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Abstract

The conventional method of extracting argu-
ments from sentences solely relies on word
proximity, disregarding the syntactic structure
of the sentence. This approach often leads to
inaccuracies, especially when identifying argu-
mentative span boundaries. In this research,
we investigate the benefits of utilizing a con-
stituency tree representation of sentences to pre-
dict Argument Discourse Units (ADUs) at the
token level. We first evaluate the effectiveness
of utilizing the constituency tree representation
for capturing the structural attributes of argu-
ments within sentences. We demonstrate empir-
ically that the constituency structure surpasses
simple linear dependencies among neighboring
words in terms of effectiveness. Our approach
involves leveraging graph neural networks in
conjunction with the constituency tree, adapt-
ing it specifically for argument unit recognition.
Through extensive evaluation, our model out-
performs existing approaches in recognizing
argument units at the token level. Furthermore,
we employ explainability methods to assess the
suitability of our model architecture, providing
insights into its performance.

1 Introduction

Argument identification within documents serves
as the initial step in studying rhetorical speech pro-
cesses, student essays, or political debates. The
objective is to accurately identify Argument Dis-
course Units (ADUs), defined as minimal analysis
units, within sentences, and predict their stance and
relation to each other.

Previous works on token-level argument analysis
(Trautmann, 2020) have employed language mod-
els such as Bidirectional Encoder Representations
from Transformers (BERT) (Devlin et al., 2019), in
conjunction with probabilistic models like Condi-
tional Random Field (CRF) (Lafferty et al., 2001).
This combination enhances overall prediction co-
herence with constrained fine-tuning.

The study of arguments and discourse has been
approached from a grammatical perspective, in-
cluding frameworks such as Rhetorical Structure
Theory (Mann and Thompson, 1987), one of the
conclusion from the annotation guideline (Stede
and Taboada) is the use of syntax to better identify
the Elementary Discourse Units (EDU). Building
grammatical parsers is a complex task that has re-
ceived extensive research attention. The results
achieved thus far are promising and can serve as a
foundation for various applications.

In this research, we investigate the benefits of
incorporating grammatical structure into a BERT-
CRF model for argument unit recognition, with
a specific focus on the constituency tree repre-
sentation of sentences (as illustrated in Figure 1).
This representation consists of a tree where inte-
rior nodes represents the grammatical structure of
the sentence, along with leaf nodes (nodes without
children) corresponding to the words within the
sentence.

The primary objectives of this paper are:

• Evaluate the potential benefits of using the
constituency tree for argument unit recog-
nition and develop rules to modify the con-
stituency tree into a structure better suited for
identifying argument structure (Section 3).

• Assess the effectiveness of Graph Neural Net-
work (GNN) models combined with a CRF
layer in leveraging the syntactic information
encoded in the constituency tree representa-
tion (Sections 4, 5, and 6).

2 Related Works

Argumentation Theory The precise definition
of the concept of argument is an important step
when creating dataset annotation rules. The identi-
fication of argument is strongly related to the dis-
course structure of the text and the identification
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Figure 1: Constituency tree representation of the sentence, according to the Universal POS tags categories (where
we limit the depth of the tree to 3): "However, when adjusted for inflation, the new federal minimum is still less
than the minimum wage through most of the period from 1961 to 1981." from the AURC dataset. The green nodes
represents words or spans with "PRO" label and the grey nodes represents words and spans with "NON" label.

of Elementary Discourse Units. As introduced in
the Rhetorical Structure Theory (RST) by Mann
and Thompson (1987), the Elementary Discourse
Units (EDU) refers to a minimal unit of meaning
within a larger discourse or conversation. It rep-
resents a self-contained piece of information that
contributes to the overall structure and coherence
of a discourse. A non-elementary Discourse Unit
(DU) is called a complex discourse unit (CDU).
The structure of a document is the set of linked
DUs. As presented by Jo et al. (2019), Argument
Discourse Unit (ADU) are units of meaning that
contribute to the development and presentation of
an argumentative structure. ADUs typically con-
tain propositions, claims, evidence, or reasoning
that support or challenge a particular standpoint or
claim.

In practical applications, while certain studies
rely on the annotator’s judgment to determine the
boundary of an ADU, many studies prefer to utilize
a set of syntactic rules as a foundation (Stede and
Taboada). This approach is favored because em-
ploying syntactic structure for annotating a sizable
corpus at the token level is comparatively easier
(Carlson and Marcu).

