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Abstract

We describe our models for the Pragmatic Tag-
ging of Peer Reviews Shared Task at the 10th
Workshop on Argument Mining at EMNLP-
2023. We trained multiple sentence classifica-
tion models for the above competition task by
employing various state-of-the-art transformer
models that can be fine-tuned either in the tra-
ditional way or through instruction-based fine-
tuning. Multiple model predictions on unla-
beled data are combined to tentatively label
unlabeled instances and augment the dataset to
further improve performance on the prediction
task. In particular, on the F1000RD corpus, we
perform on-par with models trained on 100%
of the training data while using only 10% of
the data. Overall, on the competition datasets,
we rank among the top-2 performers for the
different data conditions.

1 Introduction

Peer Review is employed across various subject
domains to assess the quality of research docu-
ments such as grant proposals, journal manuscripts,
and conference proceedings. Peer reviews are per-
formed by independent researchers with expertise
on the relevant topic for purposes such as award-
ing grants or publishing latest research for the ad-
vancement of Science. Review text reports, the
result of these peer assessments, are brief sum-
maries describing the document’s main contribu-
tions, its strengths and weaknesses, along with
other revision related comments and constructive
feedback (Griessenauer and Roach, 2019).

Though standards and practices may vary across
different subject domains and even across venues
within the same domain, the main objective of the
peer review process is to ensure the advancement of
quality research (Glonti et al., 2019). To this end,
alleviating the reviewing burden and supporting
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the diverse nature of reviewer expertise becomes
vital (Huisman and Smits, 2017) and motivates the
on-going research on developing tools to assist and
improve the peer reviewing process (Walker and
Rocha da Silva, 2015; Checco et al., 2021; Yuan
et al., 2022; Schulz et al., 2022). In particular, a sig-
nificant direction towards developing AI-assisted
peer reviewing models involves the compilation
of relevant datasets to support the meta-analyses
of reviews (Kang et al., 2018; Ghosal et al., 2022;
Dycke et al., 2023a).

From the perspective of language and NLP re-
search, review reports provide a rich ground for
investigation for various argument mining prob-
lems (Hua et al., 2019) including classification
tasks such as paper acceptance prediction and sen-
tence labeling (Bao et al., 2021; Kuznetsov et al.,
2022). The PragTag Shared Task1 at the 10th Work-
shop on Argument Mining at EMNLP-2023 com-
prises one such sentence labeling task in which
every sentence from a review report is assigned
a label from one of the pragmatic categories: {
Recap, Strength, Weakness, Todo, Other,
Structure}. Due to space constraints, we refer
our readers to Kuznetsov, et al. (2022) and Dy-
cke, et al. (2023b) for the precise definitions of
the pragmatic categories and the F1000RD Corpus
which forms the basis for the datasets used in the
PragTag-2023 competition.

1.1 Task Description and Evaluation
In PragTag-2023, the pragmatic tagging task is pre-
sented in a cross-domain, low-resource setting us-
ing data from the F1000RD Corpus. The F1000RD
is a multi-domain collection of free-text peer re-
views annotated with pragmatic labels at the sen-
tence level. Each peer review is associated with a
domain (related to Medicine, Computer Science, or
Scientific Policy Research). Additionally, recently
released unlabeled review corpora from Dycke, et

1https://codalab.lisn.upsaclay.fr/competitions/13334
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al. (2023a) were made available as auxiliary data
sources. The following three data conditions were
proposed for the competition:

1. No-data: where no labeled instances are avail-
able for the task–zero-shot setting (Radford
et al., 2019).

2. Low-data: where about 20% of the labeled
data for the task can be used for training
models–few-shot setting (Brown et al., 2020).

3. Full-data: which is the standard machine-
learning setting where the entire training split
of the labeled data can be used to train models.

For measuring model performance on this sentence
classification task, the average performance across
domains is used in each of the above conditions
where the performance in a domain is simply mea-
sured by the macro-F1 computed across all review
sentences of that domain. For the final evaluation,
the test data comes from a “secret” domain, differ-
ent from those covered in the training data, thus
measuring cross-domain model performance.

