QALB MSA 82.8 87.6 87.6 87.7 82.3 86.7 86.9
Quran CA 73.8 84.1 84.4 84.3 72.8 83.0 83.2
Sara MSA 80.2 86.3 86.3 85.9 79.0 84.1 82.6 83.9
WikiNews MSA 89.0 90.3 86.9 89.5 90.3 88.9 90.1 87.9 90.1
ZAEBUC MSA 88.2 90.0 89.6 90.9 87.6 89.5 89.3
PATB MSA 85.2 92.1 90.9 91.5 85.0 91.6 90.4
CamelTB Average 81.7 86.5 86.7 86.4 80.2 84.7 84.8

Total Average 82.4 86.5 87.0 86.8 81.0 84.7 85.2
MSA Average 83.7 86.4 86.6 87.0 82.5 85.2 85.0

CA Average 80.1 86.5 86.9 86.5 87.9 78.2 83.9 84.5

Table 3: The LAS of different training configurations on the Dev sets of the CamelTB sub-corpora and PATB-CATiB.
We test under both Gold and Predicted tokenization conditions, and using different BERT embedding models. The
overall best-performing configuration is underlined and in bold, while the best-performing CamelBERT model is in
bold. Results with an asterisk indicate statistical significance (p < 0.05) for results discussed in Section 5.3.

tistically significant +2.5 gain with gold tokeniza-
tion and +2.7 gain with predicted tokenization on
the LAS from using CamelBERT-CA instead of
CamelBERT-MSA on CamelTB-Odes. Further-
more, there was a statistically significant -3.5 drop
with gold tokenization and -2.3 drop with pre-
dicted tokenization from using CamelBERT-CA
over CamelBERT-MSA on CamelTB-WikiNews.
However, on average, there is not much of a per-
formance difference between CamelBERT-CA and
CamelBERT-MSA; in other cases, the differences
were not statistically significant. Nevertheless,
it seems that using CamelBERT-CA yields im-
provements on the parser’s performance on CA
texts, despite being pretrained on fewer data, and
CamelBERT-MSA yields improvements on the per-
formance on MSA texts. These results are consis-
tent with the observations of Inoue et al. (2021)

and support the importance of careful selection of
the BERT embedding model depending on the data
being parsed.

Finally, we also compare with AraBERT, which
outperforms CamelBERT on macro average across
almost all sub-corpora. AraBERT is better or equal
to CamelBERT in 10 out of 14 cases in both Gold
and Predicted conditions; however, none of the im-
provements are statistically significant when com-
pared genre-by-genre.

5.4 CATiB Test Set Results

We report the performance of our best performing
models on CATiB formalism from Table 3 on the
unseen test sets in Table 4. We observe similar pat-
terns in the results as discussed before. Hence, we
make similar recommendations for model selection
given the data.



Gold Tokenization Predicted Tokenization
CamelBERT

AraBERT
CamelBERT

AraBERT
MSA CA MSA CA

PATB-CATiB X X X X X X
CamelTB X X X X X X

92.0 92.2 89.7 89.9
87.5 87.6 86.0 86.5
84.9 85.5 83.6 84.0

93.9 91.8
91.8 92.6 90.5 91.1

84.7 79.1
81.5 77.0

87.4 87.8 82.4 82.6
86.7 86.8 86.1
83.6 83.9 80.8 81.0

84.5 78.9 79.3
90.1 90.1 90.0 90.0
91.8 92.5 90.6 91.3
91.3 91.3 89.6 89.6 91.0

87.4 87.6 84.8 85.1
87.6 87.9 85.2 85.6

87.6 87.8 85.1 85.5

88.6 86.0

1001 CA 91.9 89.6
ALC MSA 86.9 85.7
BTEC MSA 84.3 83.0
Hadith CA 92.4 92.2 90.5 90.9
Hayy CA 91.7 90.3
NT MSA 84.2 84.6 78.7 78.8
Odes CA 77.3 78.8 75.3 75.5
OT MSA 87.3 80.8
QALB MSA 86.5 85.1 85.9
Quran CA 82.7 80.3
Sara MSA 83.9 84.2 78.1
WikiNews MSA 88.9 88.7
ZAEBUC MSA 91.4 90.4
PATB MSA 89.8

CamelTB Average 87.2 84.6

Total Average 87.5 85.0

MSA Average 87.0 84.5

CA Average 87.2 87.9 85.2 85.7

Table 4: The LAS of different training configurations on the Test sets of the CamelTB sub-corpora and PATB-CATiB.
Only the best-performing models from the evaluation on the dev sets are included. The overall best-performing
configuration is underlined and in bold, while the best-performing CamelBERT model is in bold.

