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Abstract

The use of argumentation in education has
shown improvement in students’ critical think-
ing skills, and computational models for argu-
mentation have been developed to further assist
this process. Although these models are useful
for evaluating the quality of an argument, they
often cannot explain why a particular argument
score was predicted, i.e., why the argument is
good or bad, which makes it difficult to provide
constructive feedback to users, e.g., students,
so that they can strengthen their critical think-
ing skills. In this survey, we explore current
NLP feedback systems by categorizing each
into four important dimensions of feedback
(Richness, Visualization, Interactivity and Per-
sonalization). We discuss limitations for each
dimension and provide suggestions to enhance
the power of feedback and explanations to ulti-
mately improve user critical thinking skills.

1 Introduction

Argumentation is the field of elaborating and
presenting arguments to engage in debate, con-
vince others, and eventually reach agreements.
In this context, an argument is made of a con-
clusion (i.e., a claim) supported by reasons (i.e.,
premises) (Toulmin, 1958). Computational argu-
mentation emerged as a way to support argumenta-
tion. It is a subfield of natural language processing
(NLP) that deals with the automated representa-
tion, evaluation, and generation of arguments. It in-
cludes tasks such as mining arguments (Al-Khatib
et al., 2016), assessing arguments’ quality (El Baff
et al., 2018), reconstructing implicit assumptions
in arguments (Habernal et al., 2018) or even pro-
viding constructive feedback for improving argu-
ments (Naito et al., 2022), to name a few.

In education, learning how to argue (e.g., writ-
ing argumentative essays, debates, etc.) has
been shown to improve students’ critical thinking
skills (Pithers and Soden, 2000; Behar-Horenstein
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Figure 1: Overview of some NLP feedback systems
categorized into our feedback dimensions.

and Niu, 2011). To further improve critical think-
ing skills, several researchers have been working
on computational argumentation and specifically
argumentative feedback systems to provide support
and to assist learners in improving the quality of
their arguments (Habernal et al., 2017; Wachsmuth
et al., 2017; Lauscher et al., 2022).

Although argumentative feedback systems are
proven to assist students’ learning and reduce teach-
ers’ workload (Twardy, 2004; Wambsganß et al.,
2021), such systems still lack the ability to deeply
explain how an argument can be improved; i.e.,
not only providing a holistic label or score, but ex-
plaining particularly why this result was given by
automatic evaluation rubrics. Such explanations as
feedback can ultimately explain and visualize the
results comprehensively for the users so that users
can understand and improve their argumentation
skills. The lack of ability in current systems to
provide deep explanations as feedback motivated
our interest in investigating the current state of ar-
gumentative feedback generation.

In this survey, we focus on different kinds of
feedback given to learn how to argue. Inspired
by the sections Tutorial Feedback and Architec-
ture and Technology mentioned in Scheuer et al.
(2010), we combine features of feedback systems,
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Your argument has an invalid generalization. 
  

 American cuisine is not just hamburgers.
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American cuisine is not just hamburgers.  

American cuisine is not healthy. 
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 Oh, what else is American?
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Your argument has an invalid generalization. 
  

 American cuisine is not just hamburgers.

Personalization = To Whom

  What    
Why        

 American cuisine is not healthy.  
  
 Hamburgers are not healthy.

Careful you are simplifying! 
American cuisine is not just hamburgers.For example, Cobb salad is.

Figure 2: Example of four feedback for each dimension (Richness, Visualization, Interactivity and Personalization).

formulate four distinct dimensions and categorize
existing papers into these dimensions (Figure 1):

• Richness: Level of feedback details given by
a model, i.e., what is the error identified by
the model and why it is an error.

• Visualization: Model’s ability to present feed-
back, i.e., how the feedback is shown to the
end user.

• Interactivity: Model’s ability to allow the user
to communicate with other users or the model
itself, i.e., with whom the user is talking.

• Personalization: Model’s ability to adapt the
feedback to the users’ background, i.e., to
whom the feedback is given.

Figure 2 shows four different dimensions of feed-
back (Richness, Visualization, Interactivity, and
Personalization), for a given argument consisting
of two claims and one premise. In this example, in
the Richness dimension, a faulty generalization in
the argument is identified (cf. What) and explained
(cf. Why). Visualization would add symbols and
highlight important feedback elements to make it
more understandable. Interactivity would allow the
user to ask for more explanations to the model. Per-
sonalization would consider that the user is a child
and provide appropriate feedback on that basis.

