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Abstract

Our system, submitted to the Nuanced Ara-
bic Dialect Identification (NADI-23), tack-
les the first sub-task: Closed Country-level
dialect identification. In this work, we pro-
pose a model that is based on an ensemble
of layer-wise fine-tuned BERT-based mod-
els. The proposed model ranked fourth out
of sixteen submissions, with an F1-macro
score of 85.43.

1 Introduction
Arabic is the national language of 25 countries
spoken by more than 372 million speakers1.
While Modern Standard Arabic (MSA) is the
formal written language and is used in speech in
a formal contexts such as in academia, official
communications, and education (Althobaiti,
2020), each country has its own culturally-
based dialect that is used in daily communi-
cation and informal situations (Elnagar et al.,
2021). Nowadays, within the evolution of vir-
tual communication technologies and the in-
tense popularity of social media platforms, di-
alectal Arabic has replaced MSA as the pri-
mary written form of Arabic to generate online
informal content. For example, users on so-
cial media share news, comment on political
and social events, and express opinions con-
cerning various aspects of life using their own
dialect. Accordingly, social media is an invalu-
able resource for harvesting huge amounts of
dialectal Arabic data which can be utilized in
numerous computational linguistics and Nat-
ural Language Processing (NLP) applications.
Due to variations between dialects in term of
vocabulary usage, meaning, and sense of given
words or phrase, automatic identification be-
tween unique dialects is a crucial component

1https://lingua.edu/the-most-spoken-languages-in-
the-world/

for improving several downstream applications
such as sentiment analysis, speech recognition,
and machine translation.

In order to increase the efficiency of Arabic
NLP, the Nuanced Arabic Dialect Identifica-
tion (NADI) shared task series are dedicated
to developing solutions for Arabic dialects iden-
tification and other related dialectal processes
(Abdul-Mageed et al., 2020, 2021b, 2022, 2023).
The majority of the works submitted to the
NADI-22 employed pre-trained BERT-based
models that are specifically trained on Arabic
corpus, such as MARBERT (Abdul-Mageed
et al., 2021a), ArabBERT (Antoun et al., 2020),
and AraGPT2 (Antoun et al., 2021) using
various tuning and data augmentation tech-
niques (Abdel-Salam, 2022; Shammary et al.,
2022). Other researchers, such as (AlShenaifi
and Azmi, 2022) and (Sobhy et al., 2022), used
classical machine learning algorithms with TF-
IDF and word embeddings. In this paper, fol-
lowing the first line of work, we present our
system submitted to the NADI-2023 shared
task (Abdul-Mageed et al., 2023). Specifically,
to address the first shared sub-task, our ap-
proach is based on an ensemble of layer-wise
BERT-based models. Each model is trained
independently by accessing hidden states from
a designated BERT layer and averaging them
to generate the final text embeddings.

This paper is organized as follows: Section 2
presents the dataset utilized in our work, Sec-
tion 3 introduces the proposed system for Ara-
bic dialect identification, Section 4 provides de-
tails experimental results and evaluation, Sec-
tion 5 discusses the model’s results and analyze
its errors, and finally, Section 6 summarizes
findings and possible future work.
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Model Freeze Embed-
dings

Fine Tuned
layers

layer 1 0.760 0.736
layer 2 0.799 0.778
layer 3 0.807 0.795
layer 4 0.819 0.799
layer 5 0.824 0.799
layer 6 0.824 0.803
layer 7 0.835 0.827
layer 8 0.841 0.826
layer 9 0.844 0.830
layer 10 0.855 0.840
layer 11 0.844 0.839

Table 1: The F1-score macro metrics that were
computed independently for each layer-wise model
on the development set.

2 Dataset
The NADI-2023 Shared Task provided the
TWT-23 dataset for the Arabic dialects identi-
fication task. The dataset contained a total of
23,400 tweets that included 18 Arabic dialects.
The dataset was categorized into 18K tweets
for training, 1800 tweets for development, and
3600 samples for testing. The training set con-
tained 1000 samples for each dialect class, and
the development set included 100 samples for
each target class.

3 System Description
Interpretability of pre-trained language mod-
els is an outstanding and active research area
in NLP. Various studies have been proposed
including studies that investigate and analyze
the model’s implicit representations across in-
termediate layers (Kakouros and O’Mahony,
2023; Song et al., 2022). Motivated by this line
of work, in this paper, we explore the potential
of the MARBERTv2 model (Abdul-Mageed
et al., 2021a)2, on Country-level dialects iden-
tification task. It should be noted that we also
tested other Arabic pre-trained models, such
as AraBERT; however, we achieved the best
results using MARBERTv2.

Specifically, during the training phase, we
fine-tuned 12 independent models based on
MARBERTv2. For each model, we chose a

2Arabic-based pre-trained BERT model that is pub-
licly available in the HuggingFace library (Wolf et al.,
2020)

Ensemble
Model

Freeze Em-
beddings

Fine Tuned
layers

layers(1-11) 0.865 0.851
layers(2-11) 0.865 0.853
layers(3-11) 0.867 0.856
layers(4-11) 0.866 0.856
layers(5-11) 0.870 0.854
layers(6-11) 0.874 0.857
layers(7-11) 0.870 0.857
layers(8-11) 0.872 0.850
layers(9-11) 0.870 0.850
layers(10-11) 0.865 0.853
layer(11) 0.844 0.839

Table 2: The results of F1-score macro metrics on
the development set for our ablation study, which
is based on an ensemble of the layer-based models.

