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Abstract

This paper presents the methods we developed
for the Nuanced Arabic Dialect Identification
(NADI) 2023 shared task, specifically targeting
the two subtasks focussed on sentence-level
machine translation (MT) of text written in
any of four Arabic dialects (Egyptian, Emi-
rati, Jordanian and Palestinian) to Modern Stan-
dard Arabic (MSA). Our team, UniManc, em-
ployed models based on T5: multilingual T5
(mT5), multi-task fine-tuned mT5 (mT0) and
AraT5. These models were trained based on
two configurations: joint model training for all
regional dialects (J-R) and independent model
training for every regional dialect (I-R). Based
on the results of the official NADI 2023 evalu-
ation, our I-R AraT5 model obtained an over-
all BLEU score of 14.76, ranking first in the
Closed Dialect-to-MSA MT subtask. More-
over, in the Open Dialect-to-MSA MT subtask,
our J-R AraT5 model also ranked first, obtain-
ing an overall BLEU score of 21.10.

1 Introduction

The Arabic language serves as a linguistic umbrella
for approximately 420 million speakers, predomi-
nantly dispersed across 22 countries in the Middle
East and North Africa (MENA) region. A defining
characteristic of the language is its diglossic nature,
where Modern Standard Arabic (MSA) coexists
with a myriad of dialects, commonly referred to
as Dialectal Arabic (DA) (Al-Sobh et al., 2015;
Abdul-Mageed et al., 2022).

MSA is the formal version of the Arabic lan-
guage, employed in educational settings, official
documents and written literature. It serves as a stan-
dardised communication medium across Arabic-
speaking countries. In contrast, DA represents
the colloquial forms of Arabic, which are more
region-specific and employed in day-to-day verbal
interactions (Shoufan and Alameri, 2015). Notably,
dialects can vary significantly based on geographic
location and socio-economic factors, ranging from

subtle differences to being nearly mutually unin-
telligible. This linguistic variation presents con-
siderable challenges for machine translation (MT)
models trained on MSA. These models often fail to
capture the nuanced differences in dialects, result-
ing in poor translation performance when applied
to DA. Compounding this issue is the scarcity of
parallel corpora containing MSA translations of
text written in DA, limiting resources for model
training and evaluation (Harrat et al., 2019).

In the context of these challenges, this pa-
per aims to explore the extent to which various
sequence-to-sequence models based on the Text-
to-Text Transfer Transformer, popularly known as
T5 (Raffel et al., 2020), can translate a source text
written in an Arabic dialect to a target text that is
written in MSA. We participated in the Nuanced
Arabic Dialect Identification (NADI) 2023 Shared
Task (Abdul-Mageed et al., 2023), specifically in
Subtasks 2 and 3, described below.

Subtask 2: Dialect-to-MSA MT - Closed Task.
The objective of this subtask is sentence-level ma-
chine translation from four dialects (Egyptian, Emi-
rati, Jordanian and Palestinian) to MSA. Partici-
pants were restricted to using the MADAR parallel
corpus (Bouamor et al., 2019) for training and were
asked to evaluate their models on newly released
development and test sets.

Subtask 3: Dialect-to-MSA MT - Open Task.
This subtask is similar to Subtask 2, except for
the fact that participants were allowed to utilise
additional datasets for model training. One of the
goals of this subtask is to encourage the creation of
new parallel corpora to facilitate future research.

Apart from investigating the performance of
various T5-based models on the above-mentioned
tasks, our work makes an additional contribution
by developing a new dataset, Emi-NADI, which
contains MSA translations of sentences written in
Emirati, one of the most under-resourced dialects.
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The Emi-NADI dataset and the code for develop-
ing and evaluating our models for Subtasks 2 and 3
have been made publicly available.1

2 Datasets

This section describes the datasets that were
utilised in training our models.

2.1 The MADAR Corpus
As mentioned in the previous section, partici-
pants in the closed version of the dialect-to-MSA
translation task, Subtask 2, were allowed to use
only the MADAR parallel corpus (Bouamor et al.,
2019), which covers the dialects used in 25 Arabic-
speaking cities, as well as English and MSA.

