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Abstract

To extract the ‘meaning’ of a gloss phrase, we
build a list of sense-IDs for each word in the
phrase which is in our vocabulary. We choose
one sense-ID from each list so as to maximise
similarity of all the IDs in the chosen subset.
We take the meaning of the phrase in semantic
space to be the weighted sum of the embedding
vectors of the IDs.

1 Introduction

The KSAA Reverse Dictionary shared task is to
find the embedding vector for a word, given a gloss,
or short definition. The two sub-tasks use Arabic
and English glosses.

The task is partly inspired by SemEval-2022
Task 1 (Mickus et al., 2022), which provided train-
ing data for English, Spanish, French, Italian, and
Russion. For that task there was an additional sub-
task, generating a gloss from a word-embedding,
which proved difficult to score; BLEU scores,
which are typically used to measure the success of
machine translations, seemed to perform poorly to
compare the adequacy of generated glosses.

The individual records in the training data for
the task provide: an ID, which corresponds to a
particular sense of a word; the word; a gloss or defi-
nition; and two embedding vectors, a SGNS and an
Electra vector. The SGNS vector is a word-based
skipgram vector, so that each sense of the word has
the same vector; the Electra vector is a transformer
context-based vector, and each ID has a different
vector.

Thus in all there are four subtasks: to find the
SGNS or Electra semantic-vector from the Arabic
or English words of the gloss. For neither language
are there sufficient training data to completely pop-
ulate the vectors of the gloss. There are several
possible reasons for this problem. Considering just
the problems for Arabic gloss phrases:

1. Some of the missing words are particles,
which would probably appear in a list of stop-
words; for these, the absence of a vector is a
feature, not a problem.

2. Some missing words are due to the presence
or absence of vowel and gemination marking.
A correctly spelled Arabic word can appear
with complete vocalization, with partial vo-
calization, or with no vocalization at all.

3. Several particles, including the prepositions
ب , ف , the pronouns ,ه اه , مه , مك , and

the definite article لا , never stand alone, but
always appear affixed to another word.

4. Arabic is an inflected language. Adjectives
are inflected for gender, verbs for tense, num-
ber, person, and gender, nouns for number and
case. Some of these inflections are regular,
and others are not.

5. Some words just do not appear in the training
data. The test words are unsurprising exam-
ples, but of course many others are also ab-
sent.

English has similar problems, but we spent more
attention on Arabic.

An apparently obvious part of the solution might
be to fine-tune a pre-trained transformer on the
glosses, and then attempt to generate the word
gloss by a transformation on the phrase embed-
ding. This idea was used for baseline, and in
the SemEval-2020 task by for example, (Li et al.,
2022).

However, in the current task, we are restricted to
less than fifty thousand training examples. Train-
ing a transformer on so little data seems problem-
atic. Using an externally pre-trained transformer
means bringing in external data, not in the spirit of
a closed task.

We wanted to try a simple data-processing ap-
proach.
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Table 1: Data files and data

File name # records # IDs # # words mean(max) gloss words
ar.train.json 45200 45058 38498 7.03 (99)
ar.en.train.json 2862 2214 1697 11(65)
en.complete.with.id.json 63596 63596 26068 11.777 (129)

2 Data

We used the data files described in table 1,
which were provided by the task organiz-
ers. The ar.train.json and the dev and
test files are based on the LMF Contempo-
rary Arabic Dictionary(Namly, 2015). The
en.complete.with.id.json file is from the
SemEval-2022 Task 1 data. Each entry in the
train file is a definition for one sense of an
Arabic word, with a short definition or gloss. The
examples of usage found in the LMF dictionary,
and sometimes part of the definition, have been
dropped. Each of the IDs mentioned in Table 1 is
a single sense. Although some senses are defined
several times, only twenty percent of the words
have more than one sense appearing in the train
file. Although some definitions are quite long, one
to three word definitions are quite common.

ar.en.train.json is used only to construct
a cross-lingual transform(Artetxe et al., 2018;
Brychcín et al., 2019) from the English embed-
dings of en.complete.with.id.json to the
Arabic space of the ar.ae.train.json file.
Since every entry in ar.ae.train.json has
an enId attribute corresponding to an entry
in en.complete.with.id.json, this does not
change the amount of English data available for in-
terpreting the gloss.