Tree Structure Representation in Natural Lan-
guage Processing (NLP) Substantial evidence
(Crain and Nakayama, 1987) supports the hypothe-
sis that semantic interpretation of sentences by hu-
mans involves a tree-structured, hierarchical com-
putation, where smaller constituents recursively
combine into larger constituents, until we reach the
full sentence.

In NLP, pioneer work (Gildea and Palmer, 2002)
presenting the benefits of using constituency tree
representation has failed to scale into production.
According to the authors, this is caused by the lack
of a reliable model to generate constituency tree
representation of the sentences. However, recent

promising results (Zhang, 2020) were made in con-
sistency and dependency parsing.

Other papers have recently studied the use of
tree structure to incorporate syntactic information
to their models. Marcheggiani and Titov (2017)
uses Graph Convolutional Networks (GCNs) based
on the dependency tree structure of the sentence
for semantic role labeling. Beck et al. (2018) uses
GNNs for generation tasks from abstract mean-
ing representation. Recently, Murty et al. (2022)
demonstrate that for some tasks, transformers mod-
els become more "tree-like" over the course of train-
ing and in some cases unsupervisedly recovering
the same trees as supervised parsers. Showing the
importance of constituency tree in the learning pro-
cess of the Transformers models.

Segmentation of argumentative units in texts has
been explored in Ajjour et al.. The research indi-
cates that both structural and semantic features are
pivotal for segmenting argument units across var-
ious domains. However, within specific domains,
semantic features stand out as the most effective
for identifying the boundaries of these units.

3 Evaluation of the node similarity

In the subsequent section, we evaluate the effec-
tiveness of utilizing the constituency tree repre-
sentation for capturing the structural attributes of
arguments within sentences. In Subsection 3.2, we
introduce three metrics to assess the proximity of
nodes in the tree concerning their argumentative
label. Additionally, in Subsection 3.3, we propose
modifications to the tree to enhance its suitability
for argument recognition.

3.1 Experimental Setup

Our experimental setup involves the utilization of
four argument datasets: ARG2020 (Alhindi and
Ghosh, 2021), AURC (Trautmann et al., 2020),
CDCP (Park and Cardie, 2018), and UKP (Stab
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and Gurevych, 2014) (detailed in subsection 5.1).
These datasets share a common characteristic, as
they are all annotated at the token level, meaning
that each word in the sentences is assigned a la-
bel. To represent the sentences in the datasets as
constituency trees, we employ the Berkeley Neu-
ral Parser (BENEPAR) (Kitaev and Klein, 2018),
which is introduced in subsection 5.2. As a brief
reminder, in the context of a constituency tree, a
node without any children is referred to as a "leaf,"
while an "Interior Node (IN)" is a node that has
child nodes.

As the labels for the interior nodes (IN) of the
constituency tree were not initially provided, we
made the decision to annotate these interior nodes
following the same labeling rules utilized in the
AURC (presented in 5.1) for sentence labeling. Our
approach prioritizes the "no argument" label as less
significant compared to the others, selecting the
more predominant label among the remaining op-
tions. This strategy enables us to effectively learn
the representation of IN nodes while ensuring con-
sistency with the sentence-level labeling annota-
tions.

3.2 Label proximity computation
One of the main advantages of adding a con-
stituency tree to argument identification methods
is the greater proximity of words that belong to the
same grammatical class. In this section, we aim to
validate the intuition that words belonging to the
same grammatical class have more often the same
label than words that are only neighbours in the
sense of the linear representation of the sentence.

We have established three metrics to evaluate
the suitability of employing the constituency tree
representation for argument unit recognition. The
three proportions computed, summarized in Table
1 and illustrated in Figure 2, are the following.

• Leaf-Leaf similarity metric: This refers to
the ratio of nodes in a linear chain sentence
(Table 1 column 3) representation that have
both the same label and are adjacent to each
other. In the cases where a constituency tree
representation is available (Table 1 columns 4,
5, 6), we further narrow down this set of nodes
to those that not only share the same label but
also have the same parent node (illustrated in
color red of Figure 2).

• Leaf-IN similarity metric: Only when a con-
stituency tree representation is available (Ta-

ble 1 columns 4, 5, 6), this indicates the pro-
portion of leaf nodes that share the same label
as their corresponding parent node (illustrated
in color blue of Figure 2).

