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Abstract

Arabic dialects have extensive global usage
owing to their significance and the vast num-
ber of Arabic speakers. However, technolog-
ical progress and globalization are leading to
significant transformations within Arabic di-
alects. They are acquiring new characteris-
tics involving novel vocabulary and integrat-
ing linguistic elements from diverse dialects.
Consequently, sentiment analysis of these di-
alects is becoming more challenging. This
study categorizes dialects among 18 countries,
as introduced by the Nuanced Arabic Dialect
Identification (NADI) shared task competition.
The study approach incorporates the utilization
of the MARBERT and MARBERT v2 mod-
els with a fine tunning processes. The find-
ings reveal that the most effective model is
achieved by applying averaging and concate-
nation to the hidden layers of MARBERT v2,
followed by feeding the resulting output into
convolutional layers.Furthermore, employing
the ensemble method on various methods en-
hances the model’s performance. Our system
secures the 6th position among the top perform-
ers in the First subtask, achieving an F1 score
of 83.73%.

1 Introduction

The Arabic region encompasses numerous cul-
tures, each characterized by dialectal variations
influenced by historical, geographical, and
sociopolitical factors (Bouamor et al., 2014).
While this variety showcases the region’s cultural
wealth, it creates difficulties when analyzing
Arabic information, especially on social media
networks. Moreover, the rapid evolution of the
language in the digital age and the widespread use
of social media are presenting a new era for the
Arabic language. Modern communication tools
are enabling speakers of various Arabic dialects to
interact globally. This interaction is leading to a
dynamic evolution of the language, characterized

by the emergence of new vocabulary, slang, and
expressions (Darvin, 2016). The continuous
generation of new words and language adaptations
is presenting a unique challenge for linguistic
analysis. Therefore, Modern Standard Arabic has
a disequilibrium between preserving tradition and
adjusting to the demands of modern communi-
cation. Moreover, Arabic dialect identification
plays a pivotal role in understanding regional
language variations on social media. Improving
this task has implications for cultural preservation,
social analysis, and natural language processing
technology. However, the presence of diverse
Arabic dialects with distinct linguistic traits can
pose challenges in analyzing and interpreting
social media content (Salameh et al., 2018). People
from different regions might use completely
different words to express the same concepts.

Recent advancements in Arabic Dialect Identi-
fication research have been notable, with various
studies addressing the intricate nuances of Arabic
dialects. The MADAR shared task on fine-grained
dialect identification (Bouamor et al., 2019)
delved into sub-dialect distinctions, highlighting
the complexity of Arabic language variations.
Machine Translation of Arabic Dialects (Salloum,
2018) focused on adapting translation models to
handle dialect-specific expressions, facilitating
communication across dialect differences. More-
over, efforts in the Automatic Identification of
Arabic Dialects in Social Media (Sadat et al.,
2014) utilized natural language processing and
machine learning to automate dialect recognition,
revealing regional language trends online. Various
methods, including feature extraction and machine
learning algorithms (Zaidan and Callison-Burch,
2014), have contributed to improving automated
dialect identification accuracy and uncovering the
rich diversity of Arabic dialects. In the recent
NADI shared task series (Abdul-Mageed et al.,
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2020b, 2021, 2022), teams employed a range
of approaches, including traditional methods
like SVM with TF-IDF (Nayel et al., 2021),
customized Bert-based models (AlKhamissi et al.,
2021), and deep learning techniques with models
like MARBERT and AraBERT (Messaoudi et al.,
2022; Abdel-Salam, 2022; Attieh and Hassan,
2022). These efforts collectively contribute to
the advancement of Arabic dialect identification,
showcasing diverse methodologies and approaches
in the field.

