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Abstract

This paper describes our submission to the
PragTag task, which aims to categorize each
sentence from peer reviews into one of the six
distinct pragmatic tags. The task consists of
three conditions: full, low, and zero, each
distinguished by the number of training data
and further categorized into five distinct do-
mains. The main challenge of this task is the
domain shift, which is exacerbated by non-
uniform distribution and the limited availability
of data across the six pragmatic tags and their
respective domains. To address this issue, we
predominantly employ two data augmentation
techniques designed to mitigate data imbalance
and scarcity: pseudo-labeling and synonym
generation. We experimentally demonstrate
the effectiveness of our approaches, achieving
the first rank under the zero condition and
the third in the full and low conditions.1

1 Introduction

Peer review is a fundamental procedure for assess-
ing the quality of academic manuscripts (Ware and
Mabe, 2015). Most reviews are characterized by
concise argumentative feedback, wherein review-
ers highlight both strengths and weaknesses while
offering suggestions for revision. This observation
has led researchers to frame the structures of peer
reviews as a subset of argument mining (Lawrence
and Reed, 2020; Lauscher et al., 2018; Hua et al.,
2019). Parallel to these insights, efforts have been
made to automate the peer review process (Yuan
et al., 2022; Wang et al., 2020). The automation
of this process yields two primary advantages: it
facilitates authors by distilling the main feedback
from reviews and helps reviewers by aggregating
information from multiple reviews.

∗ Equal contribution.
† Corresponding authors.

1The codes are available at https://github.com/
lilys012/pragtag

Recently, Dycke et al. (2023) introduced a novel
task, pragmatic tagging for peer review, wherein
each sentence of a scientific review is classified
into one of six predefined pragmatic categories.
The proposed task is tailored for a multi-domain
scientific corpus, where certain domains might em-
ploy specific terminologies that are not prevalent
in others or require a unique evaluative perspective
during the review process (Rogers and Augenstein,
2020). Furthermore, the nature of scientific re-
view necessitates profound domain knowledge and
careful examination by the reviewer, thereby pos-
ing challenges in large-scale data collection. Such
challenges, referred to as cross-domain generaliza-
tion (Caciularu et al., 2021; Du et al., 2020), have
been the subject of intensive investigation within
natural language processing.

To address these challenges, we propose two ap-
proaches to enhancing the generalization of the
model over multiple domains: pseudo-labeling
and synonym generation. Under full and low
conditions, we finetune BERT (Devlin et al.,
2018) based classifiers using the training data and
pseudo-label auxiliary data through an ensemble
approach to ensure label quality. In the zero
condition, we exploit the existing sections of the
ARR dataset and inject intrinsic characteristics of
pragmatic tags without utilizing any large language
models. Our method accomplished the highest per-
formance in the zero condition as well as the
third in the full and low conditions.

2 Related Works

Multi-class Classification The task of catego-
rizing input sentences into multiple labels has
seen extensive development across various do-
mains (Soleimani and Miller, 2016; Dang et al.,
2020). Among the readily available models for text
classification, RoBERTa (Liu et al., 2019) stands
out, characterized by its incorporation of a classifi-
cation layer with a transformer encoder. Notably,

https://github.com/lilys012/pragtag
https://github.com/lilys012/pragtag
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Figure 1: Overview of our proposed approach to pragmatic tagging in the full condition. Phase 1: pseudo-labeler
models are trained using provided training data and subsequently utilized to label unlabeled auxiliary data. Phase
2: Training data are augmented by a synonym generator. Phase 3: Augmented data from Phase 1 and 2 are used
to finetune the labeler. Models reapply tagging to the auxiliary data with increased certainty. Phase 4: Classifier
trained with the labeled data from Phase 3 are ensembled to predict the labels of the test data.

this model is acclaimed for its capability to general-
ize across diverse domains. However, for datasets
tailored to specific domains, models such as SciB-
ERT (Beltagy et al., 2019) and BioBERT (Lee et al.,
2020) have been proposed. Additionally, existing
research illustrates that the performance of these
models can be further enhanced through the em-
ployment of ensemble techniques (Saha and Srihari,
2023).

Data augmentation Data augmentation is
widely exploited to enrich and generalize datasets
(Chen et al., 2023). A sentence can be expanded
through the utilization of rule-based techniques
and interpolation (Feng et al., 2021). Furthermore,
in the case of unlabeled datasets, a trained model
can assign pseudo-labels to the unlabeled data,
thereby facilitating supplementary training (Lee
et al., 2013).

