
Proceedings of the The First Arabic Natural Language Processing Conference (ArabicNLP 2023), pages 418–422
December 7, 2023 ©2023 Association for Computational Linguistics

Simplify: Automatic Arabic Sentence Simplification using Word
Embeddings

Yousef SalahEldin
German International University,

New Administrative Capital, Egypt
yousef.hamouda@student.giu-uni.de

Caroline Sabty
German International University,

New Administrative Capital, Egypt
caroline.sabty@giu-uni.de

Abstract

Automatic Text Simplification (TS) involves
simplifying language complexity while preserv-
ing the original meaning. The main objective
of TS is to enhance the readability of complex
texts, making them more accessible to a broader
range of readers. This work focuses on develop-
ing a lexical text simplification system specif-
ically for Arabic. We utilized FastText and
Arabert pre-trained embedding models to cre-
ate various simplification models. Our lexical
approach involves a series of steps: identifying
complex words, generating potential replace-
ments, and selecting one replacement for the
complex word within a sentence. We presented
two main identification models: binary and
multi-complexity models. We assessed the effi-
cacy of these models by employing BERTScore
to measure the similarity between the sentences
generated by these models and the intended
simple sentences. This comparative analysis
evaluated the effectiveness of these models in
accurately identifying and selecting complex
words.

1 Introduction

Automatic Text Simplification (TS) aims to make
text less linguistically complex without changing
its meaning or original information. This involves
rewriting a complex text by performing various edit
operations such as deletion, replacing words, split-
ting sentences, and changing the order of words.
These actions are part of the TS natural language
processing task (Al-Thanyyan and Azmi, 2021).

TS can benefit individuals who struggle with
reading and writing, such as those with low literacy
skills, dyslexia, or learning a new language. Dif-
ferent simplification techniques can be employed
depending on the desired purpose and the end user.
Additionally, TS can enhance written communica-
tion by ensuring that the target audience compre-
hends the intended message. (Rello et al., 2013).
In addition, automated systems for simplifying text

can help make the language more accessible to in-
dividuals who are not fluent in it or have limited
proficiency.

Detecting text complexity is crucial in TS sys-
tems as it helps determine if the text needs to be
simplified. It is also helpful in evaluating the re-
sults generated by the simplification system. TS
systems primarily depend on syntax or lexical sim-
plifications. (Shardlow, 2014).

Text simplification is related to techniques such
as creating paraphrases, summarizing text, and ma-
chine translation in Natural Language Processing
(NLP). Many strategies and evaluation methods
used by Text Simplification are derived from these
areas. In the past, rule-based syntactic simplifica-
tion was used as a pre-processing step to improve
various NLP tasks like parsing and formulating
questions. (Sikka and Mago, 2020).

Arabic is a widely spoken language consistently
listed as one of the top 10 most spoken languages.
This emphasizes the importance of incorporating
different natural language processing tasks for Ara-
bic (Hatab et al., 2022). We utilized the latest
technologies in the field of NLP to carry out a
straightforward simplification task. We developed
two models for identification purposes: one that
categorizes text as either complex or non-complex
and another that classifies text into various levels
of complexity. As a result, we utilized BERT (De-
vlin et al., 2018) and FastText (Grave et al., 2018)
to create the simplification model. We assessed
the simplification phase using BERTScore (Zhang*
et al., 2020), which involved the two identifica-
tion models. Furthermore, we conducted a manual
evaluation to ensure the quality of the simplified
text.

2 Related Work

Unlike English and other languages, only a few
researchers have explored Arabic Automatic Text
Simplification. In (Al-Subaihin and Al-Khalifa,

418



2011), they presented a text simplification tool
named "AlBaseet". The tool’s structure consisted
of four main stages: complexity assessment, lexical
simplification, syntax simplification, and diacriti-
zation. They followed the LS-pipeline approach to
simplify the text and produced synonyms by creat-
ing a new vocabulary or utilizing ArabicWordNet
(Rodríguez et al., 2008).

