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Abstract
In this paper, we describe a spoken Arabic di-
alect identification (ADI) model for Arabic that
consistently outperforms previously published
results on two benchmark datasets: ADI-5 and
ADI-17. We explore two architectural varia-
tions: ResNet and ECAPA-TDNN, coupled
with two types of acoustic features: MFCCs
and features exratected from the pre-trained
self-supervised model UniSpeech-SAT Large,
as well as a fusion of all four variants. We find
that individually, ECAPA-TDNN network out-
performs ResNet, and models with UniSpeech-
SAT features outperform models with MFCCs
by a large margin. Furthermore, a fusion of
all four variants consistently outperforms in-
dividual models. Our best models outperform
previously reported results on both datasets,
with accuracies of 84.7% and 96.9% on ADI-5
and ADI-17, respectively.

1 Introduction

Dialect identification can be viewed as a special
case of language recognition (Tong et al., 2006;
Vijayan et al., 2018). Both tasks suffer from sim-
ilar performance issues in the presence of back-
ground noise, channel mismatch, prosodic fluctu-
ations, and so on. However, with closely related
dialects having a small difference in both acous-
tic and linguistic feature space, dialect identifica-
tion tasks are substantially more difficult in nature
(Zaidan and Callison-Burch, 2014). The Arabic
language is spoken in various dialects across the
Arab world, in addition to Modern Standard Arabic
(MSA) which is used in official and educational
settings. Speech recognition systems trained on
MSA data generally don’t generalize well to dialec-
tal Arabic and specialized dialectal models may be
needed for improving automatic speech recogni-
tion (ASR) performance in systems developed for
specific populations. Dialect identification could
facilitate the development of dialectal speech recog-
nition systems in various ways, such as by identi-

fying dialectal utterances in large multi-dialectal
corpora, or online dialect identification for routing
utterances to dialect-specific ASR modules.

To enable the development of spoken Ara-
bic dialect identification systems, two benchmark
datasets have been developed: ADI-5, which was
deployed as part of the MGB-3 challenge (Ali et al.,
2017) and ADI-17, deployed as part of the MGB-5
challenge (Ali et al., 2019). For both challenges,
the top systems developed and submitted for the ini-
tial challenges remain the best performing systems
reported in the research literature for these bench-
marks. The ADI-5 training set consists of 10 hours
of dialectal speech from broadcast news, covering
five dialects: Egyptian (EGY), Levantine (LAV),
Gulf (GLF), North African (NOR), and Modern
Standard Arabic (MSA), in addition to two hours
each for development and test sets. The ADI-17
data set consists of 17 dialectal classes for a total
of 3K hours extracted automatically from YouTube.
Roughly 58 hours of data were manually verified
for the development and test sets.

In this paper, we describe spoken dialect identi-
fication models we developed and tested on these
benchmarks, and we report results exceeding the
best performing models submitted to both chal-
lenges. We experimented with the Residual net-
works (ResNet) (He et al., 2015) and Emphasized
Channel Attention, Propagation and Aggregation
(ECAPA-TDNN) (Desplanques et al., 2020) archi-
tectures. Both architectures have been successfully
employed for speaker verification tasks. In addi-
tion, ResNet was used in the best performing di-
alect identification system in the MGB-5 challenge,
and ECAPA-TDNN has been recently explored for
dialect classification, as in Lonergan et al. (2023)
for Irish dialects. In addition, we explored the use
of acoustic features extracted from the UniSpeech-
SAT (Chen et al., 2021) model, which have been
shown to provide improvements in various tasks in
the SUPERB benchmark (Yang et al., 2021). We
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observe large improvements in accuracy by incor-
porating these features into our models. We also
employ data augmentation via additive noise and
speed perturbation, which generally help improve
the generalization of speech classification models.
Our best model result is 84.7% accuracy in the ADI-
5 test set, compared to 75% previously reported as
the best result in Ali et al. (2017). In ADI-17, our
best model achieves 96.9% accuracy compared to
94.9% previously reported as the best model in Ali
et al. (2019).

2 Related Work

In this section, we describe the approaches pro-
posed for ADI tasks in MGB-3 and MGB-5 chal-
lenges, which are used as baseline systems in this
work. We first describe the top two performing
systems for the MGB-3 challenge (ADI-5) (Ali
et al., 2017), followed by the top two systems in
the MGB-5 challenge (ADI-17) (Ali et al., 2019).