• IN-IN similarity metric: Only when a con-
stituency tree representation is available (Ta-
ble 1 columns 4, 5, 6), this measures the ratio
of interior nodes that are connected by an edge
and have the same label (illustrated in color
orange of Figure 2).

The Leaf-Leaf metric tends to favor deeper trees,
as deeper trees contain neighboring nodes that
belong to finer grammatical categories and the
same Argumentative Discourse Unit (ADU). How-
ever, an excessively deep tree is not desirable as
it reduces the proximity between parent and child
nodes. Metrics 2 and 3 are used to address this
bias.

Indeed, regarding the Leaf-Leaf metric, we ob-
serve a stronger proximity between neighboring
words within the same grammatical class com-
pared to neighboring words when the grammatical
structure is not considered. Additionally, the con-
stituency tree with a maximum depth of 4 exhibits
greater node similarity than the tree with a maxi-
mum depth of 2 or 3. As for the other two metrics,
when the tree becomes too deep, the distance be-
tween words of the same grammatical class may
become longer than that between words of differ-
ent grammatical classes. This leads us to impose a
limit on the maximum allowed tree depth. Setting
a depth cap at 4 may not necessarily be the best
choice, as the constituency tree with a maximum
depth of 3 demonstrates better results concerning
grammatical class similarity. In conclusion, these
findings prompt us to experiment with a maximum
depth of 3 for our models.

3.3 Fine grained stats
In this section, we explore the possibility of trans-
forming the constituency tree to better align it with
grammatical structures, with the aim of reducing
tree complexity while maintaining its ability to seg-
ment into Argumentative Discourse Units (ADUs).
To achieve this, we consider the grammatical class
of nodes and identify those that exhibit higher co-
herence with the ADU segmentation. In practical
terms, this involves examining the grammatical la-
bels of linked nodes to determine whether parent
and child nodes share the same label or differ in
nature.
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Metrics Dataset No tree Depth 2 Depth 3 Depth 4
With Constituency tree

Leaf-Leaf similarity

ARG2020 95.4 % 97.9% 98.2 % 98.6 %
AURC 97.1 % 98.3% 98.4% 98.6 %
CDCP 97.8 % 99.6 % 99.7 % 99.7 %
UKP 91.9 % 97.9% 97.9% 98.3 %

Leaf-IN similarity

ARG2020 // 91.8% 92.9 % 59.2%
AURC // 90.2% 91.3% 84.2%
CDCP // 98.1% 98.7 % 68.9%
UKP // 89.2 % 89.7 % 49.8%

IN-IN similarity

ARG2020 // 91.7% 95.1% 88.3%
AURC // 88.5% 93.3% 92.9%
CDCP // 96.4% 97.8% 90.4%
UKP // 85.1 % 92.1% 84.3%

With reduced Constituency tree

Leaf-Leaf similarity

ARG2020 // // 98.2 % 98.6%
AURC // // 98.4% 98.6%
CDCP // // 99.8% 99.7%
UKP // // 97.8% 98.3%

Leaf-IN similarity

ARG2020 // // 93 % 59.2%
AURC // // 91.4% 84.2%
CDCP // // 98.8% 68.7%
UKP // // 90% 50%

IN-IN similarity

ARG2020 // // 95 % 88.3%
AURC // // 93.4% 92.9%
CDCP // // 97.8% 90.1%
UKP // // 92.1% 84.4%

Table 1: Assessment of three measures to evaluate the suitability of the constituency tree representation. The first
section of the table examines the evaluation of the constituency tree with varying the maximum depths allowed for
the tree, while the second section focuses on the assessment of the tree reduction method from Subsection 3.3.

Table 2 provides a snapshot of the statistics ob-
served in the datasets for the most common gram-
matical classes present in the constituency trees.
We observe significant differences across the stud-
ied datasets. The argumentation structure in the
AURC and CDCP datasets align more closely with
the syntactic structure, compared to the UKP and
ARG2020 datasets. This is consistent with the fact
that the CDCP and AURC datasets are both online
feedback datasets and UKP and ARG2020 are both
student essays datasets.

When a particular constituency class consistently
shares the same grammatical label as its children,
it indicates coherence with the grammatical struc-
ture. In such cases, our reduction method involves
simplifying the tree structure by grouping all its
children and removing the intermediate interior
node. In practice, we establish a threshold. If the
ratio of identical labels exceeds this threshold as

outlined in Table 2, we simplify the structure at
this level. This adjustment reduces tree complexity
while preserving the fact that words sharing the
same parent node are more likely to have the same
grammatical label.