Towards better argumentative feedback, this sur-
vey aims to give an overview of argumentative feed-

back systems. We explore work that provide feed-
back answering one or multiple questions among
the types: What/Why (§4), How (§5), Who (§6), and
To Whom (§7). Finally, we discuss remaining chal-
lenges and potential ways to overcome them (§8) in
order to develop systems that provide feedback or
detailed explanations in a way so that learners can
improve their critical thinking skills. We believe
this survey can aid researchers in understanding
current explanations in argumentation and broaden
their horizon on argumentative feedback.1

2 Related Work

Several surveys have been done in the field of
argumentation (Ke and Ng, 2019; Habernal and
Gurevych, 2016; Lawrence and Reed, 2020; Wang
et al., 2022) and explainability (Danilevsky et al.,
2020; Islam et al., 2021; Hartmann and Sonntag,
2022). As we would like to focus on how well a
model can explain its results as a type of feedback
for learners, we present here recent surveys related
to feedback or explainability in argumentation.

Beigman Klebanov and Madnani (2020) present
the progress in automated writing evaluation, using
Page (1966) to frame the presentation. In this sur-
vey, the succinct feedback section enumerates dif-
ferent systems for writing assistant and highlights
the inconclusiveness of research on effectiveness

1For more details, papers mentioned in this survey are cat-
egorized at https://kmilia.github.io/teach_me_how_
to_argue/.

https://kmilia.github.io/teach_me_how_to_argue/
https://kmilia.github.io/teach_me_how_to_argue/
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of automated writing evaluation.
Vassiliades et al. (2021) highlights the potential

of argumentation in explainable AI systems. They
provide an exhaustive overview of argumentation
systems by grouping them based on domain, such
as law. For each domain, papers are compared by
tasks (e.g., argument classification). Despite the ex-
tensiveness of their survey, some topics to improve
explanations in argumentative systems received lit-
tle attention. For example, frameworks that include
arguments with commonsense knowledge and di-
verse attack relations between them have rarely
been discussed, even though they can enhance the
model’s explainability (Saha et al., 2021).

Čyras et al. (2021) focus on the different frame-
works, types, and forms of explanations. They
distinguish intrinsic approaches (i.e., models us-
ing argumentative methods) from post-hoc ap-
proaches (i.e., non-argumentative models that pro-
vide complete or partial explanations). They dis-
cuss multiple forms of argumentation, such as dia-
logue. Their final roadmap covers the need to focus
more on properties and computational aspects of
argumentation-based explanations. Whereas they
focus on how argumentation can be used to enhance
the explainability of models, our work discusses
what kind of feedback (i.e., explanations) on argu-
mentation models can provide.

Moreover, our work distinguishes itself from
the surveys previously mentioned by giving an
overview of automatized feedback on argumenta-
tion from the angle of rich (§4), visual (§5), in-
teractive (§6), and personalized (§7) explanations
inspired by Scheuer et al. (2010).

3 Pedagogy

Before discussing the four dimensions mentioned a
priori, it is essential to know the pedagogy used to
teach argumentation and adopted by computational
models. This section presents some standard peda-
gogical methods used in teaching how to argue.

Toulmin model The Toulmin model (Toulmin,
1958), often seen as the foundation of teaching ar-
gumentation, is a popular framework for construct-
ing, analyzing and evaluating arguments, and can
contribute to the improvement of students’ argu-
mentative writing (Rex et al., 2010; Yeh, 1998) as
well as critical thinking skills (Giri and Paily, 2020).
This approach deconstructs an argument into six
elements (Appendix, Figure 4), and students are
taught to identify each element within an argument.

By identifying elements from the Toulmin model,
models can provide users with rich feedback.

Rhetorical structure theory Based on Mann
and Thompson (1988), the rhetorical structure the-
ory was originally developed in the context of
computer-based text generation in order to attribute
a formal structure to a text (Hou et al., 2020). This
theory employs graphical representations, such as
mind maps or graphs, to illustrate the relationships
between different components of the text’s archi-
tecture. This visual approach can help students
visualize the connections between different con-
cepts and enhance their understanding of complex
topics (Matsumura and Sakamoto, 2021). The ad-
vent of tools like Tiara (Putra et al., 2020) has given
rise to the deployment of the rhetorical structure
theory, i.e. the generation of visual feedback.