The second attempt to construct an Arabic ATS
was made by (Al Khalil et al., 2017). Their semi-
automatic simplification approach was meant to
simplify modern Arabic fiction; a linguist applied
ACTFL (American Council on the Teaching of
Foreign Languages) language proficiency require-
ments for simplifying five Arabic books using a
web-based tool. They intended to create a readabil-
ity measurement identifier using various machine
learning classifiers to develop a graded reader scale
of four levels.

In (Hazim et al., 2022), a method for identify-
ing and visualizing complex words is presented.
The authors’ method combines lexical and syn-
tactic analysis techniques, such as part-of-speech
tagging and dependency parsing, to extract relevant
information and create visualizations highlighting
individual words’ complexity.

A system was proposed in (Khallaf, 2023) that
utilizes linguistic resources and rule-based transfor-
mations to identify complex linguistic structures
and simplify them accordingly.

3 Simplification Approach

There are three stages involved in simplifying com-
plex sentences. Initially, we need to recognize the
complex words used in the sentence. After identi-
fying these complex words, we generate alternative
options for them that are simpler and more com-
prehensible. These alternatives can include syn-
onyms, definitions, or rephrasing of the original
word. Ultimately, we choose the most appropriate
replacement for every intricate term, considering
the surrounding context and the overall message
conveyed in the text.

3.1 Complex Word Identification

The initial phase, known as Complex Word Iden-
tification (CWI), is extremely important because
if a complex word is not identified, it will hinder
the generation of substitutions in the entire LS ar-
chitecture. Therefore, the accuracy of the CWI
step determines the simplification pipeline’s suc-

cess. Multiple steps are carried out on the given
input sentence during this stage.

Initially, we assign a Part-of-Speech tag (POS
tag) to every word. Next, we determine specific
POS tags that may require simplification. We only
focus on examining verbs, nouns, and adjectives
for simplification. Additionally, we subject compli-
cated words to a machine-learning algorithm aided
by a frequency list. Then, we obtain the complex-
ity of each word. Initially, when provided with
a sentence as input, we employ POS tagging to
determine the Part-of-Speech for each word. We
utilized the Farasa modules (Abdelali et al., 2016)
to identify POS Tags in an Arabic sentence.

3.1.1 Pre-processing of Identification Dataset
After identifying the POS Tags of a given word, we
determine whether such a word is complex. We
trained an ML model using an available Arabic
frequency list (Kilgarriff et al., 2014) to train an ML
model. The frequency list contained 8904 Arabic
words and their level of complexity based on the
Common European Framework (CEFR) and the
corresponding frequency.

Due to the large percentage of null values in
the frequency column, we added our frequency
score using Wordfreq1. Also, we added a POS Tag
for each word using Farasa (Abdelali et al., 2016).
Moreover, we added the stem of each word as a
new feature, assuming that we want to know the
complexity of the origin, as different words will
have the same stems, and we removed redundant
rows. The final data contains 4258 unique words
and their corresponding stem, POS tag, frequency,
and label, whether complex or not.

3.1.2 ML Identification Model
We built an ML model that can classify the com-
plexity of each word. We considered building a
model using the C-Support Vector Classification
(SVC). We did try different combinations of in-
dependent features for the ML model. The input
of the model contains the stem, POS Tag, and fre-
quency as independent features. A different ap-
proach was to give the model word itself rather
than its stem, as a stem can vary in complexity
in different instances. Accordingly, we did im-
plement two different identification models. The
first model, Multi-Comp, was implemented by con-
verting CEFR levels from 1 being the most minor
complex to 6 being the most complex, according

1https://doi.org/10.5281/zenodo.7199437

419



to levels ranging between B1 to C2, respectively.
We implemented the second model by categorizing
CEFR levels into two binary formats. We deter-
mined that levels A1 to B1 are classified as not
complex, assigning them a value of 0. On the other
hand, levels B2 to C2 are considered complex and
are given a value of 1. This model is referred to as
the Binary model.

3.2 Generation Substitutions

The second stage is to generate substitutions for the
complex word. We implemented two approaches:
the first was using FastText, and the second was
using BERT.