2.2 Additional Corpora
In the open version of the dialect-to-MSA machine
translation task, Subtask 3, participants were al-
lowed to leverage any dataset. As we searched
for potentially useful publicly available datasets,
we considered those that cover various Arabic di-
alects, including regional ones that are relevant to
the four countries of interest in NADI. For exam-
ple, the Gulf dialect is relevant to Emirati (since the
United Arab Emirates is one of the Gulf countries),
and the Levantine dialect is relevant to Jordanian
and Palestinian (since Jordan and Palestine belong
to the Levant). Apart from the MADAR corpus,
we identified and made use of four datasets: (1)
PADIC, (2) Dial2MSA, (3) a semantic textual sim-
ilarity (STS) dataset for Arabic dialects, and (4)
our own Emi-NADI dataset containing Emirati-to-
MSA translations. Table 1 provides information
on the size of each dataset in terms of number of
dialectal sentences with translations to MSA.

Dataset Egy. Gulf Lev.
MADAR 13,800 15,400 18,600
PADIC 0 0 12,824

Dial2MSA 16,355 0 0
Arabic STS 2,758 2,758 0
Emi-NADI 0 2,712 0

Total 32,913 20,870 31,424

Table 1: The number of dialect-to-MSA translation pairs
in each of the datasets used in Subtask 3.

PADIC (Meftouh et al., 2018) is a parallel cor-
pus containing dialectal Arabic texts covering six
Arab cities including Gaza and Damascus, which
are both in the Levant region. Meanwhile, the

1https://github.com/khered20/UniManc_NADI2023_
ArabicDialectToMSA_MT

Dial2MSA dataset (Mubarak, 2018) consists of
tweets written in four Arabic dialects (Egyptian,
Gulf, Levantine, Maghrebi) and their correspond-
ing MSA translations. As only the translations
for Egyptian and Maghrebi were manually vali-
dated, we made use of the Egyptian-to-MSA trans-
lations only. In the work of Al Sulaiman et al.
(2022) that focussed on Arabic STS (i.e., deter-
mining the semantic similarity between two given
sentences), they manually produced MSA, Egyp-
tian and Saudi dialect translations for 2758 English
sentences, which we also utilised in our work.

Our own dataset, Emi-NADI, was created to ad-
dress the scarcity of parallel corpora covering the
Emirati dialect, and contains MSA translations of
the Emirati tweets in the training datasets provided
as part of NADI Subtask 1 (country-level dialect
identification) (Abdul-Mageed et al., 2020, 2021,
2023). The translations were generated by a large
language model (LLM), specifically the GPT 3.5
Turbo model,2 resulting in a total of 2712 transla-
tions. A subset of 1000 automatically generated
translations were manually validated (by native
Arabic speakers who understand Emirati) to ensure
quality. Both the validated and the non-validated
samples were used in model training.

3 Methodology

In this section, we introduce the T5-based models
that we built upon, explain how they were fine-
tuned and discuss hyperparameter optimisation.

3.1 Models
T5 casts different natural language processing
(NLP) tasks into a standard text-to-text format.
One of the NLP tasks that T5 was already trained
on is machine translation (Raffel et al., 2020). In
this work, we fine-tuned three types of T5 models,
namely, AraT5, mT5 and mT0.

AraT5. AraT5 (Nagoudi et al., 2022) is based
on the same architectural foundation as the origi-
nal T5 models, but trained specifically on Arabic
data encompassing both MSA and dialectal Ara-
bic (tweets). The most recent version of AraT5,
AraT5v2,3 was used in all our experiments.

Multilingual T5 (mT5). mT5 (Xue et al., 2021)
is a multilingual variant of T5 that underwent pre-

2https://platform.openai.com/docs/models/
gpt-3-5

3https://huggingface.co/UBC-NLP/
AraT5v2-base-1024
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Source Target
Original Pair

ÕË

AJ
K. ú
«A

�JK. hQm.Ì'@ ú

	æÖÏ ñK
 ú
kQk.

Additional Pair
ú

	æÖÏ ñK
 ú
kQk. ú


	æÖÏ ñK
 ú
kQk.

Table 2: An example of the additional training pair
where each of the source and target is the text written
in MSA (English translation: “My wound hurts”). The
tokens shown in grey in the Egyptian source text of the
original pair share the same root as the tokens in grey in
the target MSA text.

training using a novel dataset sourced from Com-
mon Crawl, encompassing 101 languages. Al-
though its pre-training process is underpinned by
the original T5 architecture, it incorporated some
improvements, such as the adoption of a different
activation function in the feed-forward layer (i.e.,
GeGLU instead of the conventional RELU).

Multi-task fine-tuned mT5 (mT0). Multitask-
prompted fine-tuning (MTF) has demonstrated its
efficacy in assisting LLMs in adapting to novel
tasks within a zero-shot setting. In this vein, mT0
is a multitask-prompted fine-tuned version of mT5.
mT0 has showcased remarkable zero-shot gener-
alisation capabilities, even when presented with
languages it has never encountered before (Muen-
nighoff et al., 2023).