The MIT-QCRI ADI system (Shon et al., 2017;
Khurana et al., 2017) combines acoustic and lin-
guistic features within a Siamese neural network
framework to reduce dimensionality based on i-
vectors. They used loss functions involving both
Euclidean and cosine distances and employed sup-
port vector machines as the backend classifier. In
contrast, the University of Texas at Dallas (UTD)
submission (Bulut et al., 2017) to the MGB-3 chal-
lenge fused five systems, incorporating acoustic
and lexical information through various techniques,
including i-vectors, Generative Adversarial Net-
works (GANs), Gaussian Back-end (GB), and BNF
i-vector features. The UTD system obtained the
second-best performance with an overall accuracy
of 70.38% (Ali et al., 2017).

Duke Kunshan University (DKU) submitted four
variants of ResNets with different block sizes and
datasets, which were fused to achieve the best per-
forming system in the MGB-5 challenge (Ali et al.,
2019). The DKU system employed a ResNet with
global statistics pooling and a fully connected layer.
They used the Kaldi toolkit for data augmentation,
including speed-perturbation and datasets such as
MUSAN and RIR. The ResNet system was trained
using cross-entropy loss with a softmax layer, tak-
ing 64-dimensional mel-filterbank energy features
as input. On the other hand, the University of Kent
(UKent) MGB-5 system (Miao and Mcloughlin,
2019) used a neural network architecture combin-
ing Convolutional Neural Networks (CNN) and

Long Short-Term Memory (LSTM) networks with
Time-Scale Modification (TSM). The UKent sys-
tem reported an accuracy of 93.1% on the test set.

While the best performing models reported in the
original MGB-3 and MGB-5 challenges have not
been outperformed in later publications (to the best
of our knowledge), several other studies proposed
model variants and analyzed the performance in
various ways. Regarding the use of pre-trained self-
supervised acoustic models, Sullivan et al. (2023)
recently utilized the XLS-R model (Babu et al.,
2022), which is a multi-lingual pre-trained acous-
tic model that includes Arabic as one of the lan-
guages used in pre-training, and HuBERT (Hsu
et al., 2021), which was pre-trained solely in En-
glish. They fine-tuned dialect classification models
on the ADI-17 dataset, and interestingly, the model
based on HuBERT outperformed the XLS-R-based
model, in spite of the multi-lingual pre-training of
the latter. This indicates that the quality of the fea-
tures extracted from pre-trained acoustic models
may depend more on the self-supervised training
details rather than linguistic coverage. A model out-
performing HuBERT on several benchmark tasks
is the UniSpeech-SAT acoustic model (Chen et al.,
2021), which includes additional objectives on top
of the HuBERT model to facilitate speaker-aware
representations, which also generally embody non-
linguistic characteristics of utterances, such as tone
and emotion.

3 Proposed Model

As the space of possible architectural or feature
variations increases with the increasing volume of
developments in the ML field, exhaustively search-
ing all possible architectures is unfeasible. There-
fore, we draw inspiration from the best performing
models in related literature to reduce the search
space and increase the likelihood of finding a best
performing model. We selected two neural network
architectures, ResNet and ECAPA-TDNN, for their
potential in speech classification tasks. For feature
extraction, we compare classical MFCC features
with the pre-trained UniSpeech-SAT large acoustic
model (Chen et al., 2021) that has been shown to
provide consistent improvements in various Speech
classification benchmarks. Finally, as best models
in previous works typically include a form of en-
semble, we experimented with fusing all model
variants to further improve performance. We de-
scribe the details of these parts in this section.
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3.1 Feature extraction

We experimented with two types of features: classi-
cal acoustic features, namely MFCCs, and modern
acoustic features extracted from a large pre-trained
acoustic model, namely the Universal Speech repre-
sentation learning with speaker-aware pre-training
(UniSpeech-SAT) (Chen et al., 2021). The large
variant of this model demonstrated outstanding per-
formance in various tasks in the SUPERB bench-
mark (wen Yang et al., 2021), including linguistic
and non-linguistic tasks, such as speaker diarization
and emotion recognition. UniSpeech-SAT model
is built on the HuBERT model (Hsu et al., 2021)
with additional self-supervised objectives involv-
ing utterance-wise contrastive learning and utter-
ance mixing augmentation. The speaker-aware pre-
training enabled the model to improve the discrim-
inating capabilities of embeddings learned under
self-supervised learning. In total, the large vari-
ant of UniSpeech-SAT was trained on 94K hours
of English speech data from various sources, in-
cluding Audiobooks and YouTube. We extracted
1024-dimensional features from the pre-trained
UniSpeech-SAT1 model and kept model parame-
ters frozen. For MFCCs, we extract 80-dimensional
features using a window length of 25 ms with a
sliding window of 10 ms and frame-level instance
normalization.

