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Abstract
This paper provides a systematic analysis and
comparison of the performance of state-of-the-
art models on the task of fine-grained Arabic
dialect identification using the MADAR paral-
lel corpus. We test approaches based on pre-
trained transformer language models in addi-
tion to Naive Bayes models with a rich set of
various features. Through a comprehensive
data- and error analysis, we provide valuable
insights into the strengths and weaknesses of
both approaches. We discuss which dialects
are more challenging to differentiate, and iden-
tify potential sources of errors. Our analysis
reveals an important problem with identical sen-
tences across dialect classes in the test set of
the MADAR-26 corpus, which may confuse
any classifier. We also show that none of the
tested approaches captures the subtle distinc-
tions between closely related dialects.

1 Introduction

Dialect identification (DID) is a task in natural lan-
guage processing (NLP) aiming to automatically
identify a dialect within a pre-determined language.
Because dialectal differences tend to be subtle,
identifying dialects is considered a more difficult
task than language identification (Etman and Beex,
2015). Arabic dialects are considered particularly
challenging due to their high level of ambiguity,
lack of standardisation, and rich morphology (Diab
and Habash, 2007). Most NLP development has
focused on Modern Standard Arabic (MSA), the
formal and standardised version of Arabic. How-
ever, these tools are not always transferable to di-
alectal Arabic, as dialects differ from each other
and MSA in terms of lexicon, phonology, orthogra-
phy, and morphology (Habash, 2010). A prominent
resource for Arabic DID is the MADAR parallel
corpus (Bouamor et al., 2018), targeting dialects
on the city-level. MADAR has been established
as an important corpus for the task, serving as a
benchmark for multi-task learning (Seelawi et al.,

2021), as well as a Shared Task corpus (Bouamor
et al., 2019), and as a subject of independent re-
search (Baimukan et al., 2022). Despite several
attempts to develop models using deep neural net-
works (Lippincott et al., 2019; de Francony et al.,
2019) and pre-trained Transformer-based language
models (Inoue et al., 2021), the current state-of-the-
art approach remains a statistical machine learn-
ing model with surface-level feature representation,
specifically the Multinomial Naive Bayes (MNB)
model introduced by Salameh et al. (2018).

The lack of progress on the task, along with
the inability of BERT models to surpass the MNB
model, gives rise to several questions that have
not yet been thoroughly explored, and on which
we focus in the current work. Firstly, do BERT
models make the same mistakes as the state-of-the-
art MNB model on the dialect identification task?
While Salameh et al. (2018) have documented the
performance of the MNB model on individual di-
alects and highlighted the Muscat dialect as the
most challenging for the model, there is limited
research exploring the misclassifications generated
by BERT models. Secondly, if the models make
different errors, are these errors centred around the
same dialect pairs? Thirdly, we explore if a detailed
analysis of the misclassified sentences by both the
BERT models and the MNB model can provide
deeper insights into the challenges of the task on
MADAR-26.

This paper summarises the findings from a
comprehensive project on error-analysis on the
MADAR parallel corpus conducted by Olsen
(2023). We release the code for all experiments
and analysis on GitHub.1

2 Previous work

Several efforts have focused on building tools and
resources to identify Arabic dialects. However,

1https://github.com/helenebol/Arabic-dialect-
identification
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the field suffers from fragmented and independent
works on different corpora that vary in terms of
granularity, size and domain, making it challenging
to track the progress of the solutions. Early work
focused on binary dialect classification by discrim-
inating one dialect from MSA (Elfardy and Diab,
2013; Tillmann et al., 2014), as well as identifying
Arabic dialects at both a region-level (Zaidan and
Callison-Burch, 2011, 2014; Elaraby and Abdul-
Mageed, 2018; Cotterell and Callison-Burch, 2014)
and a country-level (Talafha et al., 2020; Abdelali
et al., 2021; AlKhamissi et al., 2021).

In recent years, more efforts have targeted Ara-
bic DID on a more fine-grained level, particu-
larly through shared tasks. The Nuanced Ara-
bic Dialect Identification Shared Tasks (NADI)
(Abdul-Mageed et al., 2020, 2021b, 2022) include
sub-tasks on country- and province-level on user-
generated tweets. Several corpora of written Ara-
bic dialects comprise tweets (Abdelali et al., 2021;
Abdul-Mageed et al., 2018; Zaghouani and Charfi,
2018), others consist of user commentaries (Zaidan
and Callison-Burch, 2011), or manually translated
sentences (Bouamor et al., 2018, 2014).

For the NADI shared tasks (Abdul-Mageed et al.,
2020, 2021b, 2022), all the top performing sys-
tems used transformer-based language models pre-
trained on dialectal Arabic. However, these mod-
els yielded unsatisfactory results and multiple fac-
tors were identified, including imbalanced class
distribution (AlShenaifi and Azmi, 2020), a signifi-
cant presence of MSA content in the training data
(Touileb, 2020), and the inherent challenges associ-
ated with distinguishing between Arabic dialects.

Within the MADAR shared task (Bouamor et al.,
2019), the top five performing systems demon-
strate that ensemble techniques, n-gram-based fea-
tures, and traditional machine learning approaches,
such as MNB or Support Vector Machines (SVMs),
yield the highest levels of performance. While the
MADAR corpus proved to be too small for deep
learning architectures (Lippincott et al., 2019), the
transfer learning ability of BERT-based language
models, pre-trained on dialectal Arabic, has shown
promising results (Seelawi et al., 2021; Inoue et al.,
2021). However, the MNB model introduced by
Salameh et al. (2018) is still state-of-the-art with
an overall accuracy of 67.9%.

MADAR-26 MADAR-6

Sentences Per dialect Total Per dialect Total

Train 1600 41600 9000 54000
Dev 200 5200 1000 6000
Test 200 5200 - -

Table 1: Number of sentences per dialect and per split in the
MADAR-26 and MADAR-6 corpora.