3.2 Training Configurations

In the early stages of our experimentation, we no-
ticed that many dialectal texts contain words that
are shared between a dialect and MSA. Thus, for
every translation pair in our training data, we gen-
erated an additional pair where each of the source
and target is the text written in MSA. An exam-
ple is provided in Table 2. Our models were then
trained — based on the two different configurations
outlined below — using these additional pairs, en-
abling them to learn how to handle sentences that
include words that are also used in MSA.

Training a joint model for all regional dialects
(J-R). In this configuration, all dialect-to-MSA
translation pairs (in the training sets for Subtasks
2 and 3) that correspond to the regions relevant to
the four dialects of interest were utilised in train-
ing one model. Therefore, translation pairs from
datasets that cover the Egyptian, Gulf and Levan-
tine dialects were utilised in model training. The

result is one joint model trained to translate dialec-
tal text to MSA, regardless of which dialect it was
written in.

Training an independent model for each re-
gional dialect (I-R). In this configuration, one
model was trained for every relevant regional di-
alect. This resulted in four separate models, where
each model was independently trained to translate
texts written in one specific dialect only, to MSA.

3.3 Hyperparameter Optimisation

For each of the two subtasks, we trained our mod-
els using two Nvidia A100 GPUs based on the
configurations described above. All models accept
input sequences with a maximum length of 128 to-
kens and generate output text also with a maximum
length of 128 tokens. Learning rate and batch size
were fixed at 5e-5 and 16, respectively. The maxi-
mum number of epochs was set to 40, although we
always selected the model produced in the epoch
that yielded the best performance on the develop-
ment (dev) set provided by the NADI organisers.
Importantly, we investigated whether incorporat-
ing beam search (Freitag and Al-Onaizan, 2017)
during translation leads to improved performance,
experimenting with different beam sizes ranging
from 1 to 5.

4 Evaluation and Results

All models for Subtasks 2 and 3 were evaluated us-
ing the BiLingual Evaluation Understudy (BLEU)
metric (Papineni et al., 2002), which estimates the
similarity between a machine-translated text and a
reference translation based on overlapping tokens.

The results of our joint regional (J-R) and in-
dependent regional (I-R) models for Subtasks 2
and 3, without using beam search (i.e., beam size
= 1), are shown in Tables 3 and 4, respectively.
One can observe in Table 3 that for Subtask 2, in
all cases (except for Jordanian), the I-R version
of a model consistently outperforms its J-R coun-
terpart. This finding led us to further experiment
with the I-R models by investigating different val-
ues for beam size. The results, shown in Table 7
in the Appendix, helped us in identifying the best-
performing I-R models. Based on this, we selected
two I-R AraT5 models, one I-R mT5 model and
one I-R mT0 model to comprise our set of models
for the official evaluation (on the NADI test set),
together with the best J-R model.
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Model Egy. Emi. Jor. Pal. Overall
Joint Regional Models (J-R)

mT0 12.28 10.98 10.06 9.65 11.12
mT5 12.16 10.93 9.14 9.49 11.13
AraT5v2 14.65 10.65 11.20 10.53 13.30

Independent Regional Models (I-R)
mT0 13.88 12.91 9.55 10.91 12.53
mT5 15.02 15.25 10.32 10.69 13.57
AraT5v2 17.21 14.13 12.14 13.33 15.14

Table 3: Comparison of joint regional (J-R) and inde-
pendent regional (I-R) models for Subtask 2, based on
the development set. Beam size = 1.

Model Egy. Emi. Jor. Pal. Overall
Joint Regional Models (J-R)

mT0 15.11 26.85 18.44 15.16 18.25
mT5 18.80 29.04 18.63 15.50 19.81
AraT5v2 20.23 32.84 24.85 18.27 23.37

Independent Regional Models (I-R)
mT0 18.28 27.35 19.82 16.46 19.96
mT5 18.26 26.83 21.45 16.48 20.25
AraT5v2 21.90 31.28 24.45 18.08 23.45

Table 4: Comparison of joint regional (J-R) and inde-
pendent regional (I-R) models for Subtask 3, based on
the development set. Beam size = 1.