In the first approach, where we used FastText, we
calculated the cosine similarity between words us-
ing the nearest neighbor module. We implemented
a method to determine five similar candidates for
a given complex word. However, FastText just
produced words in different forms by the nearest
neighbor. For example, the word ‘I. ë

	X’ can be
spoken as "Thahaba" or "Dahab", yet both words
have entirely different meanings.

In the second approach, we used AraBERT (An-
toun et al., 2020).

The masking language model works simply by
masking a specific word in the sentence, and the
model tries to predict what word can fit that place,
given its right and left words. Accordingly, we
utilized such a module for substitution generation.
Once we have a list of complex words in a sentence,
we mask a complex word per time and feed it to
AraBert. AraBert then tries to predict the word
appropriately fitting into the masked area.

3.3 Selection of Substitutions

We have constructed a sentence where we have in-
ferred difficult words and identified five potential
options for each difficult word. AraBERT provides
a list of five words and their respective confidence
scores, which indicate the level of certainty the
model has for each candidate. Therefore, our ini-
tial strategy was to replace complex words with
those with the highest certainty level. Unfortu-
nately, two obstacles arose. The main obstacle was
that sometimes, the word associated with the high-
est certainty rating was the same complex word.
The second point is that we need a way to confirm
whether the substituted word is more straightfor-
ward. Therefore, we deemed it necessary to include
something that ensures the replacement of a com-

plex word with its simpler equivalent.
To guarantee the replacement of the word, we

depended on Gensim, an open-source library (Re-
hurek and Sojka, 2011). Gensim includes a module
that measures the similarity between two words.
We used this module by setting a condition that if
the MLM model identified the complex word as the
top candidate, we would calculate the similarity be-
tween the complex word and the other candidates.
Currently, we possess two distinct identification
models. The initial model evaluates complexity
using a binary system, assigning either a 1 or 0.
On the other hand, the second model assesses com-
plexity using a scale of values ranging from 1 to
6, known as the Multi-Comp Model. We decided
to add another condition for the second model to
solve the second challenge we faced. The condition
states that we will replace the complex word only
if the replaced candidate has a lower complexity
value. Even if it has the same value as a complex
word, we will still keep the complex word to pre-
serve the meaning better. Additionally, we ensured
that the replaced candidate was not any ambiguous
replacement, so we identified what variations the
AraBERT model predicted and eliminated unnec-
essary replacements.

4 Evaluation & Results

In order to evaluate our models, we needed a par-
allel corpus. A parallel corpus is a collection of
complicated texts and their simplified versions in
the same language. To the best of our knowledge,
there is only one available parallel corpus for the
Arabic language (Al-Raisi et al., 2018). The cor-
pora are in different sizes. The small size contains
8 sentence pairs, the medium-sized size contains 69
sentence pairs, and the large contains 765 sentence
pairs.

4.1 Automatic Evaluation

We first evaluated the SVC identification models us-
ing different independent features. After, we evalu-
ated our simplification approach using BERTScore.
This was because BERTScore overcame the limi-
tations of other metrics and supported the Arabic
language.

As shown in Table 1, we tried four different
combinations.

As demonstrated in Table 1, we found that using
the stem of the word in combination with its fre-
quency resulted in an F1-score of 0.88. From this,

420



Features F1 Score
Word/PosTag/Frequency 0.79
Stem/PosTag/Frequency 0.77
Word/Frequency 0.86
Stem/Frequency 0.88

Table 1: Table showing results of different identification
models

we determined that including a POS tag would only
confuse the model, as its variations are quite dif-
ferent in various positions. By comparing features
based on the stem or the words, we found that using
the stem is more effective. It is more accurate to
always provide the model with the stem of a word
rather than providing various forms of the word, as
this can lead to confusion in the model.