Rank Team F1-Score Accuracy
1 NLPeople 87.27 87.22
2 rematchka 86.18 86.17
3 Arabitools 85.86 85.81
4 Our team 85.43 85.39

Table 3: Performance of the submitted systems on
the leaderboard of sub-task1

specific layer and averaged its hidden states to
generate the text embeddings, which then fed
through task-specific linear classifier to make
the final prediction. Furthermore, we experi-
mented with the model parameters to identify
which one to freeze during the fine-tuning, in
which the optimal results were obtained by
freezing the embeddings layer. During the vali-
dation phase, we used a soft voting ensemble
method and an ablation study, which we will
detail in Section 4.1, to determine the best
model. Hence, our final submission was an
ensemble of models from layers 6 to 11.

Experimental setup We mainly followed
the same experimental setups used in (Abdel-
Salam, 2022) to fine-tune the model with the
exception of the learning rate, weight decay
and sentence length, which was set to 2e-5,
1e-2, and 512, respectively. We trained the
model with a batch size of 8, for 10 epochs.
After each epoch, the model was evaluated on
the development set, and the best performant
parameters were saved.
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Figure 1: Confusion Matrix Heat-map for develop-
ment set classification.

4 Results

We evaluated the performance of our pro-
posed method on the dialects identification
task through a set of experiments to investi-
gate the impact of each layer on classifying the
18 dialects. Table 1 demonstrates the perfor-
mance of the layer-wise-based models on the
development set. The performance improved
with the higher layers. Notably, freezing the
embeddings during the fine-tuning yielded a
better overall performance. Also, averaging the
corresponding hidden states of layer 10 while
freezing the embeddings achieved the best re-
sult with an F1-score of 85.5%. In addition to
exploring the layer-wise models’ performance
independently, we used a soft voting ensemble
technique along with an ablation study to select
the combination of independent models that
yield the best performance on the development
set.

4.1 Ablation Study Result
The goal of an ablation study is to examine
the impact of removing components of an Arti-
ficial intelligence-based system on the system’s
performance (Zschech, 2022). We examine the
impact of different layer-based models on the fi-
nal model’s performance using a soft voting en-
semble, as shown in Table 2. Combining mod-
els trained on layers 1-11 results in the worst

Class Precision Recall F1
Algeria 0.97 0.90 0.93
Bahrain 0.76 0.81 0.79
Egypt 0.91 0.96 0.93
Iraq 0.93 0.93 0.93
Jordan 0.80 0.84 0.82
Kuwait 0.81 0.83 0.82
Lebanon 0.89 0.89 0.89
Libya 0.94 0.89 0.91
Morocco 0.94 0.95 0.95
Oman 0.92 0.87 0.89
Palestine 0.82 0.78 0.80
Qatar 0.84 0.77 0.80
KSA 0.75 0.86 0.80
Sudan 0.99 0.95 0.97
Syria 0.87 0.85 0.86
Tunisia 0.95 0.94 0.94
UAE 0.76 0.78 0.77
Yemen 0.93 0.92 0.92

Table 4: F1-score, recall, and precision breakdown
of how well the model performs for each individual
class.

performance; however, removing lower-layer-
trained models improved the results. Also,
the performance slightly decreased when us-
ing models trained only on higher layers (8, 9,
10, and 11). The best results were obtained
with an ensemble of models that trained on
layers 6 through 11, with an F1-score of 0.874
when embeddings were frozen and 0.857 when
embeddings were included in the fine-tuning.

Testing Phase: Table 3 shows the perfor-
mance of our system submitted to the NADI-
2023 shared task: closed country-level dialect
identification compared to the top 3 systems.

5 Error Analysis and Discussion
Table 4 shows a detailed evaluation of the
model’s performance across the 18 distinct
classes. Precision values are relatively high
at 0.80 for most of the classes. This indicates
a strong overall performance, except for the
KSA and UAE dialects, where the precision
falls under 0.80. Conversely, recall values have
less variation. The Algeria, Egypt, Iraq, Mo-
rocco, Sudan, and Tunisia classes have high
recall rate, which reflects the models’ abilities
to capture instances from these classes. The
F1-score results show the model’s strong per-

627



True
Label

Predicted
Label

Text English

Egypt KSA ههكسفنعميبحاصايلا No, my friend, with yourself
Egypt Libya هيفطيلجارهيفوكشورونيلجارهيف There is a man who lights up your face,

and there is a man who extinguishes it
Oman KSA هرمهوهقاهوطع Give her bitter coffee
Yemen KSA اهترشندقلااويطبكدنعتنلانكمي Maybe your internet is slow or else you

have already posted it
Pales-
tine

KSA ءامنمهطقنمكويموهردوبيطح
دعبوفشنيلكهجوعهيطحورهزلا
اركشوهرتافيمبهيلسغوهيتكفشنبام
اوفعياب

Apply some powder and water, and a few
drops of blossom water on your face. Let
it dry, and once it dries, peel it off and
wash with water. Thank you, bye, you’re
welcome

Qatar Kuwait ناحتملااهلوهسنممدصنااركببراي
لدعهلاحوهسناتسمعلطاو

Dear God, I hope that tomorrow I’ll be
surprised by how easy the exam is, and
I’ll come out happy and in a good mood.