Avg. Min Max

Tokens 11265.42 (±619) Basra MSA
Sent length 5.61 (±0.3) Basra MSA
Vocabulary (types) 3273.61 (±204) Doha MSA

Table 2: Data statistics for MADAR-26, showing the average
number of tokens, average sentence length, and vocabulary
size (number of types) across dialects without punctuation.
Min and max denote the dialect with the lowest and highest
values for each statistic. The numbers in parentheses denote
variance.

3 The MADAR corpus

The MADAR corpus is a collection of parallel
sentences in the travel domain (Bouamor et al.,
2018). The resource contains two corpora with
non-overlapping sentences: (1) MADAR-26: cov-
ering 25 cities and MSA, and where each dialect
is represented with 2000 sentences. (2) MADAR-
6: covering the five selected cities Doha, Beirut,
Rabat, Cairo, and Tunis, in addition to MSA, each
with 12000 sentences. We use the training, devel-
opment, and test splits from the MADAR shared
task 1 (Bouamor et al., 2019) shown in Table 1. As
can be seen, all classes are perfectly balanced for
each set. In our models, we use MADAR-26 for
both training and evaluation, while MADAR-6 is
included in the training data of the state-of-the-art
system presented by Salameh et al. (2018).

Throughout this work, we define tokens based on
white space using the simple word tokeniser from
CAMeL Tools2 to split the sentences. Additionally,
all punctuation are removed.

3.1 Corpus statistics
The MADAR-26 training data primarily consists
of short sentences, with an average length of 5.6
tokens, as seen in Table 2. Short sentences can be
challenging for DID, as they may not encompass
enough information to capture the nuances of di-
alectal variations (Malmasi et al., 2016). The data

2https://github.com/CAMeL-Lab/camel_tools/
tree/master/camel_tools/tokenizers
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Figure 1: Vocabulary overlap between MSA and the dialects
in the training data

also shows variations in vocabulary size across the
dialects, where MSA consistently has the largest
values. In contrast, the Doha dialect exhibits the
smallest vocabulary, and the Basra dialect has the
shortest sentences and the lowest number of tokens.

3.2 Lexical overlap

We here explore the degree of lexical overlap be-
tween the dialects by analysing the number of com-
mon tokens between them. We follow the work
of Bouamor et al. (2018) and use the Overlap Co-
efficient (OC) to measure the degree of similarity
between two sets of texts A and B, ranging from 0
(no overlap) to 1 (complete overlap).3

Lexical overlap with MSA The diglossic situa-
tion of Arabic puts MSA in a distinctive position
concerning lexical overlap, given its presence in the
daily language use of all dialect users. The source
sentences for translation in the MADAR corpus
were provided in English and French to minimise
the bias of MSA (Bouamor et al., 2018).

As demonstrated in Figure 1, the OC between
MSA and each dialect varies and ranges from 0.2
for Sfax and Tunis to over 0.4 for Muscat and
Riyadh. While some of the overlap might stem
from various bias factors in the translation process,
it is also plausible that some of the overlapping
vocabulary consists of function words and nouns
that are shared with MSA. Rather than consider-
ing the vocabulary overlap as noise, it should be a
factor when interpreting the results of DID. More
specifically, this overlap might suggest that distin-
guishing MSA from Muscat or Riyadh might be
more challenging than from Tunis or Sfax.

Lexical overlap between dialects By calculat-
ing the OC for every pair of dialects in the training

3Defined as: OC(A,B) = |A∩B|
min(|A|,|B|)

Figure 2: Heatmap of the lexical similarity computed with
Overlap coefficient between the dialects in the MADAR-26
training data. The black boarders outline the geographical
regions. For a clearer view of nuances, the heatmap threshold
is set to 0.40, while some dialects might have a higher score.

data, we find the average pairwise similarity be-
tween them to be 0.35 with a standard deviation
of 0.07. The OC across all dialect pairs can be
seen in Figure 2, where the black borders outline
the geographical regions Levant, Gulf, Maghreb,
and Nile basin. The highest levels of overlap is be-
tween dialects within the same geographical region.
The most prominent example is the Levant region,
where most dialects have a high OC with each other.
We find a similar pattern in the Gulf region, except
for the Mosul dialect. For the Maghreb region, the
overlap is less significant across the region, but
higher for dialects within the same country (e.g.
Rabat and Fes). Interestingly, there seems to be
a high level of overlap between the Egyptian city
dialects, Cairo, Aswan, and Alexandra, while Khar-
toum (Sudan), displays a slightly lower overlap.
Sanaa is not included in any region, while it seems
to have similar vocabulary to both the dialects in
the Nile Basin region and the Gulf.

Tunis and Sfax city dialects exhibit relatively
low levels of lexical overlap with dialects outside
Tunisia, indicating a more distinct vocabulary. A
similar pattern is noticeable in the Moroccan city
dialects of Fes and Rabat. With an average vocabu-
lary of approximately 3000 tokens, several dialects
have fewer than 400 tokens that do not overlap
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with other dialects. This highlights the lack of clear
class boundaries and emphasises the challenge of
automatically identifying the dialects.

There is a more nuanced distribution of the lin-
guistic features and characteristics of the dialects.
There are morphological and lexical differences be-
tween the dialects, as well as significant vocabulary
similarity within each region. More details about
this lexical analysis can be found in Appendix A.1.

4 Models

We here describe our experimental set-up and the
tested models.

4.1 Pre-trained Transformer language models

We evaluate three BERT models pre-trained on
dialectal Arabic, AraBERTv0.2-Twitter4(Antoun
et al., 2020), MARBERTv25(Abdul-Mageed et al.,
2021a), and CAMeLBERT-Mix6 (Inoue et al.,
2021). We will refer to them as AraBERT, CAMeL-
BERT, and MARBERT respectively. There exist
several BERT models pre-trained on Arabic di-
alects. However, to the best of our knowledge,
AraBERT and MARBERT have not yet been evalu-
ated on MADAR-26. CAMeLBERT model is con-
sidered one of the top-performing models on the
task (Inoue et al., 2021), and is therefore included
as a baseline.