In this research, we aim to enhance the F1 score
of Arabic dialect identification, provided by NADI
shared task 2023 (Abdul-Mageed et al., 2023),
by investigating the impact of various model
enhancements. our study conducts a series of
experiments using MARBERT and MARBERT v2
models (Abdul-Mageed et al., 2020a), involving
various techniques. This approach includes
concatenating hidden layers (Devlin et al., 2018)
and processing the resulting outputs using CNN
layers (Jacovi et al., 2018), BILSTM models
(Graves et al., 2005), or a combination of BILSTM
and CNN. Additionally, Experiments involve
adapters with the MARBERT model (Pfeiffer
et al., 2020). Finally, to maximize our results, our
work utilizes ensemble methods that combine the
outcomes of the majority of these experiments (Re
and Valentini, 2012).

The rest of the paper is organized as follows: pro-
viding the dataset and its preparation are presented
in Section 2. In Section 3, we explain the method-
ologies employed for Arabic Dialect Identification.
Subsequently, Section 4 presents the results of our
model’s performance, including an analysis of our
findings. In Section 6, we summarize and conclude
our findings.

Figure 1: Pre-processing steps on the dataset

2 Data

2.1 Dataset Description

The presented approach utilized the training and
validation data provided by the task organizers
(Abdul-Mageed et al., 2023). The training set
for Subtask 1 consists of around 18,000 tweets
with 18 different labels representing 18 country
dialects. While the development set consists of
1,800 labeled tweets. The submitted results were
evaluated on a test set consisting of 3,600 tweets
covering 18 country-level dialects.

2.2 Dataset Pre-processing

The dataset pre-processing is shown in Figure
1. The initial steps involved removing diacritics,
which are modifications to Arabic characters.
Subsequently, specific words were removed, such
as mentions of users, URLs, and numerical values.
Additionally, elongated characters were normal-
ized to a single occurrence of the represented
character. Emojis were also removed from the
text. To further enhance the text, a series of
processes were applied. Non-Arabic characters
and redundant spaces were eliminated. Stemming
or Lemmatization was not performed due to
the intricacies of the Arabic language. These
linguistic intricacies include the rich morphology
and variability in Arabic dialects, where words
may undergo significant changes in form and
structure. Applying stemming or lemmatization
involves reducing words to their root or base form.
By observation, it could potentially result in the
loss of valuable dialect-specific information and
hinder the accuracy of the classification process.
Finally, the text was tokenized by MARBERT and
MARBERTv2 tokenizer utilizing the Transformers
library.

3 System Description

This study conducted comprehensive experiments
to explore various modifications to our baseline
models, MARBERT and MARBERTv2 (Abdul-
Mageed et al., 2020a), as detailed in Table 1. We
maintained a constant batch size of 64 throughout
our experiments and conducted 15 epochs, saving
the epoch with the best F1 score by using early
stopping. The Adam optimizer (Jais et al., 2019)
and Cross Entropy Loss (Smith and Johnson, 2022)
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Experiment Description Test Dev
Accuracy(%) F1(%) Accuracy(%) F1(%)

Exp.1 MARBERT+ adapter
(LR=2e-5)

74.78 74.63 76.06 75.76

Exp.2 MARBERTv2+ adapter
(LR=2e-5)

73.58 73.35 75.20 75.01

Exp.3 MARBERT(LR=2e-5) 79.86 80.03 81.61 81.86
Exp.4 MARBERTV2(LR=2e-5) 79.06 79.14 81.11 81.18
Exp.5 MARBERT (last 4 Layers

Conc.)(LR=2e-5)
78.39 78.36 79.94 79.87

Exp.6 MARBERTv2( last 4 Lay-
ers Conc.) (LR=2e-5)

80.28 80.33 82.44 82.56

Exp.7 MARBERT (average lay-
ers 4-7 and conc. output
with last 4 layers)(LR=2e-
5)

79.86 80.03 80.61 80.72

Exp.8 MARBERTv2 ((average
layers 4-7 and conc. out-
put with last 4 layers)
(LR=2e-5)

80.83 80.94 81.61 81.86

Exp.9 Repeat Exp.7 + utilizing
1 Conv. Filter(kernel
size=5) + MP (LR=2e-5)