For a tangible illustration based on Table 2, con-
sider the AURC dataset where the tag "NML", rep-
resenting nominal modifiers, has a ratio of 97%.
This indicates that 97% of the time, its child ele-
ments bear the same labels. Given that a nominal
modifier is a noun that adjusts another noun (effec-
tively functioning as an adjective) it makes sense
for them to share the same labels. Therefore, sim-
plifying the structure to retain only the parent node
"NML" and treating all the leaf nodes below it as its
direct children appears to be an effective strategy.

The latter part of Table 1 illustrates the updated
proximity statistics after the tree transformation.
We observe that the three metrics are preserved
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Figure 2: Visualization of the label proximity metrics on the constituency tree representation of the sentence:
"However, when adjusted for inflation, the new federal minimum is still less than the minimum wage through most
of the period from 1961 to 1981." from the AURC dataset. The blue arrows represent the edges analyzed for the
Leaf-IN metric, the orange arrows for the IN-IN metric, and the red arrows for the Leaf-Leaf metric.

across all four datasets. We can thus reduce the
complexity of the constituency tree in order the
accelerate the training process of the models while
hoping to preserve its capacity. We will evaluate
this assumption in Section 5 and 6.

4 Presentation of our Model

In this section, we present a detailed overview of
the architecture and components of our proposed
model for argument unit recognition.

4.1 Baseline: Linear chain approach
The reference model, to which our model will be
compared, has been introduced by Trautmann et al.
(2020). It is composed of two modules. In the
first module, the sentence is tokenized following
the BERT tokenizer and the BERT model is fine-
tuned for token classification, where the output of
the last layer matches the number of classes of
the dataset. In the second module, a linear chain
Conditional Random Field (Lafferty et al., 2001)
is applied to estimate the probability of each la-
bel class. The main intuition of this model is to
leverage the BERT LLM "semantic knowledge"
and then to improve the results by incorporating a
linear chain dependency structure for the syntactic
part. This takes advantage of neighbours depen-
dency relations between words. The good results
of this model lead us to use it as a competitive
benchmark for our approach based on constituency
trees as input representations of sentences.

4.2 Our model: Graph Neural Network
approach

A major difficulty in choosing a graph neural layer
architecture is that each sentence has a different tree
representation. Hence, the model needs to be ag-
nostic to the lack of completeness of the tree struc-

tures from the dataset. The message passing design
enables to share the model weights among the net-
work nodes, thus the results do not depend on the
upfront global tree structure access. The Graph
Attention Layer (GAT) (Veličković et al., 2018) al-
lows to combine the attention mechanism with the
graph structure in a message passing design, pre-
serving the syntactic structural information of the
sentence. In order to improve the model stability,
adding multi-head attention layers is beneficial to
the training step. The different heads are then ag-
gregated in order to provide the next hidden states
of the neural network. To leverage the dependency
structure of the sentence, we integrate a multi-layer
GAT (Graph Attention Network) model between
the BERT module and the linear chain CRF. For
the CRF, we use the implementation from (Gard-
ner et al., 2017), which was present in the baseline
model. The idea behind this architecture is the fol-
lowing. The GAT model outputs the probability
of each label for each node in the graph. When
subsequently employing a linear chain CRF, we
retain only the leaf nodes to represent the sentence
in a traditional linear chain format. As illustrated
in Figure 3, first, the BERT language model out-
puts the sentence hidden representation. Next, the
information is spread to the graph neighbours at
each iteration. In that way, we expect to reach a
better consistency between neighbour nodes when
we train on a restricted dataset.

5 Experimental Setup

In the next sections, we present a comprehensive
evaluation of our proposed model for argument unit
recognition using constituency tree representations
and GNNs with a CRF layer. We compare the per-
formance of our model against existing approaches
and analyze its effectiveness in capturing syntactic
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Dataset Parent node type Number of same labels Number of different labels ratio