There are 35224 number of distinct tokens used
for the English glosses, while the total English vo-
cabulary of en.complete.with.id.json is only
26068 words. Doing a set subtraction, we see that
the larger set contains many capitalized and in-
flected words, but also a number of words like chat,
majestic, dilemma, xanax, SiO2, inactivate, that is,
both technical terms, and relatively common words
which happened not to be included in the dictio-
nary at hand. Doing the subtraction the other way,
we see that 15212 of our vocabulary words do not
occur in the glosses.

We considered using a separate, larger English
embedding, of which there are many available,
with a cross-lingual transform, which could be eas-
ily prepared for the SGNS vectors based on com-

mon vocabulary. But it wasn’t clear that ’open’
as intended by the organizers included this option,
and matching senses for the Electra embedding
seems to be exactly the problem on which we are
already working.

Similarly extending the Arabic vocabulary has
the same problems, except that the organizers
used the term ’closed’ for subtask 1, which would
clearly preclude doing it.

3 System

Our system1 does not use a neural network. It
uses ar.train.json for its Arabic vocabulary,
and en.complete.with.it.json for its English
vocabulary. It uses ar.en.train.json, which
contains both Arabic and English words, in order
to build a cross-lingual transform, so that the vec-
tors built in the English space with English glosses
can be converted to vectors in one of the Arabic
spaces.

In addition to copying the ar.train.json
sense dictionary, making a table of all the sense-
IDs for each wordform, we also build a dictionary,
swords, of derived values which points into that
table. This includes several kinds of values:

• Adjusted Arabic words, with no vowels, only
unmarked alifs (�), all trailing yaas (�) as
alif maqsura (�). This follows the conven-
tion adopted by Zahran et al. (Zahran et al.,
2015a). This discards more information than
probably necessary, but it works.

• Inflected verbs. The training files contain a
part-of-speech field, and for one-word verbs
we build adjusted inflected forms. Many of
the verbs in the data come with indicated
prepositions, given with an object pronoun.
For these situations, we inflected the first of
the two words in the definition. Sometimes
this is not the verb, and as a result will never
result in a meaningful match. We didn’t build

1Code available at
github.com/StephenETaylor/KSAA-RD
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inflected nouns or adjectives during the test
phase, nor did we consider one-letter prepo-
sitions, conjunctions or possessive or object
pronouns.

• Single-word Arabic glosses. For this case we
assume that the gloss is a near-synonym, and
that the vocabulary is possibly increased by
adding it as one.

Each of these substitute words points to one or
more words for which we have a least one ID and
embedding vector. [Although English offers simi-
lar possibilities, we did not build a substitution list
for English before the end of the test period.]

3.1 Processing example
The processing loop for Arabic glosses builds a
list of lists of possible IDs. For example, the first
’word’ in ar.dev.json is هيلعنََّنحت . (Although
there are two words here, this is an example of the
data file following the dictionary practice of pro-
viding the correct preposition to use for this sense
of the word.)

The gloss for this word gives three synonyms,
‘ َحرت َطعت،مّ همحروهيلعفّ ’. Starting at the beginning,
‘ َحرت مّ ’ is not in the vocabulary, but ‘ محرت ’ is in the
swords list, with three possible vocabulary items,
[‘ َحرت هقيدصىلعمّ ’ , ‘ اًنلافهُللامحِر ’ , ‘ امًيتيمحِر ’]. The
first of these, ‘ َحرت هقيدصىلعمّ ’ has two IDs, that is,
two senses, [‘ar.19347’, ‘ar.19348’]. The second
has the same two senses, and the third has the sin-
gle sense [‘ar.19344’]. We combine these senses
into a single list, and move to the second word of
the gloss.

The second word is ‘ َطعت فّ ’, which has neither a
dictionary entry or an swords entry, so we append
nothing to our list of gloss IDs.

Continuing to the third word of the gloss, ‘ هيلع
’, it is not found in the dictionary, but there is an
swords entry, [‘ مدَهيلع ’, ‘ موقلاةَيْلعِ ’, ‘ ةَّيِّلعِ ’],
and these three entries each has a sense-ID, con-
tributing in all [‘ar.16839’,‘ar.35831’,‘ar.35683’],
so that the possible gloss senses so far are
[[‘ar.19347’, ‘ar.19348’, ‘ar.19344’],[‘ar.16839’,
‘ar.35831’, ‘ar.35683’]].

