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Abstract

A Reverse Dictionary is a tool enabling users
to discover a word based on its provided defini-
tion, meaning, or description. Such a technique
proves valuable in various scenarios, aiding lan-
guage learners who possess a description of a
word without its identity, and benefiting writ-
ers seeking precise terminology. These scenar-
ios often encapsulate what is referred to as the
"Tip-of-the-Tongue" (TOT) phenomena. In this
work, we present our winning solution for the
Arabic Reverse Dictionary shared task. This
task focuses on deriving a vector representation
of an Arabic word from its accompanying de-
scription. The shared task encompasses two dis-
tinct subtasks: the first involves an Arabic def-
inition as input, while the second employs an
English definition. For the first subtask, our ap-
proach relies on an ensemble of finetuned Ara-
bic BERT-based models, predicting the word
embedding for a given definition. The final rep-
resentation is obtained through averaging the
output embeddings from each model within the
ensemble. In contrast, the most effective solu-
tion for the second subtask involves translating
the English test definitions into Arabic and ap-
plying them to the finetuned models originally
trained for the first subtask. This straightfor-
ward method achieves the highest score across
both subtasks.1

1 Introduction

The Tip-of-the-Tongue phenomena, as explained
by the authors of Brown and McNeill (1966), is
“a state in which one cannot quite recall a familiar
word but can recall words of similar form and mean-
ing”. A straightforward way to solve this problem,
is to have a reverse dictionary; a system that takes
a description provided by the user as an input, and
outputs the word (Bilac et al., 2004).

The initial solutions were heuristic-based. In
their work, Shaw et al. (2013) suggested a method
∗ Equal Contribution
1 https://github.com/bkhmsi/RashidRevDict

where the tokens in the user-provided description
are compared to all dictionary definitions. The sys-
tem then returns the word with the highest token
match. Their method implements different retrieval
efficiency tweaks to overcome the issue of exces-
sive time complexity resulting from the comparison
operation.

Recent approaches employ neural-based models,
since that are capable of better capturing the seman-
tics of an input description, in contrast to the earlier
solutions mentioned, which relied on word overlap.
In their work, Hill et al. (2015) suggest utilizing a
recurrent-neural-network (RNN) to generate a vec-
tor representation based on the provided definition.
This representation is then compared against a set
of word embeddings to select the closest word to
return to the user.

The issue of low-frequency words is one of the
main challenges of building a reverse dictionary,
since these words are the ones that are the less
trained and thus have a worse representation com-
pared to more frequent words. Zhang et al. (2019)
tackle this problem by handcrafting predictors that
extract features inspired by the thought process
undergone by humans to get a word given its de-
scription.

Polysemy, which is the coexistence of many pos-
sible meanings for a word, is another obstacle when
building reverse dictionaries. Most of the previ-
ously mentioned solutions rely on a a set of static
word representation builders such as Word2Vec,
which hinders the accuracy of such models. This
motivates the use of pretrained language models
to produce embeddings that vary based on context.
The authors of Yan et al. (2020) probed BERT (De-
vlin et al., 2019) to predict the word representation,
alleviating the issue of polysemy.

Reverse dictionaries can also be cross-lingual;
where one aims to retrieve a word in language X
based on a description provided in language Y. Em-
ploying any of the previously mentioned solutions
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Example Word Example Definition

Task 1 éJ
Ê«
�	á��	�m��' é�Ôg �P ð éJ
Ê« 	 �¢ª��K , Ñ �kQ��K

Task 2 �ÐC
� �
¾Ë@ P ��ð 	P To knowingly and willfully make a false statement of witness while in court

Table 1: Word-Definition Pairs Illustrating Subtasks 1 and 2.

for a multilingual context necessitates the align-
ment of word vectors across different languages, a
challenging task even for two languages, not to
mention when dealing with multiple languages.
The authors of Chen et al. (2018) built a collection
of bilingual reverse dictionaries using Wiktionary.
Other solutions used existing multilingual models,
such as mBERT, to reduce the issue of cross-lingual
alignment Yan et al. (2020).

The shared task of the Arabic Reverse Dictionary
provides a set of words, along with their SGNS
(Mikolov et al., 2013) and ELECTRA Clark et al.
(2020) vector representations, and their correspond-
ing definition, in both Arabic and English. A set
of Arabic-English word mappings is also supplied
to help in building an alignment scheme. The goal
of subtask 1 is to predict the SGNS and ELECTRA
embeddings of the set of Arabic words, given the
input Arabic definition. Subtask 2 has the same
goal except that an English definition is provided
instead of Arabic.