Collaborative argumentation In collaborative
argumentation-based learning, also described as
CABLE by Baker et al. (2019), individuals work to-
gether to construct, refine, and evaluate arguments
on a particular topic or issue. The main goal of
collaborative argumentation is to foster construc-
tive dialogue, critical thinking, and the exploration
of different perspectives. Weinberger and Fischer
(2006) differentiate four dimensions of CABLE:

• Participation: Do learners participate at all?
Do they participate on an equal basis?

• Epistemic: Are learners engaging in activities
to solve the task (on-task discourse) or rather
concerned with off-task aspect?

• Argumentative: Are learners following the
structural composition of arguments and their
sequences?

• Social: To what extent do learners refer to the
contributions of their learning partners? Are
they gaining knowledge by asking questions?

Veerman et al. (2002); Baker et al. (2019) show
CABLE’s positive effects on students’ argumenta-
tion development. Nevertheless, they also highlight
the challenges of this method, as not every dialogue
can be predicted. By using CABLE, models can
generate interactive feedback.

Socratic questioning The Socratic questioning is
a common teaching strategy, described in Schauer
(2012); Abrams (2015). With this method, the stu-
dent is guided through reflexive questions towards
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solving a problem on their own, instead of receiv-
ing directly a solution. The user receives feedback
which is tailored to their background, i.e., person-
alized feedback.

Recently, this method has been integrated into
large language models (LLMs) to more effectively
adhere to user-provided queries (Ang et al., 2023;
Pagnoni et al., 2023), to enhance the ability of such
models in generating sequential questions (Shrid-
har et al., 2022), and also to enhance the explain-
ability of these models (Al-Hossami et al., 2023).

Nevertheless, the Socratic questioning is now
raising debates among researchers focusing on ped-
agogy in argumentation. Indeed, Kerr (1999) and
Christie (2010) pointed out its inefficiency and abu-
siveness as students are forced to give imperfect
answers in a hurry and endure criticism.

4 Richness - What is an Error and Why?

To improve students’ critical thinking skills, we
first need to evaluate their argumentative texts, i.e.,
identify argumentative errors. In this section, we
focus on models providing shallow explanations,
i.e., models that identify what should be corrected
in the arguments. We discuss relevant works that
identify properties such as the structure of argu-
ments which is helpful in this process.

Components Identifying argumentative compo-
nents is one of the fundamental tasks in argumen-
tation (Teufel, 1999; Stab and Gurevych, 2014; Jo
et al., 2020). Such works primarily focus on iden-
tifying components such as claims and premises.
More recently, the usefulness of identifying such
components can be seen in tasks such as counter-
argument generation. For example, in Alshomary
et al. (2021), weak premises are identified and
ranked to generate counter-arguments.

Relations After identifying the different compo-
nents of an argumentative text, it is necessary to
distinguish the multiple relations between them,
ultimately to assert the arguments’ quality. Indeed,
supporting or refuting a claim is made of complex
logical moves, such as promoting, contradicting,
or acknowledging a fact. To identify the different
relations patterns, Yuan et al. (2021) focus on find-
ing interactive argument pairs, whereas Mim et al.
(2022) enables annotating complex attack relations.

Schemes In addition to components and relations,
Walton et al. (2008) proposed a set of roughly 80
logical argumentation schemes to categorize the

underlying logic. Each scheme has a set of criti-
cal questions which provide a template to assess
the strength of the argument depending upon the
associated scheme. Since the first work on auto-
matically detecting argumentation schemes in ar-
gumentative texts (Feng and Hirst, 2011), the use
of such schemes has been explored in tasks such as
essay scoring (Song et al., 2014).

Fallacies Although a good structure with a claim
and premises is necessary for a good argument,
it is not sufficient. An argument has more com-
plex properties, such as its logical, dialectical, and
rhetorical aspects. A fallacy is a logical error or
deceptive argument that undermines the validity of
a conclusion or reasoning, which poses a substan-
tial issue due to its propensity to generate miscom-
munication. Towards teaching students to avoid
making errors in logical reasoning, logical falla-
cies have received attention (Habernal et al., 2017;
Bonial et al., 2022; Zhivar et al., 2023; Nakpih
and Santini, 2020). Motivated by the gamification
method made by Habernal et al. (2017), Bonial
et al. (2022) aimed to capture similar fallacy types
for news articles, but the low distribution of fallacy
types in the wild makes identification challenging.
However, most natural texts do not have recurrent
specific patterns, compared to current datasets, like
the Logic and LogicClimate datasets (Jin et al.,
2022). Moreover, given the large number of logical
fallacies that exist (over 100 types), long arguments
can be grouped into multiple fallacies, resulting in
difficulties in classification (Goffredo et al., 2022).