Consider the definitions of labels:
Recap: summarizes the manuscript, For e.g.
“The paper proposes a new method for...”;
. . . Question: Which of the above labels most
applies to the following sentence? Sentence: []

Table 1: Prompt for LLM Models

2 Proposed Methods

In this section, we briefly describe the various mod-
els we employed for the Pragmatic Tagging task
under the three data conditions.
No-data setting: We studied two approaches for
predicting pragmatic tags under the no-data condi-
tion. In the first “Semantic Search” approach, we
simply use a list of “questions” to find sentences
in the review texts that best answer the question.
This list was curated based on the typical questions
employed during the peer review process of NLP
conferences and augmented to cover labels such as
“Recap”.2 Example questions include “How orig-
inal are the results described in the paper?” and
“What is the main finding of this paper?”. We used
the state-of-the-art Sentence Transformer models

2Complete list shared as part of the code distribution

trained for Semantic Search for this method (Wang
et al., 2020; Nassiri and Akhloufi, 2023).3

Recent breakthrough research has shown that
large language models (LLMs) can be trained “to
act in accordance with the user’s intentions” and as
a consequence be “prompted” to perform a range
of NLP tasks (Radford et al., 2019; Brown et al.,
2020; Christiano et al., 2017). For our second
approach, in keeping with this recent direction, we
designed a multiple-choice question prompt along
with the task description provided in the compe-
tition for use in Instruction Fine-tuned Language
Models (Ouyang et al., 2022; Chung et al., 2022).
Our prompt is listed in Table 1 and we refer to the
use of this approach as “MC-Prompt” in Section 3.4

Low-data/Full-data setting: In current practice,
fine-tuning large pre-trained language models
(PLMs) for a new task has become the standard
approach for training models (Howard and Ruder,
2018). We therefore adopt the state-of-the-art
transformer-based models and directly train
supervised models on the available labeled data for
the low/full data conditions.

With the objective to utilize the unlabeled data
provided in the competition as means to overcome
the scarcity of labeled data in the low-data set-
tings, we employed traditional semi-supervised
approaches–self-training and voting, to combine
predictions from multiple learners5 and obtain ten-
tative labels for the unlabeled data (Li et al., 2019;
Sosea and Caragea, 2022). The “tentatively labeled”
unlabeled data is incorporated via two methods in
our models. In the pretraining approach (PT), we
simply pretrain our classifier on the tentatively-
labeled unlabeled data before fine-tuning on the
labeled data whereas in the Combined approach,
the augmented dataset is used to train a model.

3 Experiments

Datasets: We used the datasets from previous
works (Kuznetsov et al., 2022; Dycke et al., 2023a)
for showcasing our proposed methods on this task.

3https://huggingface.co/sentence-transformers/multi-qa-
mpnet-base-dot-v1

4We experimented with slight variations and paraphrases
of the label descriptions, prompts with and without examples,
as well as a yes/no prompt that uses a yes/no question with
each label. Our best prompt based on validation performance
is listed in Table 1.

5In addition to the provided RoBERTa-based competition
baseline, we also fine-tuned models based on T5 and FlanT5
models from Google. These details are provided in Section 3.
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Setting #Labeled Sentences Model Accuracy Macro-F1
No data 0 QA-MPNet (Semantic Search) 0.31 0.32

0 FlanT5-XL (MC-Prompt) 0.53 0.42
Low data (10%) 338 RoBERTa 0.75 0.71

338 FlanT5-large 0.70 0.68

338 T5-large 0.78 0.74
14673/338 T5-large (PT) 0.81 0.80
15011 T5-large (Combined) 0.77 0.76

Full-data 2691 Roberta 0.83 0.82
2691 FlanT5-large 0.82 0.80

2691 T5-large 0.84 0.82
15844/2691 T5-large (PT) 0.86 0.85
18535 T5-large (Combined) 0.85 0.83

Table 2: Performance of various models is shown on the test split of the F1000RD corpus. The best performance in
each setting is highlighted in bold. For the “X/Y” values shown in the #Labeled Sentences column of PT rows, X is
the number of tentatively-labeled unlabeled instances and Y, the number of labeled instances from the training data.