The shared task setup poses multiple obstacles
that our solutions attempt to overcome: (1) the
small size of the set of aligned words, (2) the black-
box nature of the SGNS and ELECTRA word em-
bedding generation pipeline.

Our solution simply finetunes multiple Arabic
BERT-based pretrained models to predict an em-
bedding for each word.

2 Datasets

The provided data can be categorised into three
distinct datasets.

1. The Arabic Language Dictionary is a dataset
with 58, 010 entries, where each of datapoint
contains a word, an ELECTRA embedding,
an SGNS embedding, a gloss (definition
of the word), a POS tag, an ID and an
English ID where applicable to link with

the alignment data.

2. The English Language Dictionary dataset has
63, 596 datapoints, with the same columns as

the Arabic Dictionary except that the embed-
dings are obtained from English words and
not Arabic.

3. The English Arabic Mapped Dictionary has
4, 355 datapoints in total. Each point has the
Arabic and English glosses, Arabic and En-
glish IDs, Arabic and English words, and the
Arabic embeddings.

The first and third datasets are split into train ,
dev and test sets by the organizers. The En-

glish language dictionary however, isn’t provided
with such divisions. Therefore, we manually split
the English dictionary ourselves. Table 2 shows the
split sizes of each dataset. The English dictionary
was divided into two sets only, train and dev ,
since there was no need for a test set in our case,
and no submission to be made with this dictionary.

Train Dev Test

Ar Dict 45,200 6,400 6,410
Ar-En Map 2,843 299 1,213
Ar Dict 50,877 12,719 N/A

Table 2: Statistics about Data Sizes

3 System

3.1 Subtask 1: Arabic Definitions to Arabic
Embeddings

In this subtask, we finetune four Arabic BERT-
based pretrained models. Namely: (1) MARBERTv2
(Abdul-Mageed et al., 2021), (2) AraBERTv2 (An-
toun et al., 2020), (3) CamelBERT-MSA and (4)
CamelBERT-Mix (Inoue et al., 2021). Each model
is finetuned twice for this subtask, once for predict-
ing the corresponding SGNS embedding for each
input definition, and the other time for predicting
the corresponding ELECTRA embedding. The final
representation is computed by taking the embed-
ding of the CLS and passing it through a two-layer
dense network with a Tanh activation function in
between. The model is trained by optimizing the
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Mean Squared Error (MSE) between the ground-
truth representation and the predicted one. For the
learning rate scheduling policy, we used OneCy-
cleLR (Smith and Topin, 2017). Throughout the
finetuning process, we evaluate on the devset af-
ter every epoch, and take the checkpoint with the
highest cosine similarity score. Table 3 shows the
values of the hyperparameters used during finetun-
ing.

To identify the optimal ensemble of our fine-
tuned models, we select the model combination
that exhibited the highest performance on the de-
vset, determined by the cosine similarity metric, as
our final solution. Tables 5 and 6 in the Appendix
shows the performance of all model combinations
on the devset. The final representation of each
ensemble is taken by averaging the predicted em-
bedding of each for a given input definition.

Hyperparameter Value

Batch Size 100
lr 1.0e-4

Learning Rate Sched. OneCycleLR
pct 0.2

finitial 25
ffinal 100

Weight Decay 1.0e-4
Epochs 20

Optimizer AdamW

Table 3: Hyperparameters Used

3.2 Subtask 2: English Definitions to Arabic
Embeddings

Subtask 2 differs from subtask 1 by utilizing an
English definition as input instead of Arabic, with
the objective of generating the embedding repre-
sentation of the Arabic word as output. Several
approaches were explored in pursuit of optimizing
the system for superior output embedding quality.

Cross-Lingual Alignment This method involves
a two-step learning process. First, we leverage the
English Language Dictionary to learn to generate
the English embeddings from their corresponding
English definition. Then the second stage utilize
the English Arabic Mapped Dictionary to learn an
alignment function between both language repre-
sentations. Figure 1 shows an illustration of this
model. The motivation behind this is that the En-
glish pretrained models often yield superior repre-

sentations compared to their Arabic counterparts
due to their training on larger corpora. Here, we
used RoBERTa (Liu et al., 2019) to obtain English
embeddings, following the same procedure as in
subtask 1, and then utilizing an autoencoder model
to transform these embeddings into their Arabic
representations. Both the encoder and the decoder
of the Autoencoder consist of two linear layers with
ReLU in between. The input and output dim is 256
and the hidden dim is 32. However, the efficacy of
converting an English representation into an Arabic
one is contingent upon the quantity of aligned data
points available in the provided resources.