In the comparison of the J-R and I-R models
(without beam search) for Subtask 3 shown in Ta-
ble 4, it is evident that the AraT5 models outper-
form both mT0 and mT5 by a noticeable margin,
and that the I-R models outperform their J-R coun-
terparts overall. We thus further experimented with
the I-R versions of the AraT5 model by investi-
gating different beam sizes. The results, shown
in Table 8 in the Appendix, informed our selec-
tion of models for the official evaluation (on the
NADI test set), which consists of the three best I-R
AraT5 models, one I-R mT5 model and the best
J-R model.

Tables 5 and 6 present the results of our chosen
models on the NADI test sets for Subtasks 2 and 3,
respectively. As shown in Table 5, the I-R AraT5
model with beam size = 3 outperformed our other
models (obtaining a score of 14.76). Meanwhile,
our Subtask 3 results, shown in Table 6, demon-
strate that the J-R AraT5 model (with beam size
= 1) performs best overall (21.10). To investigate
whether adjusting the beam size of the J-R AraT5
model will lead to even better performance, we sub-
mitted the same model to the post-evaluation phase
of Subtask 3, but this time with beam size = 5. The
overall score did increase to 21.87, implying once
again that incorporating beam search leads to better
performance.

5 Discussion

In Tables 3 and 4, it can be observed that for both
subtasks the independent regional (I-R) models per-
formed better compared to the joint regional (J-R)
models, with AraT5 performing the best overall.
This can be explained by the fact that AraT5 was
trained with a specific focus on Arabic whereas the
others (mT0 and mT5) were trained on many other
languages apart from Arabic. This implies that
for the dialect-to-MSA translation task, a model
that was trained solely on the Arabic language is
superior over multilingual models.

Given that the I-R models performed better, mul-
tiple beam sizes were explored. Our results show
that increasing the beam size leads to an improve-
ment in overall performance. However, it is worth
noting that the optimal beam size could vary be-
tween the development and test sets (e.g., beam size
= 4 on the development set and beam size = 3 on
the test set for Subtask 2), although the difference
in performance is very marginal.

Error analysis was conducted to qualitatively
evaluate our best-performing model for Subtask 3.
Specifically, we analysed cases where the model ob-
tained low BLEU scores and manually assessed the
quality of the translations produced by the model.
An example for each dialect is shown in Table 10
in the Appendix. Interestingly, the model’s transla-
tions of the Egyptian, Emirati and Jordanian source
texts are arguably correct, as they convey the same
meaning as the reference translations. They, how-
ever, obtained low BLEU scores due to the fact
that the BLEU metric takes into account lexical but
not semantic similarity, in comparing a generated
translation with a reference one. As for the Pales-
tinian example, the model’s failed translation can
be attributed to code-mixing, i.e., the presence of
the non-Arabic word “bravo” (written in Arabic
script) in the source text.

6 Conclusion and Future Work

In this paper, we describe the approaches we devel-
oped for NADI 2023 Subtask 2 (Closed Dialect-to-
MSA MT) and Subtask 3 (Open Dialect-to-MSA
MT). Our results reveal that fine-tuning AraT5 and
incorporating beam search during translation lead
to top-ranking performance. Possible future direc-
tions include the development of a multilingual
model focussed on Arabic dialects and MSA, and
the creation of further parallel corpora covering
low-resourced Arabic dialects.
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Model Configuration Beam Egy. Emi. Jor. Pal. Overall
AraT5v2 J-R 1 12.50 10.15 11.39 10.28 12.12
mT0 I-R 3 13.64 12.43 7.67 9.32 11.37
mT5 I-R 2 14.04 10.42 10.65 11.66 12.38
AraT5v2 I-R 3 16.04 14.30 12.55 13.55 14.76
AraT5v2 I-R 4 16.54 14.20 12.73 13.04 14.73

Table 5: Results of evaluating our submitted models on the NADI Subtask 2 test set.

Model Configuration Beam Egy. Emi. Jor. Pal. Overall
AraT5v2 J-R 1 17.65 28.46 22.03 17.29 21.10
mT5 I-R 1 15.75 25.15 16.44 16.15 17.95
AraT5v2 I-R 1 17.95 24.94 20.84 17.67 20.22
AraT5v2 I-R 3 19.61 25.79 20.95 18.31 21.02
AraT5v2 I-R 4 19.70 26.02 21.00 18.27 21.08

Table 6: Results of evaluating our submitted models on the NADI Subtask 3 test set.

Limitations

Due to time and computational resource constraints,
we were unable to conduct a more systematic inves-
tigation of the effect of different beam size values
for the joint regional AraT5, mT5 and mT0 models
that we employed.