The last word of the gloss, and the third syn-
onym, is ‘ همحرو ’, which doesn’t have a vocabulary
entry, because it has both an object pronoun and a
leading conjunction. It should have an swords en-
try, but we didn’t implement those features, so it
contributes nothing to the possible gloss IDs.

The next step is to choose the most-compatible
IDs. The routine in our system which does this is
called maxids(), and it is the major bottleneck in
processing. For this case, we would need to check
only the cosines between nine pairs of possibili-
ties, but our routine can efficiently handle more
complex cases. Instead of enumerating all the pos-
sible sets of IDs, it randomly chooses a starting
point from the cross product of the possibilities,
and changing one ID at a time, greedily descends
to a local minimum. It repeats this process up to a
hundred times, and returns the least of the minima
it has encountered, as well as a list of the values
each ID contributes to the sum.

For this example, maxids returns ([‘ar.19348’,
‘ar.16839’], [0.98, 0.98]) so that the angle between
the IDs is a bit less than π/3. (This angle is for
the Electra embedding.) Since there are only two
IDs, and one angle, both IDs contribute equally.
We use the angles to build weights for the vectors,
with larger angles getting smaller weights. In this
case both weights are equal.

Finally, we add the weighted vectors for
ar.19348 and ar.16839 and normalize the result;
this is our approximation to the vector for the gloss,
and thus the best guess at the vector for the original
word. Since this was from the dev file, and not the
test file, we can compare the guess to the correct
vector.

4 Results
user MSE cos rank

Subtask 1 SGNS
BASELINE 0.04922 0.26226 0.50167
bkhmsi 0.029 (1) 0.611 (1) 0.253 (1)
UWB 0.052 (2) 0.375 (3) 0.438 (3)
Ibraham Khurfan 0.065 (3) 0.394 (2) 0.308 (2)
SerrySibaee - (4) - (4) - (4)

Subtask 1 Electra
BASELINE 0.22105 0.5409 0.36222
bkhmsi 0.150 (1) 0.649 (1) 0.226 (1)
Ibraham Khurfan 0.236 (2) 0.519 (2) 0.281 (2)
SerrySibaee 0.236 (2) 0.519 (2) 0.281 (2)
UWB 0.266 (3) 0.416 (3) 0.466 (3)

Subtask 2 SGNS
BASELINE 0.04922 0.26226 0.50167
UWB 0.046 (1) 0.217 (2) 0.489 (2)
bkhmsi 0.053 (2) 0.400 (1) 0.320 (1)

Subtask 2 Electra
BASELINE 0.22105 0.5409 0.36222
bkhmsi 0.170 (1) 0.659 (1) 0.127 (1)
UWB 0.266 (2) 0.479 (2) 0.452 (2)
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Figure 1: Scatter plot of cos vs MSE

Our system was second in rank [that is, last] for
both SGNS and Electra on sub-task 2, and third
and fourth on sub-task 1. It was slightly better
than BASELINE on subtask 1, but not on subtask
2. Our Electra results are consistently worse than
SGNS.

For individual normalized vectors, there is a
straightforward relation between squared error and
cosine:

SE = 2− 2cosθ (1)

Where θ is the angle between vectors U and V and

SE =
∑

i

(ui − vi)
2 (2)

Neither SGNS nor Electra vectors were pre-
sented normalized, but the scoring code(AlSham-
mari, 2023) shows the MSE computed on normal-
ized vectors.

However, it is clear from our limited data that
although MSE and mean cosine tend to move in
opposite directions, systems with similar MSE can
have very different mean cosines. See the graphed
values for the leaderboard systems in Figure 1.

It’s notable that MSE is generally lower for
SGNS; a possible explanation is that the SGNS
space has fewer vectors, so getting the sense
wrong, but the word right, can happen more often.

Looking over our submissions, we deployed the
vector weighting feature on August 20. Those runs
were very slightly better than the runs on August
18, but typically only in the fourth or fifth digit of
the rank measure.

5 Discussion

5.1 Similarity measures
The central idea in our system is to maximize the
similarity of the senses in the gloss. Our measure
of (dis)similarity, for each word-sense in the gloss,
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Figure 2: Scatter plot of cos versus rank-simlarity

is the sum of the angles with all the other word-
senses in the gloss.