Translate-Test Our solution for subtask 2 that
yielded the best results was inspired from (Artetxe
et al., 2023). In their work, they show that machine
translating a non-English test sets into English and
then running inference on a monolingual English
model can exhibit superior performance compared
to using a multilingual model, such as XLM-R (Con-
neau et al., 2020), on the original data zeroshot.
Similarly, we use the Arabic translation of the En-
glish definitions as input to our finetuned Arabic
models. This approach enables the reuse of mod-
els and solutions that were initially developed for
subtask 1 .

4 Results

Table 4 displays the results obtained on the test set
across all metrics reported in the shared task. Inter-
estingly, the best ensemble on both subtasks was
done by taking the average of the CamelBERT-MSA
and MARBERTv2 output embeddings.

4.1 Subtask 1
Table 5 shows the results on the devset that we can
use for further analysis. It clearly illustrates that
ensembles, regardless of the combination, enhance
the scores in comparison to using individual mod-
els. Furthermore, it is evident that results involv-
ing CamelBERT-Mix tend to be less favorable than
those involving CamelBERT-MSA. This observation
aligns with the dataset’s nature, which predomi-
nantly features MSA definitions, thus minimizing
dialectal content.

Through examining the scores of ensembles
and systems incorporating MARBERTv2 compared to
those that do not, we can conclude that MARBERTv2
stands out as the most effective model to employ or
include in an ensemble among all the tested Arabic
pretrained transformers.
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Subtask Embedding MSE Cosine Rank P@1 P@10

Subtask 1
Electra 0.152 / 0.161 0.645 / 0.637 0.242 / 0.214 0.031 / 0.034 0.099 / 0.114
SGNS 0.030 / 0.035 0.605 / 0.552 0.254 / 0.281 0.445 / 0.414 0.597 / 0.540

Subtask 2
Electra 0.170 / 0.180 0.659 / 0.624 0.127 / 0.204 0.185 / 0.120 0.407 / 0.355
SGNS 0.053 / 0.048 0.400 / 0.387 0.320 / 0.372 0.312 / 0.316 0.375 / 0.389

Table 4: Results on TestSet / DevSet for Both Subtasks. MSE is Mean-Squared-Error. P is Precision.

4.2 Subtask 2

The findings from Subtask 1 are applicable to Sub-
task 2, and this consistency can be attributed to the
reuse of models initially developed in Subtask 1 for
Subtask 2.

5 Discussion

Exploring Cross-Lingual Alignment Further
In the pursuit of optimizing our approach for the
Arabic Reverse Dictionary shared task, we imple-
mented a cross-lingual alignment method, as de-
tailed in section 3.2. This method allowed us to
bridge the gap between English and Arabic defini-
tions, by leveraging the aligned dictionary provided
as part of the shared task. Further exploration and
refinement could yield promising results in that
direction.

Augmenting Training Data Through Self-
Synthesis In another set of experiments, we ex-
plored a very different approach that requires fur-
ther investigation in future work. The idea is to
finetune of an encoder-decoder model, such as
AraT5 (Nagoudi et al., 2022), jointly on two inter-
connected tasks. The first task involves predicting
the word embeddings from the encoder side, while
the second task entails predicting the corresponding
definition on the decoder side based on an the input
word. This approach presents an intriguing opportu-
nity to generate diverse definition-embedding pairs
using a single model, which could subsequently
be harnessed for more robust finetuning. This self-
synthesis approach could potentially lead to better
system performance by expanding the training set.

6 Conclusion

In this paper, we present our winning solution to
the Arabic Reverse Dictionary shared task. The
objective is to derive an Arabic word representation
based on a provided definition, which can be in
either Arabic or English.

Our approach simply leverages several language
models pretrained on Arabic datasets. Through
finetuning and ensembling the trained models, our
method is capable of capturing the underlying se-
mantics of the input definitions as well as correct-
ing small errors done by single models.

For the first subtask, we achieve the best results
by fine-tuning four Arabic pretrained language
models twice, one for predicting the Electra em-
bedding and once for the SGNS one. This involves
minimizing the discrepancy between the predicted
embedding and the model’s final representation
using an MSE loss function.