To assess the performance of both identification
models in a sentence simplification system, we
opted to examine their effectiveness using varying
sizes of parallel corpora. Small, medium, and large
sizes were evaluated by BERTScore using ’bert-
base-multilingual-cased’, which supports the Ara-
bic language and many different languages. The
results we obtained are shown in Table 2:

Lexical P R F1
Small

Target/Binary-Model 0.836 0.843 0.830
Target/Multi-Comp-Model 0.848 0.858 0.853

Medium
Target/Binary-Model 0.864 0.872 0.868

Target/Multi-Comp-Model 0.876 0.885 0.885

Large
Target/Binary-Model 0.863 0.871 0.867

Target/Multi-Comp-Model 0.858 0.866 0.862

Table 2: Results showing both models on different sizes
of parallel corpora

The findings suggest that the Multi-Comp model
outperformed the Binary Model for both small and
medium-sized datasets in the machine translation
system. However, the Binary Model performed
better than the Multi-Comp model when evalu-
ating extensive corpora. This suggests that the
Binary Model is more adaptable in dealing with
diverse text types. This is likely because large
corpora usually cover a range of topics and text

formats, and the Binary Model is less likely to be-
come confused when replacing words, unlike the
Multi-Comp model, which may struggle with the
complexity involved.

4.2 Manual Evaluation

We aimed to assess our model’s performance by
collaborating with human experts. To achieve this,
we designed a survey comprising 20 randomly se-
lected samples. Each sample included both input
and output texts. The input text was a complex pas-
sage from the parallel corpora, while our models
generated the output text. We evaluated the model
by including 3 features, which are: 1) Meaning
Preservation (MP), 2) Grammaticality (G), and 3)
Simplicity (S) (Laban et al., 2021). We asked their
experts to rate every sample on the three features
on a scale of 1 to 5.

When addressing meaning preservation, we
found that the Multi-Comp model outperforms the
Binary model with a 69% rate of preserving mean-
ing in the output texts. Moreover, it also outper-
formed the Binary model grammar-wise with a rate
of 84% sustaining the grammar in the outputs. The
only measurement that the Binary model leveraged
was the most critical measurement, which is sim-
plicity. Among the output texts, 79% were simpler
than inputs.

The results of the manual evaluation show that
there is a significant trade-off between the three
measurements. The Binary model excels in simplic-
ity but has a downside regarding meaning preser-
vation and grammar. The model prioritizes simpli-
fying complex words over preserving the meaning
of the sentence, which leads to a loss of meaning
preservation and grammar in the output. In other
words, the model sacrifices meaning preservation
and grammar to generate more straightforward text.
This trade-off highlights the challenge of balanc-
ing multiple metrics in natural language processing
tasks.

5 Conclusion and Futute Work

To conclude, we endeavored to develop a lexical
text simplification system for Arabic. We intro-
duced two models for identification: the Binary
Model and the Multi-Comp Model. Furthermore,
we suggested several simplification approaches uti-
lizing FastText and AraBERT embeddings. Our
perception of the lexical system restrictions is
based on the fact that certain of the generated sen-

421



tence structures need to be better-formed, and the
system can incorrectly recognize complex words
from simple ones in the CWI phase. In the future,
it would be beneficial to utilize more recent models
for evaluation.

6 Limitations

Overall, we presented the advantages and disadvan-
tages of our proposed approach. We specifically
emphasized the drawbacks of the CWI step. One
drawback of CWI is its limited ability to accurately
identify complex words, primarily because it needs
a dependable frequency list. Another crucial con-
sideration in our proposed approach is finding a
balance between simplifying a sentence without
compromising its intended meaning and maintain-
ing proper grammar. Furthermore, the availability
of a parallel corpus is crucial for undertaking such
a task, and we need more resources in Arabic.

References
Ahmed Abdelali, Kareem Darwish, Nadir Durrani, and

Hamdy Mubarak. 2016. Farasa: A fast and furious
segmenter for Arabic. In Proceedings of the 2016
Conference of the North American Chapter of the
Association for Computational Linguistics: Demon-
strations, pages 11–16, San Diego, California. Asso-
ciation for Computational Linguistics.

Muhamed Al Khalil, Nizar Habash, and Hind Saddiki.
2017. Simplification of arabic masterpieces for ex-
tensive reading: A project overview. Procedia Com-
puter Science, 117:192–198.