81.50 80.83 81.83 81.91

Exp.10 Repeat Exp.8+ utilizing
1 Conv. Filter(kernel
size=5)+ MP (LR=2e-5)

81.47 81.43 82.56 82.51

Exp.11 Repeat Exp.7 + BILSTM
as classifier (LR=2e-5)

77.72 77.84 78.44 78.33

Exp.12 Repeat Exp.7 +BILSTM
+ 1 Conv. Filter(kernel
size=5) + MP (LR=2e-5)

78.36 78.49 79.11 79.30

Exp.13 Repeat Exp.7 +3 Conv.
Filters: kernel sizes(5,4,3)
+ MP (LR=1e-5)

79.86 80.00 81.83 81.91

Exp.14 Repeat Exp.7 +3 Conv.
Filters:kernel sizes(10,8,6)
+ MP (LR=1e-5)

81.56 81.67 83.06 83.14

Exp.15 Repeat Exp.7 +3 Conv.
Filters: kernel sizes(7,7,7)
+ MP (LR=1e-5)

81.64 81.64 82.72 82.84

Exp.16 Repeat Exp.7 +3
Conv. Filters:kernel
sizes(12,10,8) + MP
(LR=1e-5)

80.72 80.83 81.61 81.86

Exp.17 Voting Ensemble(Exp 3-
16)

83.67 83.73 85.20 85.27

Exp.18 Average Ensemble(Exp 3-
16)

83.31 83.36 84.11 84.16

Table 1: Experimental Results for Different Models on Test and Dev Datasets(Abbreviations: F1 - F1-score, MP -
Maxpooling, Conc. - Concatenate, Conv. - Convolution)
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were utilized in all cases. Learning rates (LR) var-
ied by experimental setup between 1e-5 and 2e-5.
Let us delve into more details about each of the 18
different experiments (Exp.) and their significance
within this study:

Figure 2: Best Model architecture

3.1 Adapters for MARBERT and
MARBERTv2 (Exp.1 and Exp.2)

These experiments explored the impact of adding
adapters to the baseline models, MARBERT and
MARBERTv2. Adapters are specialized neural
network modules added to the models to fine-tune
their performance for specific tasks (Pfeiffer et al.,
2020) .

3.2 Layer Concatenation (Exp.5 and Exp.6)
In these experiments, the study investigated the
concatenation of the last four layers of BERT-Base
(Devlin et al., 2018), MARBERT and MARBERT
v2 (Abdul-Mageed et al., 2020a). This approach
aimed to capture and combine features from
different model layers, potentially improving its
representation learning capabilities.

3.3 Average Layer 4-7 and Concatenation
(Exp.7 and Exp.8)

Experiments 7 and 8 focused on taking an average
of layers 4-7 and concatenating it with the last
four layers of the models, MARBERT and
MARBERTv2, respectively. This approach aimed
to leverage layer stacking for enhanced model
performance. The results provide insights into the

combined impact of these modifications for each
model.

3.4 Convolutional Layers with Varying Kernel
Sizes (Exp.9 to Exp.16)

These experiments introduced leveraging a
series of convolutional layers with varying filter
sizes. The ReLU activation function was used
within these convolutional layers to introduce
non-linearity and enhance the model’s capacity
to learn complex representations. Following
the convolutional layers, max-pooling layers
(MaxPool1D) were utilized to reduce the spatial
dimensions of the feature maps. The size of the
pooling window was determined dynamically
based on the length of the convolutional filter.
Specifically, the filter size of the last convolutional
layer was subtracted from the sequence length, and
the result was then added to the stride value. The
outputs of these convolutional and max-pooling
layers were then flattened. Subsequently, a fully
connected dense layer was employed to process the
sentence embedding further. (Jacovi et al., 2018).

3.5 Bidirectional LSTM (Exp.11)

Experiment 11 involved adding Bidirectional
Long Short-Term Memory (BILSTM) layers as
a classifier layer for the MARBERTv2 model.
BILSTM layers process input sequences in both
forward and backward directions, potentially
capturing dependencies in the data more effectively
(Graves et al., 2005).