In the second subtask, our most effective solution
is to repurpose the models initially developed for
the first subtask by translating the English test set
definitions into Arabic.

Limitations

One notable limitation is related to the second sub-
task, where our approach involves translating En-
glish definitions to Arabic. The results of this paper
used the existing Arabic translations that comes En-
glish test set. Therefore, we have not investigated
the quality of machine translation models, which
can significantly influence the system’s effective-
ness, as inaccuracies or nuances lost in translation
may affect results. Moreover, the generalization of
our models to broader or different distributions may
be constrained, as they are optimized on specific
datasets. To achieve wider applicability, we might
necessitate further finetuning on more diverse data
sources. Furthermore, our choice of evaluation
metrics can influence the perceived performance of
the system, and different metrics may reveal vary-
ing aspects of its utility in practical applications.
It is essential to consider these limitations when
assessing the robustness and adaptability of our
approach.

480



References
Muhammad Abdul-Mageed, AbdelRahim Elmadany,

and El Moatez Billah Nagoudi. 2021. ARBERT &
MARBERT: Deep bidirectional transformers for Ara-
bic. In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
7088–7105, Online. Association for Computational
Linguistics. [Cited on page 2.]

Wissam Antoun, Fady Baly, and Hazem Hajj. 2020.
Arabert: Transformer-based model for arabic lan-
guage understanding. In LREC 2020 Workshop Lan-
guage Resources and Evaluation Conference 11–16
May 2020, page 9. [Cited on page 2.]

Mikel Artetxe, Vedanuj Goswami, Shruti Bhosale, An-
gela Fan, and Luke Zettlemoyer. 2023. Revisiting
machine translation for cross-lingual classification.
ArXiv, abs/2305.14240. [Cited on page 3.]

Slaven Bilac, Wataru Watanabe, Taiichi Hashimoto,
Takenobu Tokunaga, and Hozumi Tanaka. 2004. Dic-
tionary search based on the target word descrip tion.
In Proceedings of NLP. [Cited on page 1.]

Roger Brown and David McNeill. 1966. The “tip of the
tongue” phenomenon. Journal of Verbal Learning
and Verbal Behavior, 5(4):325–337. [Cited on page 1.]

Muhao Chen, Yingtao Tian, Haochen Chen, Kai-Wei
Chang, Steven Skiena, and Carlo Zaniolo. 2018.
Learning to represent bilingual dictionaries. CoRR,
abs/1808.03726. [Cited on page 2.]

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and
Christopher D. Manning. 2020. ELECTRA: pre-
training text encoders as discriminators rather than
generators. CoRR, abs/2003.10555. [Cited on page 2.]

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440–
8451, Online. Association for Computational Lin-
guistics. [Cited on page 3.]

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics. [Cited on page 1.]

Felix Hill, Kyunghyun Cho, Anna Korhonen, and
Yoshua Bengio. 2015. Learning to understand
phrases by embedding the dictionary. CoRR,
abs/1504.00548. [Cited on page 1.]

Go Inoue, Bashar Alhafni, Nurpeiis Baimukan, Houda
Bouamor, and Nizar Habash. 2021. The interplay
of variant, size, and task type in Arabic pre-trained
language models. In Proceedings of the Sixth Ara-
bic Natural Language Processing Workshop, Kyiv,
Ukraine (Online). Association for Computational Lin-
guistics. [Cited on page 2.]

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692. [Cited on page 3.]

Tomás Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word representa-
tions in vector space. In 1st International Conference
on Learning Representations, ICLR 2013, Scottsdale,
Arizona, USA, May 2-4, 2013, Workshop Track Pro-
ceedings. [Cited on page 2.]

El Moatez Billah Nagoudi, AbdelRahim Elmadany, and
Muhammad Abdul-Mageed. 2022. AraT5: Text-to-
text transformers for Arabic language generation. In
Proceedings of the 60th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 628–647, Dublin, Ireland. Asso-
ciation for Computational Linguistics. [Cited on page 4.]

Ryan Shaw, Anindya Datta, Debra VanderMeer, and
Kaushik Dutta. 2013. Building a scalable database-
driven reverse dictionary. IEEE Transactions on
Knowledge and Data Engineering, 25(3):528–540.
[Cited on page 1.]