3 Dataset

Task Data The data for the task is sourced from
F1000RD (Kuznetsov et al., 2022), which is a
comprehensive multi-domain collection of both re-
views and their pragmatic labels. Under the low
condition, only 20% of the full task dataset is
employed. Detailed statistics of the six tags across
five distinct domains are described in Table 1.

Auxiliary Data The auxiliary data is comprised
of two datasets: F1000raw and ARR-22 (Dycke
et al., 2022). The former, F1000raw, is an extensive,
unlabeled corpus originating from the same source
as F1000RD. Conversely, ARR-22 represents a col-

Full
Domain Strg. Weak. Strc. Rec. Td. Oth. Total

scip 46 73 70 52 115 105 461
iscb 30 93 53 77 173 70 496
rpkg 67 85 64 69 132 89 506
diso 43 81 61 76 135 79 475
case 34 45 53 72 126 58 388
Total 220 377 301 346 681 401 2326

Table 1: Task data statistics based on full conditions
and five domains: science policy research (scip), bioin-
formatics (iscb), R package (rpkg), disease outbreak
(diso), and medical case reports (case). Within each
domain, the count of sentences is categorized by six
labels: Strength (Strg.), Weakness (Weak.), Structure
(Strc.), Recap (Rec.), Todo (Td.), and Other (Oth.).

lection of peer reviews from the ACL community.
Each review within ARR-22 is segmented into sec-
tions designated as Paper Summary, Comments /
Suggestions / Typos, Summary of Strengths, and
Summary of Weaknesses. It is important to note
that the utilization of any external datasets beyond
these is strictly prohibited for our task.

4 Methodology

The efficacy of an individual model can be influ-
enced by various hyperparameters throughout the
training process, which could potentially lead to
inaccurate predictions. Therefore, we opt for an
ensemble approach for our task, as depicted in
Figure 1. From the entire training data, we set
aside 18 reviews to constitute a validation subset.
This subset excludes reviews that belong to the low
condition dataset. The validation subset is consis-
tently applied across all scenarios for the selection
of hyperparameters and models.
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Majority Consensus
F1000raw 0.8454 0.8333
F1000raw+ARR 0.8263 0.8251

Table 2: F1-mean score for auxiliary data labeling. Mod-
els are trained using the F1000raw dataset or in conjunc-
tion with the ARR dataset. Validation data is labeled by
majority and consensus methods.

seed model learning rate score
42 RoBERTa-base 1e-5 0.7498
142 RoBERTa-base 2e-5 0.7667
242 SciBERT 3e-5 0.7260
342 BioBERT 1e-5 0.7534
442 RoBERTa-base 3e-5 0.7306

Table 3: Classifier performance under the low condition.
Bold score indicates the selection for majority labeling.

4.1 Pseudo-labeling

To overcome the scarcity of training data, we
devise a strategy involving pseudo-labeling (Lee
et al., 2013) for the auxiliary data. We train five
RoBERTa-base classifiers (Liu et al., 2019) with
the training data, each instantiated with varying
random seeds. Subsequently, the F1000raw and
ARR datasets (Dycke et al., 2022) are partitioned
2 and labeled via each of the aforementioned clas-
sifiers. We now introduce two distinct ensemble
methodologies as shown in Figure 1: 1) Majority
labeling for Phase 1 and Phase 4. 2) Recall labeling
for Phase 3.

Majority labeling Majority labeling selects the
tag that receives the majority vote among the clas-
sifiers. We also compare it with consensus label-
ing, which retains only the reviews labeled iden-
tically. Table 2 indicates that the combination of
majority labeling and only utilizing the F1000raw
dataset outperforms other combinations. In sce-
narios of low condition, different random seeds,
pretrained models, and learning rates are employed
for training initial classifiers. F1000raw dataset is
then majority labeled across four distinct models:
three distinguished by their performance on the
validation set (bold in Table 3), and an additional
model trained on synonym-augmented data.

Recall labeling We propose a novel approach
named Recall labeling to minimize the uncertainty
of each label. For each pragmatic tag, we select the
model with the highest recall. In descending order
of their recall scores in Table 4, models label the

2Using NLTK, https://www.nltk.org

Strength Weakness Structure
0.936 0.892 1.0
Recap Todo Other
0.928 0.990 0.685

Table 4: Recall scores of the best model selected for
each pragmatic tag.

sentences. Notably, Other tag consistently regis-
tered the lowest recall across all experiments. After
labeling the distinct tags, any residual sentences are
designated as "Other." To further avoid the noise
from arbitrary segmentation, we intentionally omit
the sentences consisting of a singular word.