While all are based on the BERT architecture
(Devlin et al., 2019), specifically the “base” ver-
sion, they differ in terms of their pre-training
data, model size, and vocabulary (see details in
Table 8 in Appendix A.2). Notably, AraBERT
is the smallest model in terms of number of to-
kens (8.6B), compared to MARBERT (29B) and
CAMeLBERT(17.3B). All models are pre-trained
on various MSA and dialectal Arabic sources, all
including tweets. However, CAMeLBERT has the
most diverse dialectal pre-training data, including
the MADAR parallel corpus (Inoue et al., 2021).

Experimental setup and data We follow the
ALUE benchmark model (Seelawi et al., 2021): the
pre-trained BERT encoder takes an Arabic sentence
as input and generates contextualised embeddings.
The CLS classification token is extracted from the
final layer of BERT, passed through a linear layer,

4https://huggingface.co/aubmindlab/bert-base-
arabertv02-twitter

5https://huggingface.co/UBC-NLP/MARBERTv2
6https://huggingface.co/CAMeL-Lab/bert-base-arabic-

camelbert-mix

Accuracy F1

CAMeLBERT 63.25 (±0.65) 62.69 (±0.06)
MARBERT 62.36 (±0.05) 61.76 (±0.72)
AraBERT 65.19 (±1.60) 65.64 (±0.51)

Table 3: Average results for BERT models after five runs on
MADAR-26 development set. Corresponding standard devia-
tion in parentheses. Numbers in bold indicate best results.

before a softmax function computes the predicted
classes. Details on implementation and hyperpa-
rameter tuning are described in Appendix A.3. We
fine-tune all models on the MADAR-26 training
set, using the same data splits as supplied for the
MADAR shared task (Bouamor et al., 2019). We
perform dediacritisation on the data in alignment
with the pre-training of the BERT models. Simi-
larly to previous experiments on this corpus (Inoue
et al., 2021), no additional pre-processing is done.

4.2 Multinomial Naive Bayes

For the MNB model, we use the CAMeL-tools
(Obeid et al., 2020) implementation of Salameh
et al. (2018). The system consists of two models,
a main MNB model trained on MADAR-26 and
a supporting MNB model trained on MADAR-6.
This latter classifies each sentence into a dialect
from MADAR-6, and then used as a feature in the
main model. As the six dialects in MADAR-6 are
from different regions in MADAR-26, we consider
the supporting classifier a regional classifier.

Both the main and supporting MNB models use
similar feature types but from different corpora.
The supporting model uses TF-IDF weighted word
and character n-grams, in addition to probability
scores from 6 dialectal n-gram language models
trained on MADAR-6. The main MNB model uses
the same feature types but with probability scores
from 26 n-gram LMs trained on MADAR-26. Ad-
ditionally, it takes regional probability scores from
the supporting MNB model’s predictions.

Note that we also trained a logistic regression
model with the same features, but due to its subpar
results, we are not including it in the discussion.

4.3 Evaluation

Due to the perfectly balanced classes, we report
the overall performance of all models using macro
average F1. We also report precision, recall, and
F1 for each individual dialect and the average for

373

https://huggingface.co/aubmindlab/bert-base-arabertv02-twitter
https://huggingface.co/aubmindlab/bert-base-arabertv02-twitter
https://huggingface.co/UBC-NLP/MARBERTv2
https://huggingface.co/CAMeL-Lab/bert-base-arabic-camelbert-mix
https://huggingface.co/CAMeL-Lab/bert-base-arabic-camelbert-mix


Region Dialect AraBERT (%) MNB (%) Diff

MSA 75.4 72.3 +3.1

Levant ALE 63.6 63.8 -0.2
AMM 52.1 65.5 -13.4
BEI 64.1 68.8 -4.7
DAM 50.0 63.4 -13.4
JER 55.5 61.0 -5.5
SAL 51.2 56.4 -5.2

Gulf BAG 64.0 65.9 -1.9
BAS 60.9 66.3 -5,4
DOH 61.4 68.9 -7.5
JED 53.7 59.4 -5.7
MOS 78.9 86.8 -7.9
MUS 51.0 48.8 +2.2
RIY 53.9 57.6 -3.7

Maghreb ALG 72.7 81.5 -9.0
BEN 60.5 68.5 -8.0
FES 65.2 71.3 -6.1
RAB 67.5 72.3 -4.8
SFX 69.9 72.9 -3.0
TRI 70.9 80.0 -9.1
TUN 64.8 72.3 -7.5

SAN 68.1 75.0 -6.9

Nile Basin ALX 74.0 75.9 -1.9
ASW 63.2 63.8 -0.6
CAI 53.0 55.8 -2.8
KHA 66.1 72.5 -6.4

Total 63.4 67.3 -3.9

Table 4: F1 scores of the AraBERT and MNB models on
MADAR-26 test set. Highest scores for each model are in
blue, and lowest in red. Green shows where AraBERT has
a higher score than MNB. The overall performance of the
models is displayed in the final row and marked in bold.

each region for the best-performing model.
Based on the development results in Table 3, we

find that AraBERT outperforms the other models,
with an average accuracy of 65.19% and a macro-
average F1 of 65.64%. These results are interest-
ing, considering AraBERT’s smaller pre-training
data size compared to the other models. It is also
noteworthy that even though CAMeLBERT has
MADAR-26 included in the pre-training data, it
is outperformed by AraBERT on the development
data. We speculate that these outcomes stem from
effective filtering and curation of the pre-training
data of AraBERT. We inspect the results on the test
data in more detail next.