ARG2020

VP 25710 13911 65 %
NP 18414 9767 65 %
S 28169 14325 66%

PP 9744 4097 68 %
SBAR 8545 5099 63 %
ADJP 1293 753 63 %
NML 182 101 64%
ADVP 344 211 62 %

AURC

VP 30342 3274 90 %
NP 29792 2279 93 %
S 28202 9181 75 %

PP 12878 1173 92 %
SBAR 9474 2517 79 %
ADJP 2316 269 90 %
NML 638 22 97 %
ADVP 411 58 88 %

CDCP

VP 4112 1623 72 %
NP 2608 840 76 %
S 3960 1371 74 %

PP 1253 386 76 %
SBAR 1607 725 69 %
ADJP 202 49 80 %
NML 48 13 79 %
ADVP 81 27 75 %

UKP

VP 25266 15789 61 %
NP 17147 12534 57 %
S 29179 23857 55 %

PP 8952 7265 55 %
SBAR 8210 6498 56 %
ADJP 1400 1276 52 %
NML 106 94 53 %
ADVP 519 440 54 %

Table 2: Extracts from the metrics of Evaluation of fine grained stats. We present only the parent nodes that appear
most frequently in the training dataset.

information from the constituency tree.
First, we describe the experimental setup and

datasets used for evaluation

5.1 Data Source

ARG2020 (Alhindi and Ghosh, 2021) is an argu-
ment mining corpus annotated with argumentative
structure composed of "claims" and "premises". It
is composed of 145 English argumentative essays
selected through the Writing Mentor Educational
App. It is based on middle school students writ-
ing. The claims is defined as a potentially arguable
statement that indicates a person is arguing for or
arguing against something. The premises is de-

fined as the reasons given by either for supporting
or attacking the claims.

Argument Unit Recognition and Classification
(AURC) (Trautmann et al., 2020) is a corpus for
argument mining that includes annotations for ar-
gumentative structure information, capturing the
polarity of arguments on a given topic. The cor-
pus consists of 8000 sentences, evenly distributed
across 8 topics. The authors distinguished between
PRO (supporting), CON (opposing) arguments, and
NON (non-argumentative) words for each topic, in
order to construct sentence-level labels. Their la-
beling rule is as follows: if only NON words occur,
the sentence is labeled as NON. If both NON and
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Figure 3: Illustration of the model architecture on an example of a sentence. We present the three distinct modules
composing the model with their associated input/output. The colored node after the Graph Neural Network refers to
the nodes where the label predicted in "PRO", this phrase is taken from the AURC dataset. The Ex refers to the
embeddings from the BERT model, the interior nodes are initialized with the 0 vector.

only PRO (or only CON) words occur, the label
PRO (or CON) is assigned. If both PRO and CON
words occur, the label that appears more frequently
is assigned. In (Trautmann et al., 2020), the authors
distinguish between "in-domain" settings, where
the domain of the arguments is present in both the
training and test datasets, and "cross-domain" set-
tings, where the domains in the test dataset are not
found in the training dataset. In our experiments,
we focus solely on the "in-domain" scenario.

The Cornell eRulemaking Corpus (CDCP)
(Park and Cardie, 2018) is a corpus for argument
mining that includes annotations for argumenta-
tive structure information, specifically capturing
the evaluability of arguments. The corpus com-
prises 731 user comments on the Consumer Debt
Collection Practices rule issued by the Consumer
Financial Protection Bureau. The resulting dataset
contains a total of 4931 elementary unit annotations
and 1221 support relation annotations.

Argument Annotated Essays corpus (UKP)
consists of a collection of persuasive essays gath-
ered by (Stab and Gurevych, 2014). This essay

corpus is equipped with annotations of argument
components at the clause level, as well as argumen-
tative relations. Specifically, it includes annotations
for major claims, claims, and premises, which are
interconnected through argumentative support and
attack relations. The corpus was annotated by three
raters, achieving an inter-annotator agreement of
alpha = 0.72 for argument components and alpha
= 0.81 for argumentative relations. In total, the
corpus consists of 90 essays containing 1673 sen-
tences.

The models are trained individually on each of
the four datasets, conforming to the respective label
schemes they offer. For comparison with the base-
line, we adhere to the train-test splits presented in
the original datasets’ experiments when available.
In cases where these are not provided, we employ
a random sampler to allocate 20% of the sentences
for testing and 80% for training. Subsequently, the
sentences are segmented into chunks of 64 tokens
each.

5.2 Constituency tree construction
One of the main advantages of incorporating a
constituency tree into traditional methods is the
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Test Intervals Best values Relative parameters importance
Learning rate 10−5 to 10−3 2.8 · 10−5 30 %
Maximum gradient allowed 10−1 to 102 9.7 49 %
Number of GAT layers 1 to 3 2 2 %
Number of unit per GAT layers 50 to 300 290 and 100 2 %
Number of heads per GAT layers 1 to 3 3 and 3 7 %
Number of linear layers 1 to 3 2 5 %
Number of unit per linear layers 50 to 250 100 and 100 5 %

Table 3: Feature importance of the BERT-GAT-CRF model with Constituency Tree evaluate on the AURC evaluation
dataset.