Fatima Al-Raisi, Weijian Lin, and Abdelwahab Bourai.
2018. A monolingual parallel corpus of arabic. Pro-
cedia computer science, 142:334–338.

Afnan A Al-Subaihin and Hend S Al-Khalifa. 2011. Al-
baseet: A proposed simplification authoring tool for
the arabic language. In 2011 International Confer-
ence on Communications and Information Technol-
ogy (ICCIT), pages 121–125. IEEE.

Suha S Al-Thanyyan and Aqil M Azmi. 2021. Auto-
mated text simplification: a survey. ACM Computing
Surveys (CSUR), 54(2):1–36.

Wissam Antoun, Fady Baly, and Hazem Hajj. 2020.
Arabert: Transformer-based model for arabic lan-
guage understanding. In LREC 2020 Workshop Lan-
guage Resources and Evaluation Conference 11–16,
page 9.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Edouard Grave, Piotr Bojanowski, Prakhar Gupta, Ar-
mand Joulin, and Tomas Mikolov. 2018. Learning
word vectors for 157 languages. In Proceedings of
the International Conference on Language Resources
and Evaluation (LREC 2018).

Ali L Hatab, Caroline Sabty, and Slim Abdennadher.
2022. Enhancing deep learning with embedded fea-
tures for arabic named entity recognition. In Pro-
ceedings of the Thirteenth Language Resources and
Evaluation Conference, pages 4904–4912.

Reem Hazim, Hind Saddiki, Bashar Alhafni,
Muhamed Al Khalil, and Nizar Habash. 2022. Ara-
bic word-level readability visualization for assisted
text simplification. arXiv preprint arXiv:2210.10672.

Nouran Abdelrahman Ahmed Khallaf. 2023. An Auto-
matic Modern Standard Arabic Text Simplification
System: A Corpus-Based Approach. Ph.D. thesis,
University of Leeds.

Adam Kilgarriff, Frieda Charalabopoulou, Maria
Gavrilidou, Janne Bondi Johannessen, Saussan
Khalil, Sofie Johansson Kokkinakis, Robert Lew,
Serge Sharoff, Ravikiran Vadlapudi, and Elena Volo-
dina. 2014. Corpus-based vocabulary lists for lan-
guage learners for nine languages. Language re-
sources and evaluation, 48(1):121–163.

Philippe Laban, Tobias Schnabel, Paul Bennett, and
Marti A Hearst. 2021. Keep it simple: Unsupervised
simplification of multi-paragraph text. arXiv preprint
arXiv:2107.03444.

Radim Rehurek and Petr Sojka. 2011. Gensim–python
framework for vector space modelling. NLP Centre,
Faculty of Informatics, Masaryk University, Brno,
Czech Republic, 3(2).

Luz Rello, Ricardo Baeza-Yates, Laura Dempere-
Marco, and Horacio Saggion. 2013. Frequent words
improve readability and short words improve under-
standability for people with dyslexia. In IFIP Con-
ference on Human-Computer Interaction, pages 203–
219. Springer.

Horacio Rodríguez, David Farwell, Javi Farreres,
Manuel Bertran, Musa Alkhalifa, M Antonia Martí,
William Black, Sabri Elkateb, James Kirk, Adam
Pease, et al. 2008. Arabic wordnet: Current state
and future extensions. In Proceedings of The Fourth
Global WordNet Conference, Szeged, Hungary, 387-
405.

Matthew Shardlow. 2014. A survey of automated text
simplification. International Journal of Advanced
Computer Science and Applications, 4(1):58–70.

Punardeep Sikka and Vijay Mago. 2020. A survey on
text simplification. arXiv preprint arXiv:2008.08612.

Tianyi Zhang*, Varsha Kishore*, Felix Wu*, Kilian Q.
Weinberger, and Yoav Artzi. 2020. Bertscore: Eval-
uating text generation with bert. In International
Conference on Learning Representations.

422

https://doi.org/10.18653/v1/N16-3003
https://doi.org/10.18653/v1/N16-3003
https://openreview.net/forum?id=SkeHuCVFDr
https://openreview.net/forum?id=SkeHuCVFDr