In particular, we used the F1000RD Corpus6 for
presenting our observations in this section. For the
competition, in accordance with the competition
rules, we only used the provided main and auxiliary
datasets (Dycke et al., 2023b).
Implementation Details: We fine-tuned the Text-
to-Text Transfer Transformer (T5) model for our
classification task. T5 incorporates various tasks
such as translation, question answering, and clas-
sification uniformly as text-to-text learning tasks,
thereby harnessing the power of transfer learning
across multiple tasks, and has been shown to ob-
tain state-of-the-art performance across a range of
tasks (Raffel et al., 2020). The T5 models were ex-
tended to incorporate instruction-based fine-tuning
into the FlanT5-family of models (Chung et al.,
2022). For T5 and FlanT5 experiments, we used
latest implementations available from Hugging-
Face (Wolf et al., 2019). In total, for the low/full
data conditions, three classifiers were trained using
T5, FlanT5, and the RoBERTa baseline provided
in the competition.

All experiments were performed on a single
GPU of an Nvidia Tesla cluster machine with
32GB RAM. On this machine, based on the size
of the datasets and the specific models, train-
ing time ranges between 0.5-24 hours. On our
available infrastructure, the biggest models we
were able to train were the “large” variants (T5-
large and FlanT5-large) from the T5 and FlanT5

6https://github.com/UKPLab/f1000rd

model families. The performance on the develop-
ment/validation split of the dataset was used to set
the number of epochs for the final models.7

3.1 Results and Observations

We illustrate the performance of our models under
the three data conditions on the F1000RD dataset.6

For the low-data condition shown in Table 2, we
used a randomly-selected 10% subset of the train-
ing data. In this table, we see that, not surprisingly,
the accuracy and macro-F1 scores of models in
the full-data condition are significantly higher than
those in the low-data condition. However, in ab-
solute terms, even with 10% of the labeled data
the performance is reasonably high on this dataset.
Moreover, using appropriate prompts in the FlanT5-
XL model, we are able to obtain almost half of
the Macro-F1 score obtained with full-data models
even in the no-data condition.

Based on the competitive validation performance
afforded by the T5-large models in both low-data
and full-data conditions, we selected this model for
exploring the improvements with unlabeled data.
For these two data conditions, we used the three
models (RoBERTa, FlanT5-large, T5-large) to ob-
tain predictions for the auxiliary (unlabeled) data
made available in the competition. We incorpo-
rate those examples for which there is agreement
between RoBERTa and FlanT5-large model pre-
dictions but no agreement with T5-large model

7https://github.com/NUS-IDS/PragTag2023
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Setting Model F1-case F1-diso F1-rpkg F1-iscb F1-scip F1-mean
No-data QA-MPNet 0.352 0.310 0.354 0.326 0.291 0.326

FlanT5-large 0.420 0.396 0.413 0.424 0.357 0.402∗

Rank-1 Unknown 0.502 0.518 0.492 0.551 0.516 0.516
Low-data T5-large 0.764 0.792 0.789 0.796 0.827 0.794
(Rank-1=Us) FlanT5-large 0.804 0.835 0.803 0.803 0.820 0.813∗

Full-data T5-large 0.813 0.853 0.829 0.806 0.861 0.832
T5-large (PT) 0.843 0.834 0.827 0.821 0.854 0.836
T5-large (Combined) 0.838 0.854 0.848 0.833 0.878 0.850∗

Rank-1 Unknown 0.829 0.842 0.854 0.836 0.889 0.850

Table 3: Phase-1 Results from the competition. We indicate the performance of the best system in the Rank-1 row
and highlight our best F1-mean score with a ∗

Setting Model F1-secret F1-mean
No FlanT5-large 0.425 0.406
Low FlanT5-large 0.759 0.804
Full T5-large 0.741 0.832

(Combined)
Rank-1 Unknown 0.801 0.841

Table 4: Phase-2 Results. The Rank-1 row shows the
performance of the best model from the competition.

predictions as the subset of “weakly-labeled” data
for training new T5 models in PT and Combined
settings described in Section 2.