AURC CDCP ARG2020 UKP
BERT 68 % 80 % 75 % 81 %
BERT - CRF 69 % 81 % 75.5 % 81.6 %
BERT - GAT 64 % 75.5 % 75.2 % 79.3 %
BERT - GAT - CRF with Constituency Tree 72.8 % 81.5 % 76.1 % 82.8 %
BERT - GAT - CRF with Reduced Constituency Tree 73.2 % 83.1 % 75.9 % 81.4 %

Table 4: F1-score of the different models at token level on the test dataset.

increased proximity of words belonging to the
same grammatical class compared to words that
are merely adjacent in a linear sentence represen-
tation. This can be further illustrated by referring
to the constituency tree depicted in Figure 1. In
this sentence, the distribution of ADUs aligns with
the grammatical structure of the sentence. For in-
stance, although the words "inflation" and "the"
are neighboring words in the sentence, they are
positioned further apart in the constituency tree
structure. This leads to improved identification of
boundaries between ADUs.

For our preprocessing step, we employed a
neural network model called the Berkeley Neu-
ral Parser (BENEPAR) (Kitaev and Klein, 2018),
which has been trained on 11 different languages
and is available with Spacy and works with GPUs.
We utilized the weights provided by the model’s
development team for our experimentation.

5.3 Hyperparameters Optimization

The BERT-GAT-CRF model has a significantly
larger number of hyperparameters compared to the
BERT-CRF model. This is primarily attributed to
the extensive hyperparameters associated with the
GAT, such as the number of layers, units per layer,
and number of heads. To determine the optimal
hyperparameters for this model, we employed the
Optuna library (Akiba et al., 2019). Optuna is a
framework specifically designed for efficient hyper-
parameter optimization. To evaluate the relative im-

portance of different hyperparameters in our model,
we conducted experiments on the AURC dataset
and presented the results in Table 3. Notably, we
observed that the most influential hyperparameters
are the learning rate and the maximum gradient
value allowed. Empirically, we found that uncon-
strained gradients led the model to converge to a
local optimum, where the label "NO" was assigned
to every word. This local optimum emerges due to
the dataset’s imbalance, which tends to favor the
absence of arguments.

6 Models Evaluation

6.1 Results Presentation

While the original paper by Trautmann et al. (2020)
introduced metrics such as token level, span level,
and sentence level, our focus lies primarily on im-
proving argument border recognition rather than
argument stance identification. Consequently, our
model excels in token-level performance, showcas-
ing superior results. However, our model achieves
comparable outcomes at the sentence and span lev-
els.

The results pertaining to token-level classifica-
tion are outlined in Table 4. In accordance with
the insights from Table 1, we computed our models
with a maximum depth of 3. Our best-performing
model consists of BERT-GNN-CRF with Reduced
Constituency Tree. These outcomes highlight the
significant advancements achieved by our proposed
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model in argument unit recognition. By leverag-
ing the constituency tree representation, integrating
GNNs and CRF, and incorporating reduced con-
stituency trees, our model excels in capturing the
intricacies of argument structures.

7 Conclusion

In conclusion, this research study introduces a
novel method for identifying the boundary of
ADUs using the sentence constituent tree represen-
tation. Our model effectively spreads information
across the graph and achieves promising results on
a small dataset.

Previously identified errors in these datasets
include the incorrect recognition of argumenta-
tive segment spans and inaccurate classification
of stances. In this study, we focus on improving the
span detection problem and successfully enhance
the method for identifying ADU boundaries.

However, it is worth noting that some argument
mining datasets does not strictly adhere to gram-
matical correctness, as noted in (Trautmann et al.,
2020). This limitation arises from sentences where
subjects are absent, which hampers the perfor-
mance of models relying solely on grammatical
structure. This issue could be resolved by devis-
ing annotation rules that more strictly align with
the syntactic structure of sentences. Furthermore,
the second type of error, which pertains to posi-
tion identification, is primarily attributed to the
limitations of the BERT model. The dataset only
provides sentences with a maximum length of 64,
thereby restricting the available context for ADUs
and impeding our model’s capability. Many argu-
ments require deeper domain knowledge to fully
comprehend the underlying issues.
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