We chose to minimize sum of angles, instead of
maximize sum of cosines, because adding angles
seems to make more intuitive sense than adding
cosines. The best measure, and the one which
would relate most closely to the rank-score on
which the systems were measured, might be a rank-
similarity, a measure of what fraction of the vocab-
ulary is further from word-sense one than word-
sense two is. Like cosine, this would have a best
value of 1. We guessed that computing that rank
would be quite a bit more expensive than comput-
ing the arc-cosine, and the maxids() routine which
would call it is already the bottleneck in evaluating
the gloss.

During the post-evaluation period, we tested
precomputing tables of such ranks for each vec-
tor. Tables of 100 cosines, one at each percentile
of rank, take up about a third of the amount of
space used for the table of vectors. This seems like
a reasonable amount of space; computing the val-
ues, which requires computing the cosine between
all pairs of vectors, takes only about 17 minutes
on a laptop, and can be done once and the (sum-
marized, condensed) results saved to file. (The
unsummarized results for 4.5E4 vectors would be
20E8 cosines or 8 GB as float32 values, an incon-
venient size to cache.)

A scatter plot of cosine versus rank-similarity,
showing the cached 100 points for 100 sample IDs,
is shown in Figure 2. The graph illustrates that
each vector has a slightly different curve, (although
it seems possible that each curve could be de-
scribed with a small number of parameters, prob-
ably much less than 100) and also hints at the fact
that the rank-similarity is not symmetric: the rank-
similarity between two vectors depends on the co-
sine between them, which is symmetric, and which
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vector you use for counting the neighbors, which is
not symmetric. If we draw a horizontal line at any
cosine value in the graph, it is clear that depending
on which of the package of curves we stop, we can
get a wide range of possible values for the rank-
similarity. Averaging rank-similarity measured in
both directions would give a symmetric measure.

Our results with the rank-similarity scheme were
a little worse than with the angle scheme. One ap-
parent problem is that the exciting part of the rank-
similarity is in the last percentile, and our imple-
mentation uses linear interpolation, which is least
accurate at the two edges. (Note the ends of the
curves in Figure 2.) A second problem is that, like
cosines, but unlike angles, this measure has less
relative change as the limit of 1.0 is approached. So
a value of 90, corresponding to 4500 close words,
is within 10% of 99.9, corresponding to 45 close
words, which is a much more interesting value. In
contrast, the nearest neighbor is often at an angle
of π/6 , while an angle of π/3 is likely to include
about 1% of the closest words. The angle differ-
ence is larger exactly where we want it to be.

5.2 English glosses versus Arabic glosses
We spent more effort on Arabic words than English
ones. Possibly more effort on English might have
improved the swords list and given better vocabu-
lary coverage for English glosses. In any case, the
Arabic results for our system are currently better
than the English ones.

5.3 SGNS vs Electra
Our system performs much better for SGNS than
for Electra. An important reason is that all the
SGNS vectors for the senses of a word are the
same, and so when we encounter a word in a gloss,
we automatically get the sense vector right. Our
sword scheme adds possible synonyms without re-
gard for the context in which they are encountered.
We could use the maxlis() scheme on glosses to
choose sense-IDs before adding any sword entries
based on them, if we did this on a second pass over
the data. However, one of the benefits of the sword
scheme is that those added synonyms give better
gloss coverage, so a third pass, etc., might also be
indicated.

5.4 Gloss coverage
A primary problem with our approach (and prob-
ably for everyone) is dictionary coverage of the
glosses. Many words in the glosses are not present

in the training data. Our simplified and substitute
words (swords) list tries to deal with this problem
by adding inflected forms and some words from the
glosses as aliases for training words defined with
vectors. Both of these seem like reasonable ideas,
but at present we still drop about 50% of the gloss
words. A more thorough and systematic approach
to adding aliases might have increased our success
rate.

Using the development data as extra training
data for the test phase would probably also have
helped.

6 Conclusion

Our earnest thanks go out to the organizers, who
prepared a substantial dataset for this workshop.

Although our approach was not completely suc-
cessful, it did better than the baseline for Subtask
1, Arabic definitions with SGNS vectors.

We have discussed several variations in Section
5, some of which might improve the system perfor-
mance on the other three variations of the task.

We look forward to seeing designs of other
workshop participants.
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