Furthermore, most of the models that we sub-
mitted to the official NADI 2023 Subtasks 2 and
3 evaluation were trained following a configura-
tion whereby a separate model was independently
trained on every dialect. This means that prior to
translation, the dialect in which an input text was
written in needs to be predetermined, so that the
relevant model can be applied.
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Appendix

Model Beam size Egy. Emi. Jor. Pal. Overall

AraT5v2

1 17.209 14.127 12.143 13.329 15.139
2 17.152 15.197 12.906 14.458 15.828
3 18.702 14.798 12.892 14.507 16.166
4 19.092 15.281 12.478 14.552 16.173
5 19.274 15.052 12.213 14.267 16.037

mT5

1 15.023 15.253 10.324 10.689 13.57
2 15.755 14.888 11.924 10.345 13.919
3 16.121 14.903 11.395 9.962 13.757
4 16.076 14.857 11.754 10.015 13.873
5 16.071 14.744 11.519 10.205 13.909

mT0

1 13.882 12.914 9.551 10.907 12.525
2 13.199 12.371 10.398 10.884 12.389
3 14.498 12.336 11.198 11.692 13.222
4 14.432 12.69 10.643 11.633 13.085
5 14.439 12.554 10.283 11.429 12.989

Table 7: Results of using different values for beam size on the Subtask 2 development set, obtained by independent
regional (I-R) models. The best performing models (whose overall scores are shown in bold) formed the basis of
our submission to the official NADI 2023 evaluation.

Model Beam size Egy. Emi. Jor. Pal. Overall

AraT5v2

1 21.897 31.28 24.451 18.077 23.452
2 22.153 30.65 23.922 17.628 23.151
3 22.788 31.123 24.035 17.525 23.447
4 22.59 31.174 23.763 17.559 23.334
5 22.401 31.291 23.915 17.56 23.319

Table 8: Results of using different values for beam size on the Subtask 3 development set, obtained by independent
regional (I-R) versions of the AraT5 model. The best performing models (whose overall scores are shown in bold)
formed the basis of our submission to the official NADI 2023 evaluation.

Dialect Dialectal Text English Translation
Egy .�ËA 	g AîD
	̄ ��Òê 	®J.Ó A 	K


@ 	á�
Ó


A�JË @ 	áºË But the insurance I don’t understand it at all

Emi ?øñ��
 Ñk. ñËñÊË @ ð 	áK
 	Q 	K @ Then how much is this pearl worth?

Jor I. J
¢Ë@ Pñ¢
	®ËA« ú
¾K
YK
@ @ñÒÊ��
 Thank you for the delicious breakfast

Pal ú

�æK
AK. Q�K ��J
 	® �� AK
 ñ 	̄ @QK. Bravo Shafiq, my upbringing

Table 9: English translations of the dialectal Arabic examples shown in Table 10, provided for the reader’s
convenience.

Dialect Dialectal Text Reference MSA Translation Model Translation
Egy .�ËA 	g AîD
	̄ ��Òê 	®J.Ó A 	K


@ 	á�
Ó


A�JË @ 	áºË .

�
@YK.


@ éJ
 	̄ Ñê 	̄


@ B A 	K


@ , 	á�
Ó


A�JË @ 	áºË . ��C£B @ úÎ« éJ
 	̄ Ñê 	̄


@ B 	á�
Ó


A�JË @ 	áºË

Emi ?øñ��
 Ñk. ñËñÊË @ ð 	áK
 	Q 	K @ ?øðA��
 Õ» ñË ñÊË @ ð A�	J�k ? ñËñÊË @ @ 	Yë �éÒJ
�̄ AÓ
Jor I. J
¢Ë@ Pñ¢

	®ËA« ú
¾K
YK
@ @ñÒÊ��

	YK

	YÊË @ Pñ¢ 	®Ë@ @ 	Yë úÎ« ¼� @YK
 �IÒÊ� .I. J
¢Ë@ PA¢

	̄ B @ úÎ«
�
CK
 	Qk.

�
@Qº ��

Pal ú

�æK
AK. Q�K ��J
 	® �� AK
 ñ 	̄ @QK. ù
 ÒJ
Êª

�K , ��J
 	® �� AK
 �I 	��k

@ ú


�æJ
K. Q�K ��J
 	® �� AK
 ñ 	̄ @QK.

Table 10: Examples showing cases where the translation generated by our best-performing Subtask 3 model was
given a low BLEU score despite being semantically correct. For English translations of the dialectal examples, we
refer the reader to Table 9.
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