@inproceedings{ding-etal-2023-catalpa,
title = "{CATALPA}{\_}{E}du{NLP} at {P}rag{T}ag-2023",
author = "Ding, Yuning and
Bexte, Marie and
Horbach, Andrea",
editor = "Alshomary, Milad and
Chen, Chung-Chi and
Muresan, Smaranda and
Park, Joonsuk and
Romberg, Julia",
booktitle = "Proceedings of the 10th Workshop on Argument Mining",
month = dec,
year = "2023",
address = "Singapore",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.argmining-1.22",
doi = "10.18653/v1/2023.argmining-1.22",
pages = "197--201",
abstract = "This paper describes our contribution to the PragTag-2023 Shared Task. We describe and compare different approaches based on sentence classification, sentence similarity, and sequence tagging. We find that a BERT-based sentence labeling approach integrating positional information outperforms both sequence tagging and SBERT-based sentence classification. We further provide analyses highlighting the potential of combining different approaches.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ding-etal-2023-catalpa">
<titleInfo>
<title>CATALPA_EduNLP at PragTag-2023</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yuning</namePart>
<namePart type="family">Ding</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marie</namePart>
<namePart type="family">Bexte</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andrea</namePart>
<namePart type="family">Horbach</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 10th Workshop on Argument Mining</title>
</titleInfo>
<name type="personal">
<namePart type="given">Milad</namePart>
<namePart type="family">Alshomary</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chung-Chi</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Smaranda</namePart>
<namePart type="family">Muresan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joonsuk</namePart>
<namePart type="family">Park</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Julia</namePart>
<namePart type="family">Romberg</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Singapore</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes our contribution to the PragTag-2023 Shared Task. We describe and compare different approaches based on sentence classification, sentence similarity, and sequence tagging. We find that a BERT-based sentence labeling approach integrating positional information outperforms both sequence tagging and SBERT-based sentence classification. We further provide analyses highlighting the potential of combining different approaches.</abstract>
<identifier type="citekey">ding-etal-2023-catalpa</identifier>
<identifier type="doi">10.18653/v1/2023.argmining-1.22</identifier>
<location>
<url>https://aclanthology.org/2023.argmining-1.22</url>
</location>
<part>
<date>2023-12</date>
<extent unit="page">
<start>197</start>
<end>201</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T CATALPA_EduNLP at PragTag-2023
%A Ding, Yuning
%A Bexte, Marie
%A Horbach, Andrea
%Y Alshomary, Milad
%Y Chen, Chung-Chi
%Y Muresan, Smaranda
%Y Park, Joonsuk
%Y Romberg, Julia
%S Proceedings of the 10th Workshop on Argument Mining
%D 2023
%8 December
%I Association for Computational Linguistics
%C Singapore
%F ding-etal-2023-catalpa
%X This paper describes our contribution to the PragTag-2023 Shared Task. We describe and compare different approaches based on sentence classification, sentence similarity, and sequence tagging. We find that a BERT-based sentence labeling approach integrating positional information outperforms both sequence tagging and SBERT-based sentence classification. We further provide analyses highlighting the potential of combining different approaches.
%R 10.18653/v1/2023.argmining-1.22
%U https://aclanthology.org/2023.argmining-1.22
%U https://doi.org/10.18653/v1/2023.argmining-1.22
%P 197-201
Markdown (Informal)
[CATALPA_EduNLP at PragTag-2023](https://aclanthology.org/2023.argmining-1.22) (Ding et al., ArgMining-WS 2023)
ACL
- Yuning Ding, Marie Bexte, and Andrea Horbach. 2023. CATALPA_EduNLP at PragTag-2023. In Proceedings of the 10th Workshop on Argument Mining, pages 197–201, Singapore. Association for Computational Linguistics.