5 Test results

We compare the performance of both selected mod-
els, MNB and AraBERT, in terms of F1 score for
each individual dialect in Table 4. The results re-

veal a notable difference in their overall and in-
dividual dialect classification performance, with
the MNB model outperforming AraBERT on the
majority of dialects. As previously suggested, the
results clearly show that the AraBERT model out-
performs the MNB model on MSA and the Muscat
dialect, with a difference of 3.1 and 2.2 pp, respec-
tively. Interestingly, both models have the lowest
performance on the Muscat dialect. We can also ob-
serve close performance on the Aleppo and Aswan
dialects, while the most significant difference in
performance is for the Amman and the Damascus
dialects, where the MNB model outperforms the
AraBERT model with 13.4 percentage points for
both dialects. Due to the high lexical overlap be-
tween MSA and Muscat together with the high
degree of MSA content in the pre-training data of
the AraBERT model, it is likely that the AraBERT
model is better at detecting MSA, and thereby not
confusing the two dialects to the same degree as
the MNB model. More details about the best clas-
sifications per dialect and model can be found in
Table 11 in Appendix A.4.

6 Error analysis

We here provide a systematic analysis of the errors
made by the different models.

6.1 Misclassification patterns

Analysing the confusion matrices in Figure 3,
which visualises the two models’ predictions, re-
veals distinct similarities in their misclassification
patterns. (i) Most errors occur between city dialects
from the same geographical regions (outlined with
the black borders). For example, in the Levant re-
gion, Beirut is misclassified as Damascus, Amman,
Aleppo, Jerusalem, and Salt by both models. We
can also observe a high density within the dialects
in the Nile basin region, while for the Maghreb and
Gulf region, the overlap is more spread out. (ii)
Both models’ most frequent errors occur between
city dialects from the same country. Notable ex-
amples are the two Moroccan city dialects Fes and
Rabat, the Egyptian dialects Aswan, Cairo, and
Alexandria, and the Iraqi dialects, Baghdad, and
Basra. (iii) When considering the errors occurring
outside the regional borders, we find that a signifi-
cant proportion is associated with Arabic variants
that are not attributed to any specific region, namely
MSA and Sanaa. Among these outliers, the high-
est frequency of confusion is between the Muscat
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(a) AraBERT model

(b) MNB model

Figure 3: Confusion matrices of (a) AraBERT and (b) MNB
predcitions on the MADAR-26 test set.

dialect and MSA for both models.
In comparison to Figure 2 (Section 3.2), illus-

trating the lexical similarity between the dialects,
we can observe some similarities. There is a high
lexical similarity between all dialects in the Lev-
ant and Nile basin regions. Additionally, errors
between dialects from the same country can be in-
ferred from the patterns identified in Figure 2 and
the misclassification pattern of MSA. But a few
exceptions exist, such as the Mosul dialect having
a high lexical similarity with Sanaa, which is only
reflected in AraBERT’s predictions. Another exam-

ple is the Sanaa dialect, which displays high lexical
similarity with both Doha and Jeddah, which is
again evident in AraBERT’s predictions, while the
MNB model tends to confuse Sanaa with Jeddah.

Despite these exceptions, the high number of
similarity patterns implies a positive correlation
between high lexical similarity and the misclassi-
fications for both models, but is not a complete
explanation. By comparing the distribution of mis-
classification for each model, we discover that both
models struggle with identifying the Muscat, Cairo,
and Amman dialects. AraBERT exhibits more er-
rors than the MNB model, particularly concerning
the Damascus, Mosul, Tunis, and Doha dialects.
However, the MNB model has a higher frequency
of misclassifying the MSA, Aleppo, Sanaa, and
Riyadh dialects when compared to AraBERT. Fur-
thermore, we find that over 60% of the test data of
both the Muscat and Cairo dialects is misclassified
by either one or both models.

6.2 Subcategories of misclassified sentences

For our analysis, we are comparing the misclassi-
fications made by the two models on a sentence
level, as they can provide a more nuanced under-
standing of the performance and the difficulty of
classifying certain dialects. We will base our er-
ror analysis on six categories of misclassifications
that provide different insights: (1) Union of mis-
classification: includes all sentences misclassified
by either one of the models or both. (2) Intersect-
ing misclassification (INT): includes the sentences
misclassified by both models. This subgroup is
partitioned into two subcategories: (i) sentences
in which both models have predicted the same in-
correct dialect (INT-S), (ii) sentences in which the
models have predicted two different dialects (INT-
D). (3) Unique-AraBERT and (4) Unique-MNB:
sentences misclassified by one model but correctly
classified by the other.

The number of sentences for each category (Ta-
ble 5), reveals interesting insights into the relative
difficulty of the task. For example, out of the total
of 1227 sentences misclassified by both models,
they predicted the same incorrect dialect for 511 of
them, while for 716 of the sentences, the models
predicted different labels. While the models differ
in their respective classification errors for a signifi-
cant number of sentences, the number of intersect-
ing misclassifications suggests that both models
have a similar weakness in predicting a large sub-
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# Sentences Avg.length

Total test set 5200 5.6 (±2.9)

Union 2415 5.0 (±2.5)
INT-S 511 4.8 (±2.5)
INT-D 716 4.5 (±2.3)
Unique-AraBERT 708 5.6 (±2.8)
Unique-MNB 480 5.5 (±2.9)

Table 5: Overview of number of test sentences and average
sentence length for the different categories of misclassification.
INT-S and INT-D refer to sentences wrongly classified by both
models, where S and D denote whether both models made
the same or different predictions. The Unique-AraBERT are
the sentences correctly classified by MNB but misclassified
by AraBERT, and vice versa for the Unique-MNB category.
Union refers to all misclassified sentences regardless of model.

set of the corpus. The high number of sentences in
the INT-S category implies that there might be pat-
terns or linguistic features that present challenges
for both models, revealing areas where the models
have the most difficulty distinguishing between di-
alects. The INT-D sentences might present insight
into particular challenging sentences, as neither
model could predict the correct sentence.

6.3 Most frequently confused pair of dialects
We also provide insights into which dialect combi-
nations are most frequently confused. We report
on occurrences where a pair of dialects appear to-
gether, whether the dialect is a gold or a predicted
label, for the same sentence.7 The two Moroccan
city dialects Rabat and Fes are the most frequently
confused pair for all categories, except for the INT-
D category. In this category, the models’ misclassi-
fications are less consistent, leading to less frequent
occurrences of dialect pairs.