Oman UAE ااذهيفاذهلخدوش What does this have to do with that
Libya Morocco سيفشمهاررتيوتهرياطيهواهمهفا

يتحارعبتكنشاب
I understand that this is Twitter not Face-
book to write my mind.

Syria Lebanon وبجاعادحاموودبريبكلاوودبريغصلا
ولاح

The young one wants, and the old one
wants, and no one is pleased.

Jordan Palestine ماودلاعهفيكميلاحلمعدبيط Alright, I’ll pretend to be cool at work.

Table 5: Examples of Incorrect Predictions from the Development Set.

formance, with most of the classes achieving
score of 0.80 or higher.

Figure 1 shows a heat-map of confusion ma-
trix for the development set to further analyze
the margin of error in the model’s predictions.
In general, with minor exceptions, the model
seems to perform well for most of the classes.
For example, the model preforms well at pre-
dicting instances for Egypt, Morocco, and Su-
dan classes, with true positive exceeding 95
instances. Conversely, the number of true pos-
itives are as low as 79 instances or less when
predicting instances for the Palestine, UAE,
and Qatar classes.

To further analyse, Table 5 shows examples
from the development set that our model failed
to predict correctly. We observed that the
errors of the models of False Positive (FP) and
False Negative (FN) fall in one of the following
categories:

Missing of diacritics: In Arabic, while
different Arabic dialects share common linguis-
tic features, differences remain in the usage
of the vocabulary and its meaning. Diacritics
plays a crucial role in disambiguate the senses,
meanings, and semantics of Arabic language

(Matrane et al., 2023; Almuqren and Cristea,
2016; Azmi and Almajed, 2015). We hypoth-
esize that adding diacritics may improve the
model’s performance in predicting the dialect
of a given text. To illustrate more, the first
two examples in Table 5 presents this case of
ambiguity which might be resolved by diacrit-
ics. As can be seen from the confusion matrix,
the Egypt class has the least number of FN.
We noted that correctly classifying these exam-
ples is challenging, even for humans, using the
written text only without any context. How-
ever, for example, adding diacritics to the word
” يبحاص SAHby”, which translate in English to
”My friend”, might help the model to identify
the correct class. In particular, in the Egyptian
dialect this word would be pronounced with the
following diacritics ” يِبَحَاص SAHabayi”, where
in the KSA dialect it would be pronounced
with the following diacritics ” يِبَحِاص SAHibayi”.
Including diacritics may also resolve the ambi-
guity in the second example, where the words
” لجار rAjl and روني ynwr” in the example, which
translate respectively to ”man” and ”lights up”,
pronounced differently in both Egyptian and
Libyan dialects.
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Regional Varieties: Among the 18 dialects
classes, the KSA class has the largest variety
of dialects due to the geographical diversity
and historical migration of people from differ-
ent linguistic backgrounds. Thus, the East
region of KSA tends to share a lot of linguis-
tic similarities with Egypt, while the Southern
region share similarities with Yemen, the North-
ern region is similar to the Levantine dialect
(this includes: Syria, Jordan, Palestine, and
Lebanon), and the Middle and Western regions
congruent with rest of Gulf countries (Bayazed
et al., 2020). Also, according to (Alruily, 2020),
the majority of most active twitter users are
from KSA. Hence, we believe that these factors
affected the performance of our model, as the
majority of the FP predictions were a result
of flawed prediction where other classes were
categorized as KSA, examples 3� 5 in Table 5.

Dialects Family: We noted that most of
the FP and FN between classes occur among
dialects that belong to the same family, or
regional varieties of a given dialect. For ex-
ample, many of the FP and FN occurred in
the Gulf dialects family, which includes UAE,
Qatar, Bahrain, Kuwait, Oman, Iraq, and cer-
tain parts of KSA. This also evident in ex-
amples from the Levantine and North African
dialects family, example 6 � 10 in Table 5.

6 Conclusion

This work describes our proposed system to au-
tomatically identifying dialectal Arabic, which
has been submitted to the NADI-2023 shared
task. The proposed system leveraged the inter-
mediate layers of the pre-trained MARBERTv2
in identifying the Arabic dialects instead of re-
lying on the final layer for text representation.
The proposed layer-wise BERT-based models
demonstrate a strong overall performance in
distinguishing 18 Arabic dialects, achieving an
F1 score of 87% on the development set and
85% on the test set. Furthermore, we analyzed
the performance of our model and discuss the
factors that caused FP and FN predictions.
Hence, further elaboration could be followed to
study the impact of using diacritics on model
performance.
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