@inproceedings{liu-etal-2023-overview,
title = "Overview of {I}mage{A}rg-2023: The First Shared Task in Multimodal Argument Mining",
author = "Liu, Zhexiong and
Elaraby, Mohamed and
Zhong, Yang and
Litman, Diane",
editor = "Alshomary, Milad and
Chen, Chung-Chi and
Muresan, Smaranda and
Park, Joonsuk and
Romberg, Julia",
booktitle = "Proceedings of the 10th Workshop on Argument Mining",
month = dec,
year = "2023",
address = "Singapore",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.argmining-1.12",
doi = "10.18653/v1/2023.argmining-1.12",
pages = "120--132",
abstract = "This paper presents an overview of the ImageArg shared task, the first multimodal Argument Mining shared task co-located with the 10th Workshop on Argument Mining at EMNLP 2023. The shared task comprises two classification subtasks - (1) Subtask-A: Argument Stance Classification; (2) Subtask-B: Image Persuasiveness Classification. The former determines the stance of a tweet containing an image and a piece of text toward a controversial topic (e.g., gun control and abortion). The latter determines whether the image makes the tweet text more persuasive. The shared task received 31 submissions for Subtask-A and 21 submissions for Subtask-B from 9 different teams across 6 countries. The top submission in Subtask-A achieved an F1-score of 0.8647 while the best submission in Subtask-B achieved an F1-score of 0.5561.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="liu-etal-2023-overview">
<titleInfo>
<title>Overview of ImageArg-2023: The First Shared Task in Multimodal Argument Mining</title>
</titleInfo>
<name type="personal">
<namePart type="given">Zhexiong</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohamed</namePart>
<namePart type="family">Elaraby</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Zhong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Diane</namePart>
<namePart type="family">Litman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 10th Workshop on Argument Mining</title>
</titleInfo>
<name type="personal">
<namePart type="given">Milad</namePart>
<namePart type="family">Alshomary</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chung-Chi</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Smaranda</namePart>
<namePart type="family">Muresan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joonsuk</namePart>
<namePart type="family">Park</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Julia</namePart>
<namePart type="family">Romberg</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Singapore</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper presents an overview of the ImageArg shared task, the first multimodal Argument Mining shared task co-located with the 10th Workshop on Argument Mining at EMNLP 2023. The shared task comprises two classification subtasks - (1) Subtask-A: Argument Stance Classification; (2) Subtask-B: Image Persuasiveness Classification. The former determines the stance of a tweet containing an image and a piece of text toward a controversial topic (e.g., gun control and abortion). The latter determines whether the image makes the tweet text more persuasive. The shared task received 31 submissions for Subtask-A and 21 submissions for Subtask-B from 9 different teams across 6 countries. The top submission in Subtask-A achieved an F1-score of 0.8647 while the best submission in Subtask-B achieved an F1-score of 0.5561.</abstract>
<identifier type="citekey">liu-etal-2023-overview</identifier>
<identifier type="doi">10.18653/v1/2023.argmining-1.12</identifier>
<location>
<url>https://aclanthology.org/2023.argmining-1.12</url>
</location>
<part>
<date>2023-12</date>
<extent unit="page">
<start>120</start>
<end>132</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Overview of ImageArg-2023: The First Shared Task in Multimodal Argument Mining
%A Liu, Zhexiong
%A Elaraby, Mohamed
%A Zhong, Yang
%A Litman, Diane
%Y Alshomary, Milad
%Y Chen, Chung-Chi
%Y Muresan, Smaranda
%Y Park, Joonsuk
%Y Romberg, Julia
%S Proceedings of the 10th Workshop on Argument Mining
%D 2023
%8 December
%I Association for Computational Linguistics
%C Singapore
%F liu-etal-2023-overview
%X This paper presents an overview of the ImageArg shared task, the first multimodal Argument Mining shared task co-located with the 10th Workshop on Argument Mining at EMNLP 2023. The shared task comprises two classification subtasks - (1) Subtask-A: Argument Stance Classification; (2) Subtask-B: Image Persuasiveness Classification. The former determines the stance of a tweet containing an image and a piece of text toward a controversial topic (e.g., gun control and abortion). The latter determines whether the image makes the tweet text more persuasive. The shared task received 31 submissions for Subtask-A and 21 submissions for Subtask-B from 9 different teams across 6 countries. The top submission in Subtask-A achieved an F1-score of 0.8647 while the best submission in Subtask-B achieved an F1-score of 0.5561.
%R 10.18653/v1/2023.argmining-1.12
%U https://aclanthology.org/2023.argmining-1.12
%U https://doi.org/10.18653/v1/2023.argmining-1.12
%P 120-132
Markdown (Informal)
[Overview of ImageArg-2023: The First Shared Task in Multimodal Argument Mining](https://aclanthology.org/2023.argmining-1.12) (Liu et al., ArgMining-WS 2023)
ACL