Debate patterns In a case of a debate, an op-
ponent is willing to give a counter-argument syn-
chronously and interactively. Analyzing and eval-
uating a debate is a difficult task as we need to re-
trieve not only the argumentation structure of each
opponent but also the relations between them. Bao
et al. (2022) focuses on argument pair extraction
(APE), which consists of finding two interactive
arguments from two argumentative passages of a
discussion. Although the APE task gives insights
into relations between different argumentative texts,
it does not indicate complex relations (i.e., how
claims, supports, attacks and the intention of the
speakers are interrelated). To palliate this issue,
Hautli-Janisz et al. (2022) identified and analyzed
the dialogical argumentative structure of debates us-
ing Inference Anchoring Theory (IAT) (Budsziyska
et al., 2014). Following the same IAT theory, Kik-
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teva et al. (2022) showed that the type of questions
(e.g., pure, assertive, and rhetorical questions) leads
to different argumentative discourse. Focused more
on the opponent’s side, Naito et al. (2022) propose
diagnostic comments for assessing the quality of
counter-arguments by providing expressive, infor-
mative and unique templates. The feedback is then
written by template selection and slot filling.

In-Depth Explanations Although identifying
such argumentative structures (components, rela-
tions, and schemes) and properties (fallacies and
debate patterns) is important, it has limitations in
terms of effective feedback. Identifying a missing
claim or a wrong premise is insufficient to under-
stand how to improve the argumentation properly.
Thus, we relate the identification of structure and
properties to shallow explanations in the sense that
users can still benefit from the output of the models.

Shallow explanations can be difficult to under-
stand, especially for beginners, as they tend to be
minimalist and lack guidance. To explain more ef-
fectively the errors in an argument, a model should
go a step further, hence by providing in-depth expla-
nations, which attempt to identify the argument’s
implicit components to explain why it is an error in
a particular argument. In Figure 2, we implicitly
know that hamburgers belong to the American cui-
sine, as same as the Cobb salad, a healthy garden
salad from California. Therefore, if the model is
able to reason out this implicit knowledge, it can
better explain the invalid generalization in Figure 2.

Implicit Knowledge and Reasoning in Argu-
ments To provide in-depth explanations, we need
to know how to refine the argument, i.e., how
to identify implicit information. Recently, many
works have focused their attention on this aim. The
main goal of such studies is to make the structure
and reasoning of arguments explicit to explain the
arguments for humans better. Additionally, this fo-
cus can eventually help build robust argumentation
machines that can be enriched with language under-
standing capacity. Following the pioneer works of
Razuvayevskaya and Teufel (2017), the ExpLAIN
project (Becker et al., 2021) and Jo et al. (2021)
are one such example that focuses extensively on
reconstructing implicit knowledge in arguments by
relying on knowledge graphs among others. Tak-
ing a step further in this direction, Heinisch et al.
(2022) and Saadat-Yazdi et al. (2023) proposed to
utilize such implicit information to bridge the im-

plicit reasoning gap in arguments to help students
explain their arguments better.

Large annotated corpora are required to improve
implicit reasoning detection for models. To address
this need, various studies have proposed methods
for annotating implicit knowledge, leading to the
development of multiple datasets (Becker et al.,
2020; Singh et al., 2021, 2022). In Singh et al.
(2021), semi-structured warrants, i.e. links between
a claim and evidence (c.f. Appendix Figure 4),
were annotated via crowdsourcing, whereas Becker
et al. (2020) focus on reconstructing omitted in-
formation, semantic clause types, and common-
sense knowledge relations through expert annota-
tion. Corpora can be dedicated to a specific domain
or sentence patterns. For example, (Singh et al.,
2022) focused on domain-specific knowledge using
six topics. However, implicit knowledge may take
various forms, such as warrants, causal relations,
facts, beliefs, or assumed-known arguments. Thus,
revealing implicit knowledge in an unknown text
through annotated datasets can be challenging.

In recent years, LLMs have made significant
progress in exhibiting reasoning abilities. A com-
prehensive overview of the current state of reason-
ing abilities in LLMs is provided in the survey
Huang and Chang (2023). The increasing interest
in LLMs and implicit reasoning prompted the first
ever workshop on natural language reasoning and
structured explanations in 2023 (Dalvi Mishra et al.,
2023). This workshop discussed that while LLMs
have demonstrated good capabilities to find implicit
components within an argument, they often cannot
correctly explain the logical reasons behind their re-
sponses. To bridge this gap, a novel category of ex-
planation techniques has arisen, playing a vital role
in shaping the logical reasoning of models. One
such example is the chain-of-thought prompting
(Wei et al., 2022; Wang et al., 2023a), which em-
ploys explanations as a means for LLMs to emulate
human reasoning procedures. While the references
Huang and Chang (2023) and Dalvi Mishra et al.
(2023) do not primarily focus on argumentative
tasks, they can be a valuable source of inspiration
in argumentation.