4.2 Synonym generation

The disparities in data quantities across domains
and classes are evident in Table 1. Such class im-
balances have been documented to foster biases
towards the majority class, subsequently leading to
diminished classification performance (Ali et al.,
2013; Johnson and Khoshgoftaar, 2019). To ad-
dress this prevalent issue of class imbalance, we
employ data augmentation techniques to harmonize
the distribution of labels in each domain. Specif-
ically, we utilize the NLPaug3 package to substi-
tute nouns in each sentence with their synonymous
counterparts. To ensure the quality of augmented
sentences, we compute BERTSCORE (Zhang
et al., 2019) between augmented and original sen-
tences, and only add top-k augmented sentences
into the training dataset.4

5 Results

Experiment results over different conditions and
domains are presented in Table 5.

5.1 Full-data

Test data is labeled in a majority-vote manner us-
ing the best-performing models from Phase 3. The
F1-score for each specific model is depicted in Fig-
ure 2. Through this methodology, the classifier
achieved an F1-score of 0.838. We trained an extra
model using the entire task data, including the vali-
dation set. The performance in Table 5 is derived
from the inclusion of this auxiliary model within
the majority labeling paradigm.

3https://github.com/makcedward/nlpaug
4The selection of k varied across domains.
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f1_mean f1_case f1_diso f1_iscb f1_rpkg f1_scip f1_secret
full 0.839 0.840 0.837 0.801 0.854 0.865 -
low 0.771 0.778 0.746 0.754 0.777 0.800 -
zero 0.516 0.502 0.518 0.551 0.492 0.516 -
final (full) 0.824 0.844 0.840 0.798 0.843 0.864 0.755
final (zero) 0.517 0.502 0.520 0.557 0.508 0.489 0.528

Table 5: Best model performances across the following conditions: full, low, zero, and final phases of both full and
zero settings. F1 scores are computed across six distinct domains in a macro average.

5.2 Low-data

As expounded in Section 4.1, a classifier is trained
utilizing the F1000raw dataset, subject to majority
labeling encompassing four distinct models. We
train over 25 epochs with a batch size of 8 and a
learning rate of 2e-5.

5.3 Zero-data

We segment the ARR dataset into sentences and
label them into 4 categories following Dycke et al.
(2022): Strength, Weakness, Recap, and Todo.
Structure tends to encompass short instructions that
end with ":", in following the examples such as
"Typos:" and "However a few queries:". Hence,
we label all sentences that end with ":", as well
as sentences of five or fewer words as Structrue.
Lastly, Weakness and Recap are commonly misla-
beled as Other, thus we randomly transform 15% of
them into Other. Surprisingly, synonym generation
seems to have introduced perturbations that have
led to a disruption in the intended context of the
original sentences, thereby slightly decreasing the
performance. This could potentially be attributed
to the notably lower volume of the ARR dataset
compared to F1000raw.

5.4 Secret-data

We further evaluate our best models in the secret
domain. In the full data setting, the exclusion
of the auxiliary model mentioned in section 5.1
results in a minor decrease of 0.0003 in the F1-
mean score, while the F1-secret score increases by
0.006. Notably, there exists a subtle variation in the
F1-scores within the same domain under the zero
condition, as detailed in Table 5. This variance
arises due to the random allocation of Other tag.

5.5 Discussion

Models tend to exhibit proficiency in classifying ex-
amples that are apparent, yet encounter challenges
when confronted with ambiguous reviews. Recall
labeling assists the classifier, as each model spe-
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Figure 2: F1-scores of models employed for majority
labeling under the full condition. Classifiers are trained
using the following methods in the order from left to
right: recall labeling over 30 and 50 epochs, majority la-
beling, synonym generation, and recall labeling among
models trained without synonym generation.

cializes in distinguishing different tags. The cu-
mulative effect of this approach is a reduction in
uncertainty during the pragmatic labeling process.

6 Conclusion

In this study, we have empirically demonstrated
the effectiveness of data augmentation methodolo-
gies, particularly in scenarios characterized by lim-
ited data availability. Our findings pinpoint that
strategies such as pseudo-labeling and synonym
generation are instrumental in leveraging unlabeled
auxiliary data, therefore amplifying the generaliza-
tion capacity of the classifier. Furthermore, our
exploration of an ensemble approach for pseudo-
labeling, aimed at maximizing certainty, suggests
promising avenues for enhancing the efficacy of
pragmatic tagging processes.
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