That is, during data augmentation, we add the
“hard” cases for which the T5-large model predic-
tions do not match the labels predicted by both
RoBERTa and Flan-T5. This step cuts down the
amount of unlabeled data added back to the dataset
by excluding “uninformative” samples for which
the original T5 model predictions already conform
to the other models. In our early experiments,
we observed that adding all examples for which
we have majority labels significantly increases the
training time with no significant improvements in
the validation performance.

As can be seen in Table 2, both PT and Com-
bined settings result in improved test performance
for low-data as well as the full-data conditions. In
particular, the improvement is significantly higher
in the macro F1 score in the low-data condition.
Indeed, with pretraining (PT), the test performance
in low-data conditions is comparable to those of
models trained on full data.

In Table 5, the per-class F1 scores on the test
split for the three models: T5-large, T5-large (PT),
T5-large (Combined) from Table 2 are shown. The
improved F1 scores across classes in both PT and
Combined settings are indicative of a significant
reduction in the number of erroneous predictions

Class Label Default PT Combined
Other 0.63 0.70 0.62
Recap 0.74 0.80 ∗0.77
Strength 0.83 0.87 ∗0.85
Structure 0.95 0.92 0.95
Todo 0.94 0.95 0.94
Weakness 0.84 0.85 ∗0.85
Macro Average 0.82 0.85 0.83

Table 5: Test F1 performance for each class label is
shown for the three T5-large models from Table 2. The
best performances are bolded. We also highlight the
cases where the Combined setting outperforms the de-
fault setting with a ∗.

over the baseline setting. As such, F1 improve-
ments are seen for five out of the six classes in the
PT setting, and three out of the six classes in the
Combined setting.

3.2 Competition Performance and Ranking

The results with our models in the competition are
showcased for the two phases in Tables 3 and 4.
Within the competition timeframe and limits on
number of submissions, we were unable to test all
our models on the final dataset. We highlight our
best-performing models among those we submitted
and also the overall best submission in the com-
petition (Rank 1) for each condition. During the
competition, for the PT and Combined runs, we
used all unlabeled examples with majority labels
(different from the settings used in Table 2).

Overall, we ranked among the top-2 performing
of the four-six submitted systems for the various
data conditions. Compared to the performances
highlighted in Tables 2 and 3, our models underper-
form on the data from the secret domain (Table 4)
indicating that they may not be generalizing well
for new/unseen domains.
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4 Related Work

Sentence classification tasks are well-studied in
NLP research with deep learning models compris-
ing the state-of-the-art (Cohan et al., 2019). Some
recent sentence-level classification tasks include
identification of complex linguistic phenomena in
texts such as emotions, empathy, humor, sarcasm,
and dialog acts (Song et al., 2022; He et al., 2021;
Wang et al., 2022; Bunescu and Uduehi, 2022).

Recently, efforts are underway for collecting rel-
evant datasets for designing assistive automation
aids for peer review (Yuan et al., 2022; Checco
et al., 2021; Kang et al., 2018; Ghosal et al., 2022;
Dycke et al., 2023a). In this context, Kuznetsov, et
al. (2022) introduced pragmatic tagging for label-
ing sentences of peer reviews using a schema that
applies across different research fields and commu-
nities. We borrow from the latest NLP advances
such as prompt-based models and combine them
with unlabeled data on precisely this task.

5 Conclusions and Future Work

We presented our approaches for the pragmatic tag
prediction task for peer reviews as part of the Prag-
Tag Shared Task @ ArgMining Workshop 2023. In
particular, we studied prompt-based fine-tuning as
a viable alternative to traditional learning methods
for this task and showcased how unlabeled data
may be utilized via multiple learners to improve
performance in the low-data settings. In future, we
would like to address the generalizability of our
proposed models across various subject domains as
well as extend our approaches to related tasks such
as paper acceptance prediction (Bao et al., 2021;
Yuan et al., 2022).
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