5 Visualization - How to Show the Error?

The effectiveness of any argument does not solely
rely on its content but also on its presentation. This
is where visualization of argumentative feedback
emerges as a crucial factor. Visualizing feedback
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empowers individuals to perceive the intricacies of
an argument in a more comprehensive manner. By
using visual aids like graphs, feedback becomes
more accessible and engaging, fostering construc-
tive discussions. In this section, we discuss how
visualization impacts argumentative feedback.

Highlights A simple approach to visualization
is highlighting, i.e., application of visual emphasis
on a specific pattern with the intention of drawing
the viewer’s attention to this specific pattern. For
example, Lauscher et al. (2018) identify the argu-
ment component (Claim, background, data) and
visualizes them by highlighting the text in different
colors. Similarly, Chernodub et al. (2019) allow
the user to choose the model to use and the com-
ponents to highlight. Wambsganss et al. (2022b)
take a step further by highlighting and presenting
scores that give a quick overview of users’ skills.

Highlighting serves as an essential key step in
the cognitive input process, enabling viewers to
quickly identify crucial argumentative structures.
However, its use should be complemented with
other visualization techniques to ensure a more pro-
found exploration and comprehension of complex
explanations. Studies conducted by Lauscher et al.
(2018); Chernodub et al. (2019); Wambsganss et al.
(2022b) shed light on the potentials and limitations
of highlighting, paving the way for future advance-
ments in data visualization methodologies.

Multiple views To overcome the shallowness of
highlighting, several researchers add to their sys-
tem other views, such as diagrams showing the
argumentative structure. For example, to compare
two drafts of an essay, Zhang et al. (2016); Afrin
et al. (2021) use a revision map made of color-
coded tiles, whereas Putra et al. (2021) rely on a
tree to reorder arguments.

Based on the work of Wambsganß et al. (2020),
Xia et al. (2022) and Wambsganss et al. (2022a)
use a text editor which highlights components, a
graph view which shows the argumentative struc-
ture, and a score view showing the user’s perfor-
mance. Based on the classroom-setting evaluation,
students using such systems wrote texts with a bet-
ter formal quality of argumentation compared to
the ones using the traditional approach.

Nevertheless, the current accuracy of such sys-
tems’ feedback still leaves a large improvement
space in order for users to be motivated to use them.
More recent work such as Zhang et al. (2023) incor-

porate feedback generated by state-of-the-art LLMs
in their graphical systems. Nonetheless, factual in-
accuracies, as well as inconsistent or contradictory
statements, are still generated, exposing the user to
confusion and leaving room for improvement.

Dialogue Systems In the realm of visualization,
a novel approach gaining attraction is the inte-
gration of dialogue systems to enhance the inter-
action between users and visual representations.
Dialogue systems, commonly known as chatbots
like ChatGPT, have been increasingly explored for
their potential to facilitate information comprehen-
sion (Rach et al., 2020; Wambsganß et al., 2021).

This kind of representation is challenging in
terms of user-friendliness. Particularly, in a peda-
gogical context, users may have difficulties visu-
alizing their previous feedback and progress. In-
deed, users may be lost in the discussion flow and
struggle to keep track of the ongoing discussions,
lessons, or feedback because the representation
does not provide clear signposts or structure. Stu-
dents may forget a specific lesson and want to ver-
ify some information, or they simply need to reread
their lessons and exercises. However, finding spe-
cific information in a chat discussion may take
much effort. Thus, it is important (i) to have a chat
session per lesson, exercise or test and (ii) to keep
structured notes of the issues users face and how
these issues can be solved. Eventually, a personal
dashboard showing a user’s progress through time
could be beneficial not only for students but also for
teachers. Indeed, with a dashboard, teachers can
see if a specific student needs more attention. More-
over, teachers sometimes need to compare students
among them, specifically during a test. Therefore,
we believe that to improve the user-friendliness
of pedagogical dialogue systems, other visual ele-
ments should be used.