6.4 Potential sources of error
Table 5 shows the sentence length for each subcat-
egory of misclassified sentences and the total test
set. The test data has a similar average length to the
training data but with greater variance, and even in-
cludes sentences with only one or two tokens, such
as the Tripoli sentence èñÊg �èQº 	̄ (Nice idea). This
may challenge classification, particularly when the
tokens are shared among multiple dialects. The
shortest sentences are found in the INT-D category,
followed by IND-S, which both models misclas-
sified. Interestingly, the unique misclassifications

7The top five confused dialect pair for each category is
reported in Table 13 in the Appendix.

for each model consist, on average, of more tokens
compared to the test set average. This suggests
that the shorter sentences pose a shared challenge,
while the unique misclassified sentences exhibit
other challenges particular to each model.

Lexical overlap, the overlap in tokens between
two bodies of texts, provides an indication of the
extent to which a sentence is a subset of a given
dialect’s training data. It can also assess the degree
to which a misclassified sentence represents the di-
alect as it appears in the training data. The box plot
in Figure 4 illustrates the distribution of the overlap
coefficient between sentences in the subcategories
of the gold dialects in Figure (a) and between the
predicted dialects in Figure (b). The first box in
both figures represents the OC between the full
training data and the gold dialects vocabulary for
comparison purposes.

There are three notable observations. Firstly, the
OC between the sentences in the test set for both
the gold and predicted dialects tends to be high,
with an average OC of over 0.5 for all categories
in both figures. This trend may imply that certain
sentences exhibit a significant vocabulary overlap
between multiple dialects, leading to confusion for
both models. Secondly, Figure (a) indicates that
there are instances in the test data with an OC of
0.0 with the gold dialects, which can also be ob-
served in the OC between the sentences and the
predicted dialects in Figure (b), suggesting that
lack of vocabulary overlap may be contributing to
errors in some cases. Thirdly, box 4, representing
the sentences misclassified only by AraBERT, has
a higher median OC for the gold dialects compared
to the other categories of misclassified sentences in
Figure (a). However, in Figure (b), the median for
box 4 is lower and more aligned with the other cat-
egories. These findings suggest that the AraBERT
model tends to prioritise features other than lexical
overlap when making predictions.

6.5 Manual example-level analysis

Due to the lack of morphological disambiguators
covering all the dialects or regions in MADAR-26,
we rely on manual example-level analysis.8 As part
of the comprehensive analysis conducted in Olsen

8Since the objective here is to identify sources of misclas-
sification, we will consider the sentences in their original form
as input to the models. Consequently, the sentences lack vo-
calisation, and when analysing specific example sentences, we
transcribe them letter-by-letter rather than supplementing the
missing characters.
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(a) OC with the gold dialects (b) OC with the predicted dialects

Figure 4: Overlap coefficient (OC) between the test data and the vocabulary in the training data. Figure (a) shows the OC
between the sentences and the gold dialects, while Figure (b) shows the OC between the sentences and the predicted dialects.
Each box represents the OC for: Box 1: The test data and the gold labels. Box 2: The union of misclassifications of both models.
Box 3: The intersection of misclassifications of both models. Box 4: The misclassifications unique to AraBERT. Box 5: The
misclassifications unique to MNB.

(2023), the following examples are drawn from the
set of 19 cases. We identified various characteris-
tics that present challenges for dialect identification.
For instance, there are sentences without dialect-
specific features across all categories, as illustrated
in Example 1.

(1) ? �éJ
 	K AK. AJ
Ë @ 	Q 	Kñk. YJ
�Ë@ ÕÎª�K@ 	áK
ð
wiin it3lm al+siid jwnz al+iaabaania?
Where did mr. Jones learn Japanese?

In this instance, a sentence from Jerusalem is
predicted as Riyadh by AraBERT and as Basra
by MNB. Moreover, this sentence contains nouns
typically unaffected by dialectal variation, like
	Q 	Kñk. YJ
�Ë@ (mr. Jones) and �éJ
 	K AK. AJ
Ë @ (Japanese).

For the second example, a Fes sentence is cor-
rectly predicted by the MNB model, but confused
as Rabat by AraBERT. Rabat and Fes are the most
frequently confused dialects, which might be ex-
plained by the lack of overlap with dialects outside
Morocco (Figure 2), along with the prevalence of
linguistic features only observed in the Moroccan
dialects training data, such as ÈAK
X from Example 2.
While these features are distinct enough to exclude
the possibility of other dialects, they may not be
sufficient to accurately distinguish between closely
related dialects such as those from Rabat and Fes.
(2) hAJ.�Ë@ ÈAK
X ©�A�JÊË A�Jk �ª	J 	K ú


	GñJ
Ê 	g
khliwn+i nn3s h.taa l+ltaas3 diiaal al+s.baah.
Let me sleep until nine in the morning

6.6 Identical sentences in the test data
The MADAR corpus is stated to be created through
manual independent translation of sentences in dif-

ferent dialects. However, we identify multiple oc-
currences of identical sentences in the test data
labelled with different dialects. We will refer to
these as duplicates. There is a total of 522 of dupli-
cate sentences in the test data. 398 such sentences
were misclassified by AraBERT, and 393 were mis-
classified by the MNB model.

Some entries have up to 11 duplicates labelled
with different dialects from different regions. An
example is the sentence @QK. , in English Outside,
which has gold labels from The Levant, Gulf, and
Maghreb regions. Most frequent duplicates are
very short, some consisting of only one token.
The total set of duplicate sentences has an aver-
age length of 3.50 tokens with a standard deviation
of 1.55, which might explain the high number of
identical sentences across multiple regions.

The distribution of the duplicates is skewed, with
the highest frequencies among the Levant dialects
Jerusalem, Salt, and Damascus, with over 30 sen-
tences each. At the same time, MSA, Mosul, Al-
giers, Rabat, Sfax, and Sanaa have less than ten
each. Furthermore, it appears like dialects with
high lexical overlap (see Section 3), have similar
amounts of duplicate sentences. See Figure 5 in
the Appendix for the distribution across dialects.