5.5 Parsing UD with CamelParser2.0

The focus of the previous experiments has been
on the performance on the CATiB formalism; how-
ever, we also examine the system’s performance
on UD data. We do so by training our dependency
parsing model on PADT-UD and NUDAR, and
evaluate on the respective dev and test sets. Due
to differing annotation styles between these two
UD corpora, cross-evaluation results in poor per-
formance. Hence, we do not report those results
here.

We only include CamelParser2.0 with
AraBERT and CamelBERT-MSA because these
datasets consist of only MSA, and those models
performed the best on MSA data based on our
experimentation with CATiB dependency parsing.

Furthermore, we use the same disambiguation
system to generate the predicted tokens for two
reasons: UDPipe 2’s disambiguation system was
not able to segment the sentences properly so we
were unable to align the output for evaluation and
secondly we get to observe the performance of
the systems while controlling for tokenization
accuracy. Results are in Table 5. Furthermore,
we only include the best-reported results by
Kankanampati et al. (2020) on Gold Tokenization
because that is the only experimental setup they
report on. We observe that we indeed achieve the
SOTA on UD datasets when we compare against
UDPipe 2 and Kankanampati et al. (2020). We
also observe that CamelBERT-MSA performs
better on these datasets than AraBERT.



Gold Tokenization Predicted Tokenization
System Train Dev Test Dev Test
UDPipe 2 PADT-UD 82.5 82.7 81.6 80.9
CamelParser2.0+CamelBERT PADT-UD 83.2 83.9 82.5 82.4
CamelParser2.0+AraBERT PADT-UD 82.7 83.4 82.2 82.0
Kankanampati et al. (2020) NUDAR 85.2 84.8 - -
CamelParser2.0+CamelBERT NUDAR 89.1 88.9 88.7 88.8
CamelParser2.0+AraBERT NUDAR 89.0 88.9 88.1 88.4

Table 5: The LAS of different systems evaluated on datasets that use the UD formalism using both gold and
predicted tokenization. The first three systems are trained on the PADT and the last three systems are trained on the
PATB in the UD formalism (NUDAR). Evaluation is done on the respective Dev and Test sets of each corpus.

6 Conclusion and Future Work

We presented CamelParser2.0, a new SOTA open-
source, Python-based Arabic dependency parser
that supports UD and CATiB formalisms and mul-
tiple Arabic genres. We make CamelParser2.0
publicly available.7 In the future, we plan to con-
tinue to enhance the CamelParser2.0 models and
integrate them in downstream applications to sup-
port Arabic NLP. We also plan to extend the parser
to cover multiple Arabic dialects.

Acknowledgements

We acknowledge the support of the High Perfor-
mance Computing Center at New York University
Abu Dhabi.

Limitations

We recognize that the current parser has limitations,
as it is primarily tailored to the most commonly
used dependency representation formalisms. How-
ever, it does not accommodate other formalisms,
such as those rooted in Arabic’s extensive tradi-
tional syntactic literature (Dukes and Buckwalter,
2010; Halabi et al., 2021). The primary challenge
here revolves around the availability of resources.
Additionally, we acknowledge that the parser’s cur-
rent focus is on Modern Standard Arabic (MSA)
and Classical Arabic (CA), and there is a notable
absence of research in the field of Dialectal Arabic
parsing (Chiang et al., 2006). It’s worth noting
that there are numerous pretrained language mod-
els available for experimentation. Regrettably, due
to limited computational resources, we are unable
to explore this avenue. Lastly, we acknowledge
that we do not report on extrinsic metrics or perfor-
mance in downstream tasks.

7https://github.com/CAMeL-Lab/camel_parser
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Cebiroğlu Eryiğit, Giuseppe G. A. Celano, Fabricio
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