Despite the growing popularity of both graphs
and chatbots in data visualization, limited work has
directly compared their effectiveness in improving
critical thinking skills. Further research is needed
to provide more nuanced insights on the compari-
son on one hand between both approaches and on
the other between works among the same approach.

The importance of visualization lies in its ability
to enhance the understanding of complex ideas. In
this section, we highlighted the potential of the
visualization of argumentative feedback and how it
can improve students’ learning process.
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6 Interactivity - Who Talks to the User?

Teaching how to argue is a multifaceted task that
demands more than the dissemination of theoretical
knowledge; it requires fostering interactive learn-
ing environments that facilitate active engagement
and practice. The traditional approach to teach-
ing argumentation often centers on lecturing and
one-way communication, where instructors impart
information to students. While didactic methods
have their place in education, a more interactive
pedagogical approach, one that encourages learners
to actively participate, can be used. In this section,
we will see in which ways current argumentative
computational models enable a form of interaction.

Interaction between different users NLP sys-
tems mostly allow communication between a user
and a conversational agent. Nonetheless, some
works chose to apply the CABLE pedagogy (§3)
by allowing a user to dialog with other users. Fol-
lowing the footsteps of Petasis (2014), Lugini et al.
(2020) track real-time class discussions and help
teachers annotate and analyze them. Recent works
such as Zhang et al. (2023) plan to add a collabora-
tive setting in their future work.

The collaboration between multiple users within
NLP systems is promising. Nevertheless, only a
few works focus on the CABLE pedagogy. It is
essential to acknowledge that some challenges and
barriers have hindered its use in NLP, possibly due
to the difficulty of designing and evaluating such
tools, as human resources in a real-class setting
(e.g., students, teachers) are required.

Interaction with a conversational agent As
seen in §5, several research papers have showcased
the feasibility of employing current conversational
agents for educational purposes (Lee et al., 2022;
Macina et al., 2023; Wang et al., 2023b). Often
based on state-of-the-art language models, these
agents have shown great capabilities in understand-
ing and generating human-like responses. They
can engage in dynamic and contextually relevant
conversations, making them potentially valuable
tools for educational purposes.

The use of conversational agents as dialog
tutors has been explored outside of argumenta-
tion (Wambsganß et al., 2021; Mirzababaei and
Pammer-Schindler, 2022; Aicher et al., 2022). For
instance, in Mirzababaei and Pammer-Schindler
(2022), an agent examines arguments to determine
a claim, a warrant, and evidence, identifies any

missing elements, and then assists in completing
the argument accordingly. Wambsganß et al. (2021)
create an interactive educational system that uses
interactive dialogues to teach students about the
argumentative structure of a text. The system not
only provides feedback on the user’s texts but also
learning sessions with different exercises.

Research on chatbots in education is still prelimi-
nary due to the limited number of studies exploring
the application of effective learning strategies using
chatbots. This indicates a significant opportunity
for further research to facilitate innovative teaching
methods using conversational agents (Hwang and
Chang, 2021). However, extraction and classifica-
tion of useful data remain challenging, as the data
collected are noisy and much effort still has to be
made to make it trainable (Lin et al., 2023). Re-
searchers must also continue to account for ethical
considerations, including biased representations
and data privacy safeguards, to ensure that their
chatbots positively impact users (Kooli, 2023).

Overall, integrating interaction in teaching how
to argue is not merely a pedagogical choice but
an essential requirement to cultivate adept arguers
who can navigate the intricacies of argumentation.
Therefore, we encourage researchers to consider
this dimension in their future pedagogical systems.

7 Personalization - To Whom is it For?

Even if the feedback mentioned in §4 are a step
towards good guidance, they are static, which can
be problematic. Beginners and professionals in
argumentation do not need the same amount of
feedback. A child and an adult have different levels
of understanding and knowledge. Therefore, it
is essential that a model knows to whom it should
explain the errors and hence how to adapt its output
by providing personalized explanations.

Levels of explanations A first approach to per-
sonalization is to discretize different users’ profi-
ciency levels in argumentation into a small num-
ber of categories. For instance, with the system
described in Wambsganß et al. (2020) and Wamb-
sganss et al. (2022a), users can select their own
level among the following categories: Novice, Ad-
vanced, Competent, Proficient, Expert.