Task formulation Because the task of Arabic
DID is formulated as a multi-class classification
task, many of the sentences in the test data are im-
possible to identify correctly since they can belong
to multiple dialects. The limitations of this task for-
mulation have already been demonstrated (Goutte
et al., 2016; Zampieri et al., 2023), suggesting that
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Original Dedpulicated

Size 5200 4870
Avg. sentences per class 200 (±0) 187.3 (±6.2)
Smallest class – Jerusalem (174)
Largest class – Sfax (198)

Table 6: Deduplicated MADAR-26 test set compared to the
original test set with smallest and largest class.

unless a text belongs to precisely one dialect, the
classification task should be approached as a multi-
label classification task, rather than a multi-class
one (Bernier-colborne et al., 2023).

Deduplication of test data We identify all in-
stances of duplicates and remove them, with only
one random instance retained in the test set. The
resulting deduplicated test set is presented in Ta-
ble 6, and consists of 4870 sentences. The result
is an imbalanced test set, but, an argument can be
made that duplicate sentences in the original test
data already imbalanced the test set.

Model evaluation on deduplicated data We
evaluate the MNB model on the deduplicated
test set and achieve a macro-average F1 score of
70.25%. Compared to the performance on the orig-
inal test set, evaluation without duplicate sentences
across classes results in an increase in performance
of 2.95 pp. The presence of duplicate sentences
in the data can be viewed as a reflection of natural
occurring language use, particularly in the case of
short text, where phrases and expressions may be
identical across various dialects. Therefore, remov-
ing identical sentences may introduce bias in the
evaluation process, as it would not reflect the natu-
ral occurrence of such duplicates and could lead to
an overestimation of a model’s performance.

7 Conclusion and future work

This paper investigates the challenging task of
fine-grained dialect identification, focusing on the
MADAR-26 corpus. By fine-tuning three BERT
models pre-trained on dialectal Arabic, we demon-
strated that the multinomial naive bayes model in-
troduced by Salameh et al. (2018) remains the state-
of-the-art model on this data. However, we identi-
fied 480 test sentences that were correctly classified
by the best performing BERT model, but were mis-
classified by the MNB model. A comprehensive
error analysis revealed the BERT model exhibits

superior performance in predicting sentences in
Muscat dialect and MSA, which may be attributed
to the amount of MSA content in the pre-training
data of the BERT model. We also show that some
of the challenges of the task can be attributed to
dataset limitations. Particularly the fact that 10%
of the sentences in the test set are identical to one
or more parallel sentences in the same set but with
different labels.

Our analysis of different error types confirms
that the MNB and BERT-based model often make
different mistakes, but also that a subset of the
test data is challenging for both. Notably, we
found that the Moroccan city dialects Rabat and
Fes are the most confused dialect pair, and show
how neither approach is able to capture the sub-
tle distinctions between some of the closely re-
lated dialects. Although dataset limitations, such as
non-Arabic proper nouns, short sentences without
dialect-specific features, and identical sentences
across classes, account for some of these errors,
the unique errors generated by each model provide
evidence that certain sentences can be correctly
classified by one model, but not the other. These
findings underscore the need to examine model
performance beyond simple metric comparison in
order to identify new strategies for enhancing Ara-
bic dialect identification.

In the future, we would like to address the formu-
lation of the task, by transforming it into a multi-
label classification problem. Instead of simply re-
moving the duplicate sentences from the data, we
can combine the labels of duplicate and nearly-
duplicate text, converting the single-label dataset
into a multi-label dialect classification format.

Another avenue for future research is to evaluate
models trained or fine-tuned on MADAR-26 on
user-generated data. Due to a lack of annotated
data matching the city-levels of MADAR, evalua-
tion on data outside the travel domain has up until
recently not been possible. However, the hierarchi-
cal mapping schema proposed by Baimukan et al.
(2022) can be leveraged for datasets with compara-
ble or more detailed annotations. More specifically,
we want to evaluate the performance of the models
on the NADI dataset (Abdul-Mageed et al., 2020)
by mapping tweets at the province-level to the city-
level.
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Limitations

Given the scope of this work, we did not conduct
an extensive exploration of design choices for the
various models, or dedicate considerable time to
hyperparameter optimisation and experimentation
of the selected models. Nevertheless, we acknowl-
edge that a more rigorous pursuit of hyperparame-
ter tuning may potentially produce different results.

Despite evaluating the Transformer-based mod-
els using five different seeds, our error analysis
relies solely on the outcomes of a single run. Al-
though the AraBERT model displayed a small de-
gree of instability during the development phase,
some of the outcomes used in the error analysis
may have varied if a different seed was used. How-
ever, due to the extensive nature of the analysis,
incorporating outcomes from multiple runs was not
a practical option. Therefore, our findings should
be considered indicative rather than definitive.

Moreover, the error analysis focused solely on
the test set without comparing misclassified and
correctly predicted sentences, and thereby limiting
our ability to pinpoint the precise factors behind
misclassifications. Instead, it offers insights into
misclassification categories and variations between
types, as well as between the two models.

Because of the wide coverage of the MADAR-26
corpus, some of the dialects in our error analysis
are outside our expertise. To mitigate this limi-
tation, we employed the newly publicly released
MADAR lexicon (Bouamor et al., 2018) and other
resources to aid in analysing these languages. How-
ever, inaccuracies may still exist.

Finally, due to the lack of morphological anal-
ysers covering all the dialects in MADAR-26, we
performed analysis on token-level, where a token
is defined by whitespace. This is not optimal for
Arabic, as this approach may result in the loss of
information conveyed by clitics.
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A Appendix

A.1 Morphological and lexical differences
between dialects

Region Dialect Sentence

English We want a table close to the stage

MSA hQå�ÖÏ @ 	áÓ H. Q
�®ËAK. �èYKAÓ YK
Q 	K

Gulf Muscat hQå�ÖÏ @ 	áÓ H. Q
�®ËAK. �éËðA£ A 	ªJ. 	K

Doha hQå�ÖÏ @ Õç'

�éËðA£ A 	JJ
 	ªK.