Leslie N. Smith and Nicholay Topin. 2017. Super-
convergence: Very fast training of residual networks
using large learning rates. CoRR, abs/1708.07120.
[Cited on page 3.]

Hang Yan, Xiaonan Li, and Xipeng Qiu. 2020. BERT
for monolingual and cross-lingual reverse dictionary.
CoRR, abs/2009.14790. [Cited on pages 1 and 2.]

Lei Zhang, Fanchao Qi, Zhiyuan Liu, Yasheng Wang,
Qun Liu, and Maosong Sun. 2019. Multi-channel
reverse dictionary model. CoRR, abs/1912.08441.
[Cited on page 1.]

A Cross-Lingual Alignment Model

RoBERTa Alignment
AutoEncoder

English
Gloss

English
SGNS/ELECTRA

Embedding

Arabic
SGNS/ELECTRA

Embedding

Stage 1 Stage 2
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Models Electra SGNS
MSE Cosine Rank MSE Cosine Rank

arabert 0.1695 0.6124 0.2491 0.0368 0.4853 0.3321
camelbert-mix 0.1689 0.6134 0.2667 0.0389 0.4911 0.3221
camelbert-msa 0.1681 0.6166 0.2421 0.0379 0.4947 0.3213
marbert 0.1661 0.6265 0.2108 0.0370 0.5485 0.2782
arabert,camelbert-mix 0.1656 0.6228 0.2525 0.0360 0.5045 0.3237
arabert,camelbert-msa 0.1650 0.6247 0.2400 0.0358 0.5052 0.3235
arabert,marbert 0.1618 0.6355 0.2175 0.0337 0.5511 0.2836
camelbert-mix,camelbert-msa 0.1653 0.6239 0.2496 0.0370 0.5036 0.3208
camelbert-mix,marbert 0.1622 0.6341 0.2267 0.0348 0.5502 0.2817
camelbert-msa,marbert 0.1614 0.6365 0.2144 0.0345 0.5519 0.2812
arabert,camelbert-mix,camelbert-msa 0.1642 0.6272 0.2455 0.0357 0.5095 0.3221
arabert,camelbert-mix,marbert 0.1616 0.6356 0.2286 0.0339 0.5466 0.2862
arabert,camelbert-msa,marbert 0.1610 0.6371 0.2204 0.0338 0.5472 0.2860
camelbert-mix,camelbert-msa,marbert 0.1614 0.6361 0.2268 0.0346 0.5452 0.2849
arabert,camelbert-mix,camelbert-msa,marbert 0.1613 0.6363 0.2287 0.0341 0.5421 0.2895

Table 5: Performance Analysis on the Devset of Subtask-1 Using Various Model Ensembles.

Models Electra SGNS
MSE Cosine Rank MSE Cosine Rank

arabert 0.1879 0.6014 0.2369 0.0491 0.3500 0.3925
camelbert-mix 0.1894 0.5974 0.2482 0.0520 0.3504 0.3956
camelbert-msa 0.1860 0.6066 0.2167 0.0498 0.3580 0.3845
marbert 0.1858 0.6108 0.2115 0.0530 0.3818 0.3739
arabert,camelbert-mix 0.1848 0.6104 0.2354 0.0486 0.3619 0.3920
arabert,camelbert-msa 0.1829 0.6149 0.2218 0.0479 0.3640 0.3855
arabert,marbert 0.1806 0.6226 0.2106 0.0478 0.3867 0.3752
camelbert-mix,camelbert-msa 0.1842 0.6117 0.2245 0.0494 0.3619 0.3894
camelbert-mix,marbert 0.1821 0.6186 0.2175 0.0493 0.3838 0.3776
camelbert-msa,marbert 0.1800 0.6238 0.2038 0.0484 0.3874 0.3715
arabert,camelbert-mix,camelbert-msa 0.1827 0.6160 0.2248 0.0481 0.3662 0.3890
arabert,camelbert-mix,marbert 0.1808 0.6222 0.2162 0.0476 0.3841 0.3778
arabert,camelbert-msa,marbert 0.1794 0.6255 0.2075 0.0472 0.3860 0.3736
camelbert-mix,camelbert-msa,marbert 0.1805 0.6228 0.2135 0.0482 0.3836 0.3761
arabert,camelbert-mix,camelbert-msa,marbert 0.1800 0.6240 0.2125 0.0474 0.3830 0.3782

Table 6: Performance Analysis on the Devset of Subtask-2 Using Various Model Ensembles.
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