Although Wambsganß et al. (2020) and Wamb-
sganss et al. (2022a) propose different granularity
levels of explanations, their study is restrained to
students from their university. Having end-users
from different backgrounds may imply the need
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for new levels of explanations. Wachsmuth and
Alshomary (2022) show that the explainee’s age
affects the way an explainer explains the topic at
hand. Thus, we consider that information such as
the learner’s age should be considered in future
interactive argumentative feedback systems, where
terminology such as fallacy and their existence
would require different explanation approaches for
younger students (i.e., elementary) compared to
older students.

Self-personalization For more personalized
feedback, systems such as Hunter et al. (2019) and
Putra et al. (2020) rely on user’s inputs. They al-
low users to make their custom tags or to choose
their preferences among a set of rubrics. Never-
theless, manually personalizing the system can be
overwhelming and time-consuming for users.

Next directions Hunter et al. (2019) argue that
the next direction for personalized argumentative
feedback would be to develop argumentation chat-
bots for persuasion and infer the user’s stance based
on the discussion. Chatbots’ personalization ca-
pabilities enable them to tailor their responses to
individual learners’ needs and learning styles, po-
tentially enhancing the effectiveness of the tutoring
process (Lin et al., 2023). However, bridging the
gap among personalized chatbots (Qian et al., 2021;
Ma et al., 2021), personalized educational meth-
ods (González-González et al., 2023; Ismail et al.,
2023; Liu et al., 2020) and argumentation has re-
mained unexplored. Thus, we think researchers
should focus in the future on providing more per-
sonalized explanations (i.e., precisely adjusted by
considering the learner’s background) to improve
the users’ critical thinking skills efficiently.

8 Discussions

Teaching how to argue through NLP systems holds
significant promise for enhancing students’ learn-
ing process. However, existing research in this area
presents various open issues. In this section, we
explore some difficulties in designing and evaluat-
ing computational models for argumentation and
discuss some methods for mitigating them.

Evaluating different systems The evaluation of
NLP systems often relies on human assessment,
which is insightful. However, this reliance makes
it hard to reproduce the evaluation and to compare
different systems. To the best of our knowledge,

no research has focused on comprehensive compar-
ative studies of different end-to-end systems. The
lack of direct comparisons between similar systems
hampers the understanding of their relative advan-
tages and limitations. As researchers and educators,
it becomes overwhelming to discern which system
best fits specific pedagogical objectives. A possible
reason for this issue resides in the restricted access
to various tools. Indeed, many systems may not be
accessible, limiting researchers to test them. Addi-
tionally, the lack of guidelines to evaluate systems
for learning argumentation exacerbates the diffi-
culty in evaluating these systems in a systematic
manner. Current systems’ performance is evalu-
ated with metrics such as coherence. Nevertheless,
new evaluation methods such as the ones described
in Heuer and Buschek (2021) should be explored.
Therefore, we should promote open-source projects
and the research of standard guidelines.

Domain Adaptation Towards effectively ex-
plaining output to improve critical thinking skills
of users, future systems must be capable of un-
derstanding the topic of discussion in a way that
argumentation errors (e.g., fallacies) can be iden-
tified. In a pedagogical setting, teachers have the
ability to choose new topics of discussion annually;
hence, systems must also be capable of adapting to
various domains. Recent works have focused on
domain adaptation for tasks such as short answer
scoring (Funayama et al., 2023), which focus on
training models for several tasks to learn common
properties helpful in evaluating unseen topics. We
must also adopt such strategies for computational
argumentation to ensure the most reliable feedback
is given to the user.

Collaboration NLP researchers and pedagogical
researchers generally conduct their research inde-
pendently, thus creating a gap. We suggest that
researchers from both fields must come together
to ensure that appropriate and sufficient explana-
tions are provided to learners. Ideally, a system for
linking various educational schools and providers
with artificial intelligence researchers could signif-
icantly help assist with ensuring systems can be
properly evaluated.

Ethics Tailoring a constructive feedback system
to each user’s background and current worldview
would benefit the user significantly. Nevertheless,
the creation of such a system presents significant
challenges in navigating ethical issues (Hovy et al.,
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Figure 3: Current and future directions of teaching argumentation with NLP systems. Boxes with a specific color
correspond to a specific dimension, whereas the ones in black are general directions.

2017; Trust et al., 2023). Hence, conceiving novel
systems with an ethics by design approach remains
important (Leidner and Plachouras, 2017). Ethics
by design is a concept that emphasizes the integra-
tion of ethical considerations and principles into
the design and development of products, systems,
technologies, and processes from the very begin-
ning. It promotes the idea that ethical considera-
tions should be a fundamental part of the design
process rather than added as an afterthought or
compliance requirement. This approach aims to
prevent and mitigate potential ethical issues, such
as privacy violations, bias, discrimination, and lack
of transparency, by building ethical principles and
values into the core of a project. In order to add
this principles in a project, Leidner and Plachouras
(2017) suggest an Ethics Review Board (ERB) for
companies and research institutions, as well as a
list of remedies that researchers can consider when
facing ethical dilemmas.