Riyadh hQå�ÖÏ @ 	áÓ �éJ. K
Q�̄ �éËðA£ ù 	ªJ. 	K
Jeddah hQå�ÖÏ @ I. Ôg.

�éËðA£ AJ. 	K
Baghdad i. J


���Ë@ úÎ« �éJ. K
Q�̄ �éËðA£ YK
Q 	K
Basra i. J


���Ë@ Õç'

	Q�
Ó YK
Q 	K

Mosul h. Qå�ÖÏ @ úÎ« I. J
 	ª
�̄ 	Q�
Ó YJ
 	ª 	K

Gulf of Aden Sanaa é�	JÖÏ @ 	áÓ I. K
Q
�̄ éËðA£ ú


�æ ��	�
Levant Aleppo �é�	JÖÏ @ I. 	Jk.

�éËðA£ A 	KYK.
Damascus �é�	JÖÏ A« �éJ. K
Q�̄ �éËðA£ A 	KYK.
Beirut hQå�ÖÏ @ Yg �éËðA£ A 	KYK.
Amman hQå�ÖÏ @ 	áÓ �éJ. K
Q�̄ �éËðA£ A 	KYK.
Salt hQå�ÖÏ @ 	áÓ I. K
Q

�̄ �éËðA£ A 	KYK.
Jerusalem hQå�ÖÏ @ I. 	Jk.

�éËðA£ A 	KYK.
Nile Basin Cairo �é�	JÖÏ @ I. 	Jk. è 	Q�
K. @Q�K 	QK
A«

Alexandria hQå�ÖÏ @ 	áÓ �éJ. K
Q�̄ �è 	Q�
K. @Q�K 	áK
 	PðA«
Aswan hQå�ÖÏ @ 	áÓ �éJ. K
Q�̄ �è 	Q�
K. Q£ 	áK
 	QK
A« A 	Jk


@

Khartoum �é�	JÖÏ @ I. 	Jk.
�è 	Q�
K. Q£ 	áK
QK
 @X

Maghreb Tripoli hQå�ÖÏ @ I. 	Jk. éËðA£ ñJ. 	K
Benghazi hQå�ÖÏ @ 	áÓ �éJ. K
Q�̄ �éËðA£ ñJ. 	K
Tunis l»QË@ Ð �éJ. K
Q�̄ �éËðA£ ñJ. m�

	'
Sfax X@ñË@ I. 	Jm.�'.

�éËðA£ @ñJ. m�
	'

Algiers 	�QªË@ �é�	JÓ 	áÓ �éJ. K
Q�̄ �éËðA£ 	á�
K. Ag A 	K @P
Rabat hQå�ÒÊË �éJ. K
Q�̄ �éËðA£ A 	JJ
 	ªK.
Fes hQå�ÒÊË �éJ. K
Q�̄ �éÊJ.£ A 	JJ
 	ªK.

Table 7: A sample of a 26-way parallel sentence extracted
from MADAR-26 for the English sentence “We want a table
near the stage.”

To get a more nuanced understanding of the lin-
guistic features and characteristics of the dialects,
we analyse the sentence “We want a table close
to the stage” for all the dialects, see Table 7, as
we believe it highlights many of the morpholog-
ical and lexical differences between the dialects.
For example, the English word table is translated
into �èYKAÓ in MSA, while for Basra and Mosul it

is 	Q�
Ó, and �è 	Q�
K. Q£ in Aswan. It is translated into
�éËðA£ in multiple city dialects in the Gulf, Levant
and Maghreb region. Translating the word table
into �éËðA£ makes sense for many of the dialects in
the Levant and in the Gulf, while for others, this
translation choice seems to have been influenced
by MSA. For instance, in the Algiers dialect, many
Algiers dialect speakers view �éËðA£ as a MSA word

and prefer the French-derived term �éÊK. A£ in their
daily communication (Harrat et al., 2016).

When examining sentences regionally, we find
significant vocabulary similarity within each re-
gion. As an example, in the Levant region, all
city dialects translate We want a table as �éËðA£ A 	KYK. .
This contributes to the complexity of DID at a city-
level, particularly in distinguishing between cities
in the same geographical area.

A.2 Arabic BERT-based models

Size #Tokens pre-training data

AraBERT 541MB 8.6B 77GB+60M Tweets
MARBERT 654MB 29B 167GB
CAMeLBERT 439MB 17.3B 167GB

Table 8: Configuration for AraBERTv0.2-Twitter (Antoun
et al., 2020), MARBERTv2 (Abdul-Mageed et al., 2021a) and
CAMeLBERT-mix (Inoue et al., 2021).

A.3 Implementation details

All the reported experiments are run on the high-
performance computing resource Sigma2 – the Na-
tional Infrastructure for High Performance Com-
puting and Data Storage in Norway, made available
by the University of Oslo. For replicability, we do
not train the BERT models from scratch, relying
instead on pre-trained BERT models downloaded
directly from Huggingface.

Hyperparameter tuning For all experiments,
we are using maximum length of 128 tokens for
input sequences, AdamW optimiser with epsilon at
1e-8, and early stopping to determine the optimal
number of epochs. To compute the loss, we use
Cross entropy and set dropout to 0.1.

We are not experimenting with different hyperpa-
rameters for the CAMeL-BERT model, as previous
work has made a thorough effort to explore the
optimal combination for the model on the task of
DID on MADAR-26 (Inoue et al., 2021; Ghaddar
et al., 2022). Additionally, we run each model mul-
tiple times with different seeds to capture potential
deviations in performance (Devlin et al., 2019).

In the case of AraBERT and MARBERT, we
base our hyperparameter grid search on previous ex-
periments on earlier versions of the models, namely
AraBERTv0.2 (Antoun et al., 2020) and MAR-
BERTv1 (Abdul-Mageed et al., 2021a), on the task
of DID on MADAR-26 (Inoue et al., 2021; Ghad-
dar et al., 2022). Table 9 presents the results from
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the hyperparameter grid search, while Table 10
shows the hyperparameters used for evaluation on
the development set for all models.