3.6 Ensemble Methods (Exp.17 and Exp.18)

These experiments leveraged ensemble methods
to enhance model performance further (Re and
Valentini, 2012). The Voting Ensemble (Exp.17)
and Average Ensemble (Exp.18) combine the
outputs of multiple experiments (Exp.3 to Exp.16)
to make predictions. The Voting Ensemble
considers the majority or weighted votes, while
the Average Ensemble computes the mean of
probabilities for predictions.

4 Results and discussion

We present a summary of our experimentation
and evaluation of various model enhancements, as
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Figure 3: Confusion Matrix for DEV set: voting Ensem-
ble method

reported in Table 1. With a particular emphasis on
the F1-score, each experiment assesses the perfor-
mance achieved by adapting and modifying the
baseline models, MARBERT and MARBERTv2.

In our extensive series of experiments, we
conduct an exploration of various model en-
hancements with a primary focus on optimizing
F1 scores. Among these experiments, Exp.14
showcases the best results as a standalone model.
As shown in Figure 2, this model is built upon
the foundation of Exp.7 with the addition of
three convolution filters (kernel sizes: 10, 8, 6),
followed by max-pooling, and also demonstrates
robustness with an impressive F1-score of 81.67%
on the test dataset. These results emphasize
the significance of spatial feature extraction in
text classification tasks. Regarding our method-
ological approach, Exp.17 represents the most
effective method. It serves as our submission and
leverages ensemble techniques to combine the
predictions of multiple models. This ensemble
method significantly outperforms individual mod-
els, achieving outstanding F1-scores of 85.27%
for the DEV dataset and 83.73% for the test dataset.

Notably, we observe instances of misclassifi-
cation between the two classes, notably between
Jordan and Palestine, as well as between Kuwait
and Bahrain, as illustrated in Figure 3. These
misclassifications can be attributed to several
factors, including historical, cultural, and linguistic
nuances that may pose challenges for natural
language processing models. The misclassification
of content related to Kuwait and Bahrain is a result
of shared geographical proximity and cultural ties,
leading to overlapping themes and terminology

in text data. These overlapping characteristics
can cause our models to occasionally struggle in
correctly differentiating between the two, resulting
in fluctuations in classification performance. These
observed misclassifications underscore the need
for continued research and model refinement,
especially when dealing with regions or topics
characterized by subtle distinctions. Addressing
such complexities will contribute to improving the
accuracy and robustness of models in handling
cases with inherent challenges like those presented
by Jordan vs. Palestine and Kuwait vs. Bahrain.

With more time available, we will delve into
training on larger datasets. Additionally, our study
will explore the use of different loss functions
for various hyperparameters and incorporate
additional ensemble methods such as stacking,
bagging, boosting, random forests, AdaBoost, and
gradient boosting.

5 Conclusion

Overall, This paper outlines our methods for
solving Nuanced Arabic Dialect Identification
(NADI) shared task 2023 subtask-1. The extensive
experimentation and analysis highlighted the
nuanced nature of model enhancements and adapta-
tions. Some modifications, like layer concatenation
and the addition of convolution layers, exhibited
clear benefits. On the other hand, adapters had
more limited impacts. Additionally, ensemble
methods emerged as a powerful tool for boosting
the score. These findings emphasize the need
for a thoughtful and data-driven approach when
fine-tuning models for specific tasks and domains
in natural language processing. Our system ranks
in the 6th best spots of the leaderboards of the
first subtask with an F1-score of 83.73%. Future
research directions include investigating the impact
of larger training datasets on model performance.

6 Limitations

We focused on MARBERT and MARBERTv2
models without comparing them to alternative mod-
els. Furthermore, we should have leveraged the ad-
vantages of more extensive datasets and various hy-
perparameters. However, a significant strength of
our study lies in exploring the integration of trans-
formers with deep-learning models and adapters.
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