3.2 Network architectures

We experimented with two network architectures
that have been shown to work well in speech classi-
fication tasks: ResNet and ECAPA-TDNN, which
we describe below.

3.2.1 ResNet
We use the ResNet architecture (He et al., 2015)
as our first model. Our model is composed of four
residual networks, each consisting of two convo-
lutional layers in addition a skip connection. We
utilize batch normalization and ReLU activation
functions. Statistical pooling is implemented to
map the variable length feature frames to a time-
invariant representation by aggregating frame level
mean and variance as statistical parameters. The
output of statistical pooling is followed by two feed-
forward layers. We employ the original ResNet34
set-up as described in the original paper (He et al.,
2015), which has 34 2D-convolutional layers or-
ganized into 4 residual network blocks, with each

1https://github.com/microsoft/UniSpeech

block containing a specific number of layers [3, 4,
6, 3], and the convolutional filters for these layers
are [32, 64, 128, 256] respectively. The last feed-
forward layer includes the output dimension of a
number of dialect classes to identify with Addi-
tive Angular Margin (AAM) softmax layer (Deng
et al., 2018) with a scale of 30.0 and margin of 0.4,
trained with cross-entropy loss function.

3.2.2 ECAPA-TDNN
The ECAPA-TDNN architecture (Desplanques
et al., 2020), based on the x-vector architecture
(Snyder et al., 2018), utilizes a Squeeze-excitation
(SE)-Res2Net module in each block. These mod-
ules consist of 1-dimensional convolutional lay-
ers, ReLU activation, batch normalization, and 1-
dimensional Res2Net modules with impactful skip
connections and SE blocks. This design allows
the model to extract hierarchical and global in-
formation from the input features. Additionally,
the architecture incorporates attentive statistical
pooling by calculating channel-dependent frame
attention-weighted statistics (mean and variance).
This process transforms variable-length hidden out-
puts into a time-invariant representation. The repre-
sentation is further processed through feed-forward
layers. Similar to the ResNet architecture, we use
the AAM-softmax as the final layer and train it
with the cross-entropy loss criterion. The model
uses 512 channels in 1-dimensional convolutional
layers, 128 dimensions for SE-Block and attention,
and a scaling factor of 8 for each Res2Block. The
output dimension for feed-forward layers is set to
192, and the last feed-forward layer’s dimension
corresponds to the number of dialect classes.

3.3 Inference Scheme

In our model, we integrate a similarity measure
with our learned classifiers to enhance classifica-
tion performance (Lee et al., 2012; Nguyen et al.,
2013; Roul and Arora, 2017). ResNet and ECAPA-
TDNN are optimized for dialect identification via
softmax, which we augment with a similarity-based
measure based on the final embeddings produced
by the network. For each dialect class, we ran-
domly extract a cohort of 500 samples from the
training set, and we calculate the average cosine
similarity score between the test utterance and the
cohort representing each class. After normaliz-
ing the scores, we combine them with the softmax
scores by averaging them with equal weight (0.5)
and selecting the class with the maximum score.
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4 Experimental setup

4.1 Datasets
We evaluate the dialect identification model on
two Arabic dialect identification tasks: the MGB-
3 ADI-5 dataset (Ali et al., 2017), and the fine-
grained MGB5 ADI-17 dataset (Ali et al., 2019).
ADI-5 training set consists of 13,825 utterances
(53.6 hours), and the test and development sets
consist of 1,524 (10 hours) and 1,492 (10 hours)
utterances, respectively, with each set having ap-
proximately 2 hours of data per dialect class:
Egyptian (EGY), Levantine (LAV), Gulf (GLF),
North African (NOR), and Modern Standard Ara-
bic (MSA). In ADI-17, approximately 3,000 hours
of training data were labeled via distant supervi-
sion into 17 dialect classes using the origin country
of the YouTube videos from which they were ex-
tracted. The testing and development sets contain
∼25 and ∼33 hours of speech, respectively, manu-
ally verified by human annotators.