Learning rate

Model Batch 2e-05 1e-4

MARBERT 32 62.56 (±0.63) 62.69 (±0.06)
16 62.12 (±1.84) 61.76 (±1.72)

AraBERT 32 62.95(±0.57) 65.64 (±0.51)
16 63.95(±0.40) 64.76 (±1.65)

Table 9: Average results for AraBERT-Twitter and MAR-
BERTv2 on five seeds testing hyperparameters.

Model Batch Lr Epochs

MARBERT 32 1e-4 6
AraBERT 32 1e-4 8
CAMeLBERT 32 2e-05 3

Table 10: Hyperparameters for AraBERTv0.2-Twitter (An-
toun et al., 2020), MARBERTv2 (Abdul-Mageed et al., 2021a)
and CAMeLBERT-mix (Inoue et al., 2021).

A.4 Percentage of correctly classified
sentences

Table 11 displays the percentage of correctly classi-
fied test data for each dialect by each model, focus-
ing on top five best- and top five worst-performing
dialects. This summary demonstrates how the
MNB model identifies a larger proportion of the
sentences compared to the AraBERT model, both
for the top five best and weakest results. The table
confirms the models’ differences in proficiency on
various dialects, the most interesting example be-
ing the AraBERT model’s high accuracy of 80% in
predicting the MSA sentences, which is not among
the top five results for the MNB model.

AraBERT MNB

1. MSA (80.0%) MOS (84.0%)
2. ALG (75.5%) ALG (80.5%)
3. MOS (75.0%) TRI (78.0%)
4. ALX (72.0%) ALX (76.5%)
5. SAN (71.5%) DOH (74.5%)

22. JER (55.5%) SAL (61.0%)
23. AMM (52.0%) JER (61.0%)
24. DAM (50.5%) AMM(55.0%)
25. MUS (49.5%) CAI (50.5%)
26. CAI (47.0%) MUS (47.0%)

Table 11: The five top and bottom dialects based on percent-
age of sentences predicted correctly by each model.

A.5 Cities covered in the MADAR corpus
In Table 12 we give the full list of all cities covered
in the MADAR corpus, as well as the abbreviations
of their names used throughout the paper.

Dialect city Abbr. Country Region

Damascus DAM Syria Levant
Aleppo ALE
Beirut BEI Lebanon
Amman AMM Jordan
Salt SAL
Jerusalem JER Palestine

Muscat MUS Oman Gulf
Doha DOH Qatar
Riyadh RIY KSA
Jeddah JED
Baghdad BAG Iraq
Mosul MOS
Basra BAS

Sanaa SAN Yemen Gulf of Aden

Tripoli TRI Libya Maghreb
Benghazi BEN
Tunis TUN Tunisia
Sfax SFX
Algiers ALG Algeria
Rabat RAB Morocco
Fes FES

Cairo CAI Egypt Nile basin
Alexandria ALE
Aswan ASW
Khartoum KHA Sudan

Table 12: The cities covered by MADAR-26 with correspond-
ing country and region as defined by Bouamor et al. (2018).
The cities included in MADAR-6 are marked with bold.

A.6 Most frequently confused pair of dialects

Figure 5: Distribution of duplicate and misclassified dupli-
cate sentences for each dialect in the MADAR-26 test set.

As previously mentioned, the distribution of the
duplicates is skewed. As can be seen from Table
5, Jerusalem, Salt, and Damascus (from the Lev-
ant region) are the dialects with most duplicates
with over 30 sentences each. While MSA, Mo-
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Category Dialect pair Frequency

Union RAB, FES 109
TUN, SFX 100
BAG, BAS 86
CAI, ASW 85
DAM, ALE 61
MSA, MUS 58

Int-S RAB, FES 36
TUN, SFX 30
DAM, ALE 25
BAG, BAS 23
CAI, ASW 22
DAM, BEI 20

Int-D RIY, JED 14
MSA, MUS 13
BAG, BAS 13
SAL, AMM 11
JER, AMM 11
JER, BEI 11

Unique AraBERT RAB, FES 39
TUN, SFX 32
BAG, BAS 30
ASW, CAI 30
JER, AMM 19

Unique MNB RAB, FES 28
TUN, SFX 28
MSA, MUS 26
BAG, BAS 24
ASW, CAI 18

Table 13: The five most frequently occurring pairs of dialects
in each category. The frequency is based on whether the two
dialects occur together, either where d1 is the correct dialect
and d2 is the predicted dialect, or where d2 is the correct
dialect and d1 is the predicted dialect. Dialect pairs that are
not from the same country are marked with bold.

sul, Algiers, Rabat, Sfax, and Sanaa have less than
ten each. It is quite clear that having duplicate
sentences confuses the models, as the majority of
duplicates were actually misclassified.

We report on occurrences where a pair of dialects
appear together, either as a gold label or as the pre-
dicted label, to inspect which dialect combinations
are most frequently confused. The results for each
category are presented in Table 13, and show how
the most frequently confused dialect pairs are city
dialects from the same country. The two Moroccan
city dialects Rabat and Fes are the overall most
frequently confused dialect in all categories except
for the INT-D category. The high frequency be-
tween them might be explained by the high lexical
overlap in terms of shared tokens in the training
data, as reported in Section 3.

The dialect pairs that are not from the same coun-
try are highlighted in bold, and they all belong to

the Levant region. However, there is one exception -
the MSA and Muscat pair, which occur together 58
times. Interestingly, this combination only occurs
in the INT-S and the Unique MNB category, in ad-
dition to the union of misclassifications, which sug-
gests that the MNB model might contribute more
to this confusion than the AraBERT model.

The INT-D category stands out from the oth-
ers in two ways. Firstly, the frequency of each
pair is significantly lower compared to the other
categories, suggesting that this subset of misclassi-
fications might have less dialect-specific features.
Secondly, it exhibits three dialect pairs that are not
located in the same country.
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