9 Conclusion

In our survey, we explored several works provid-
ing feedback in argumentation, following various
dimensions: Richness (§4), Visualization (§5), In-
teractivity (§6), and Personalization (§7). Figure 3

summarizes the pedagogy, current achievements
and potential future directions of each dimension.

As potential areas for improvement to enhance
the quality of educational argumentative systems,
we highlighted the following points: (1) generate
accurate, constructive feedback for a real-life in-
put(§4-5), (2) tailor the output based on the user’s
background (§6-7), (3) evaluate and compare end-
to-end systems more deeply(§8), (4) improve mod-
els’ abilities to adapt to unknown topics(§8), (5)
collaborate with pedagogical teams and actual stu-
dents(§8), and finally (6) take into consideration
ethical issues(§8). For instance, in challenge (2),
the use of conversational agents becomes increas-
ingly frequent. However, such systems still leave
room for improvement, particularly their ability to
tailor discussions based on the user’s background.

We hope our survey contributes to enriching
the research community focused on argumentation
with a comprehensive understanding of current per-
spectives in NLP systems for teaching how to argue.
In our future work, we will focus further on real-
life and end-to-end systems (Challenges (1) and
(3)). We plan to prototype a system to measure the
effects of different feedback on users and evaluate
it in actual classrooms (Appendix, Figure 5).
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Limitations

This survey offers an overview of NLP feedback
systems in argumentation. Despite our best efforts,
some limitations may still exist in this research.

Paper selection Our survey primarily focuses
on argumentative feedback systems in the context
of NLP and human-machine interaction, but there
may be valuable insights from other feedback sys-
tems that could be applied to argumentation. For
instance, feedback systems for grammatical errors,
such as (Liang et al., 2023), could inspire new
argumentative feedback systems. Moreover, we
excluded non-English articles in our survey and
prioritized works dedicated to students rather than
teachers (e.g., Datta et al., 2021).

Categorization Based on our understanding and
subjective opinions, we have categorized the works
into four dimensions. It could be relevant to have
external opinions on this categorization.

Descriptions The descriptions provided in this
survey are generally concise to ensure comprehen-
sive coverage within the constraints of page limits.
We hope this survey can be a reference, directing
readers to more detailed information in the respec-
tive works.

Experiments It is important to note that this sur-
vey is purely informational and lacks experimental
data or empirical results. Conducting comparative
experiments with different feedback systems could
offer more substantial guidance. However, this
aspect is left for future research.
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A Appendix

CLAIM 
Conclusion, main idea 

Example: There are dogs nearby.

DATA 
Evidence, Grounds 

Example: You hear barking and howling in the distance.

QUALIFIER 
Identifies the scope of the claim’s truth 

Example: So there is a high probability that…

WARRANT 
Explains how the data leads to the claim 

Example: Dogs are animals that bark and howl.

BACKING 
Explains why the warrant has the authority 

Example: You already have heard dogs barking and howling

REBUTTAL 
Addresses a counterargument 

Example: There are no wolves in this city.

COUNTERARGUMENT 
Opposing argument that may be raised against 

Example: However, it could be a wolf as they also bark and howl.

Figure 4: Six elements of the Toulmin’s model.

Creation of a dataset 
about constructive 

argumentative 
feedback 

Generation of 
constructive 

feedback

Implementation of a user-friendly interface 
and integration of the generated feedback 

Evaluation 
of effects on 

students

Overall Goal: Improvement of Critical Thinking Skills 

I think that school uniforms 
should be banned. Uniforms 
can remove the wall of 
status. They oppose the 
spirit of unity and its 
celebration. They also look 
very nice and respectful.

History Training Mode

Your argument, “They also look very 
nice and respectful.” seems to rely on 
your experience or judgment.

If you are using an argument based on 
your own experience, consider 
explaining this.
You had a similar issue with the topic 
“In favor or against veganism.”

Topic
School Uniforms: Good or Bad?

Suggestion: Add the phrase ‘Based 
on my personal experience’ to your 
argument.

Maria Suzuki
Level: Semi-pro, See Profile

Figure 5: Preliminary sketch design of an end-to-end system to learn argumentation.