4.2 Data Augmentation
For data augmentation, we apply additive noise
drawn from the Music, Speech, and Noise corpus
(MUSAN) (Snyder et al., 2015) and the QMUL im-
pulse response dataset (Stewart and Sandler, 2010).
We also apply speed perturbation, where the tempo
is modified by factors of 0.9 and 1.1. All noise aug-
mentation was implemented using the Kaldi toolkit
(Povey et al., 2011).

4.3 Training settings
During the training phase, each model was initially
trained with randomly selected 5-second segments
from training utterances for the first 50 epochs.
Subsequently, the duration of the training segments
was reduced to 4 seconds for a total of 100 epochs
to enable the model to generalize to short-duration
utterances. All systems were trained using the
Adam optimizer with a triangular learning sched-
uler policy and a batch size of 256.

5 Results

Tables 1 and 2 show the performance of our model
variants in ADI-5 and ADI-17 test sets, respec-
tively. Fusion refers to an ensemble model where
scores from all four variants are combined, each
with an equal weight of 0.25. We also show the
performance of the best performing models from
the original challenges, which have not been previ-
ously outperformed to the best of our knowledge.

Table 1: Performance evaluation on MGB-3 ADI-5 test
set (in %) with baseline systems submitted to MGB-3
challenge. UniS denotes the UniSpeech-SAT feature
extraction.

System Features Accuracy Precision Recall
Best systems from (Ali et al., 2017)
MIT-QCRI — 75.0 75.1 75.5
UTD — 70.4 70.8 71.7
ResNet MFCC 74.2 74.1 74.4
ECAPA MFCC 75.3 75.1 75.3
ResNet UniS 80.4 80.4 80.5
ECAPA UniS 82.5 82.6 82.7
Fusion — 84.7 84.8 84.9

Table 2: Performance evaluation on MGB-5 ADI-17 test
set (in %) with baseline systems submitted to MGB-5
challenge. UniS denotes the UniSpeech-SAT feature
extraction.

System Features Accuracy Precision Recall
Best systems from (Ali et al., 2019)
DKU — 94.9 94.9 94.9
UKent — 91.1 91.1 91.1
ResNet MFCC 90.1 90.1 90.1
ECAPA MFCC 92.2 92.2 92.2
ResNet UniS 95.7 95.7 95.7
ECAPA UniS 96.1 96.1 96.2
Fusion — 96.9 96.9 96.9

We observe consistent results in both datasets:
ECAPA-TDNN network consistently outperforms
ResNet, and the models using UniSpeech-SAT fea-
tures consistently outperform those using MFCC
features. Incorporating these pre-trained features
results in 4% to 5% absolute improvement in ac-
curacy for both models. We observe additional
gains of 0.8% to 2% improvement in absolute accu-
racy by fusing all four model/feature combinations.
The highest performance gain is observed by using
UniSpeech-SAT features as input, which leads to
outperforming all previous baselines.

6 Conclusions

This paper described variations of model architec-
tures, namely ResNet and ECAPA-TDNN, employ-
ing two acoustic features: classical MFCCs and
self-supervised UniSpeech-SAT, leading to state-of-
the-art performance in two spoken Arabic dialect
identification benchmarks: ADI-5, and ADI-17.
UniSpeech-SAT features, which are extracted from
a large pre-trained model optimized for acoustic
and speaker variability, consistently demonstrated
superior performance compared to MFCC features.
Despite being pre-trained solely in English speech,
UniSpeech-SAT illustrates transfer learning capa-
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bility by extracting suitable feature representations
for this discriminative task in the Arabic language.
This may also indicate that non-linguistic acous-
tic variability (such as speaking tone, for example)
could play a role in dialect identification. Consis-
tent with previous models from the MGB-3 and
MGB-4 challenge, fusing multiple models results
in consistent improvements of overall performance.

7 Limitations

In this work, we limited our analysis and explo-
ration to two network architectures and two types
of acoustic features. We based our choice on obser-
vations from the current literature on dialect identi-
fication, speech classification, and self-supervised
acoustic models. However, many additional fea-
tures and architectural variations could have been
explored, with additional detailed analysis of the
different combinations. Furthermore, we did not
analyze the acoustic features that are most discrim-
inative in these datasets, which is a complex anal-
ysis that eludes us at this stage, but future work
could explore more on which aspects of an utter-
ance (linguistic, tonal, other) are most useful for
dialect identification.
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