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Introduction

Argument mining (also known as “argumentation mining”) is a gradually maturing research area
within computational linguistics. At its heart, argument mining involves the automatic identification
of argumentative structures in free text, such as the conclusions, premises, and inference schemes
of arguments as well as their interrelations and counter-considerations. To date, researchers have
investigated argument mining on genres such as legal documents, product reviews, news articles, online
debates, user-generated web discourse, Wikipedia articles, scholarly data, persuasive essays, tweets, and
dialogues. Aside from mining argumentative components, the field focuses on studying argument quality
assessment, argument persuasiveness, and the synthesis of argumentative texts.

Argument mining gives rise to various practical applications of great importance. In particular, it provides
methods that can find and visualize the main pro and con arguments in a text corpus — or even in an
argument search on the web — towards a topic or query of interest. In instructional contexts, written
and diagrammed arguments represent educational data that can be mined for conveying and assessing
students’ command of course material. Moreover, debate technologies like IBM Project Debater that
drew a lot of attention recently rely heavily on argument mining tasks.

While solutions to basic tasks such as component segmentation and classification slowly become
mature, many tasks remain largely unsolved, particularly in more open genres and topical domains.
Success in argument mining requires interdisciplinary approaches informed by NLP technology, theories
of semantics, pragmatics and discourse, knowledge of discourse in application domains, artificial
intelligence, information retrieval, argumentation theory, and computational models of argumentation.

The ArgMining community is constantly growing, as demonstrated by the increasing number of
submissions on argument mining being accepted at top level international conferences in the fields of
NLP and AI. This year’s 10th edition of the workshop had 40 valid submissions (30 in 2020, 39 in 2021,
and 37 in 2022). Among the submitted papers, there were 13 long papers, 13 short papers, and 1 demo
paper. We accepted 8 long papers and 3 short papers (41% acceptance rate). In addition, the workshop
features 13 shared-task papers. The submissions came from institutions in 17 countries. All accepted
papers are included in the proceedings at hand. We would like to thank our Program Committee members
as well as the members of our Best Paper Selection Committee: Claire Cardie (Cornell University),
Naoya Inoue (JAIST) and Benno Stein (Bauhaus-Universität Weimar).

The one-day workshop was conducted in hybrid format. We were delighted to have Noam Slonim from
IBM Research AI as the keynote speaker, on the topic of “Project Debater and argument mining - a
historical and somewhat personal perspective”. In celebration of the 10th anniversary of the workshop
series, a panel of distinguished researchers in the field, including Khalid Al Khatib (University of
Groningen), Yufang Hou (IBM Research AI), Diane Litman (University of Pittsburgh), Chris Reed
(University of Dundee), and Henning Wachsmuth (Leibniz Universität Hannover), reflected on the past
and the future of argument mining. ArgMining 2023 also hosted two shared tasks, namely the First
Shared Task in Multimodal Argument Mining (ImageArg 2023) and the First Shared Task on Pragmatic
Tagging of Peer Reviews (PragTag 2023).

We would like to express our gratitude to our sponsors, IBM and Naver. Their support allowed the
workshop program to feature a best paper award, chosen by an independent committee. Awards are
announced on the official workshop website: https://argmining-org.github.io/2023/index.html.

Thanks to everyone who supported and made this workshop possible!

Milad Alshomary, Chung-Chi Chen, Smaranda Muresan, Joonsuk Park, and Julia Romberg
(ArgMining 2023 co-chairs)
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Abstract

Previous work on the automatic identification
of fallacies in natural language text has typi-
cally approached the problem in constrained
experimental setups that make it difficult to
understand the applicability and usefulness of
the proposals in the real world. In this paper,
we present the first analysis of the limitations
that these data-driven approaches could show
in real situations. For that purpose, we first
create a validation corpus consisting of natural
language argumentation schemes. Second, we
provide new empirical results to the emerging
task of identifying fallacies in natural language
text. Third, we analyse the errors observed out-
side of the testing data domains considering
the new validation corpus. Finally, we point
out some important limitations observed in our
analysis that should be taken into account in
future research in this topic. Specifically, if we
want to deploy these systems in the Wild.

1 Introduction

In the field of the automatic analysis of natural lan-
guage argumentative discourse, the identification
of fallacies plays an important role since it can be a
determining feature to measure the quality of argu-
mentation (Wachsmuth et al., 2017). Furthermore,
the automatic identification of fallacies can also be
helpful for the development of disinformation de-
tection systems and critical thinking tools (Visser
et al., 2020). Studied since the times of the ancient
Greece by Aristotle (Aristotle, 1978), a fallacy was
seen as an argumentation strategy used to deceive
an opponent in a debate and unfairly get the reason.
This definition evolved with time (Van Eemeren
and Grootendorst, 1984; Hamblin, 1970) extending
the instrumental notion of the Aristotelian fallacy
to more modern theories of logic and mathemat-
ics. A more recent (and complete) definition was
provided by Walton (1995), where fallacies are de-
fined as “important, baptizable types of errors or
deceptive tactics of argumentation that tend to fool

or trip up participants in argumentation in various
kinds of everyday discussions”. This definition is
less constrained and more accurate to the natural
language challenges we may face these days.

Detecting a piece of fallacious reasoning, how-
ever, is not trivial and requires knowledge in a
broad number of areas that make this task challeng-
ing. First, it is important to be able to analyse the
logical reasoning underlying natural language ar-
guments. For that purpose, it is required to distil
the abstract and formal components from the in-
formal natural language argument. This first case
is that of formal fallacies (Oliver, 1967). Second,
solid knowledge on the domain of discussion is of
utmost importance. An argument can be logically
sound but still fallacious, such is the case of infor-
mal fallacies (Walton, 1987). Therefore, only with
a complete analysis is it possible to determine if
a natural language argument is a fallacy or not, as
well as the underlying reasons why it is fallacious.
A consistent way to conduct this analysis is to rely
on validated models of argument which capture the
notion of fallacy. Different models have been pro-
posed and studied in the literature; such is the case
of the pragma-dialectic theory of argumentation
(Van Eemeren and Grootendorst, 2016) in which
the authors define ten rules to guide argumentative
discussions. The fulfilment of these rules allows
to create a fruitful discussion, but an argument that
breaks any of these rules is considered a fallacy.
Another good example of these models is the argu-
mentation schemes proposed by Walton (Walton
et al., 2008). An argumentation scheme combines
the abstract representation of the underlying logic
of a natural language argument with a set of critical
questions that must be successfully answered to
prove the validity of an argument. The argumenta-
tion scheme model is very interesting w.r.t. fallacy
analysis, since an argument being fallacious is not
determined by belonging to a specific class, but
depending on the answers provided to the set of
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critical questions. For example, a natural language
argument belonging to the Ad Hominem scheme
is not a fallacy per se, but it must be structured as
follows:

Character Attack Premise: a is a person of bad
character.

Conclusion: a’s argument α should not be ac-
cepted.

And it is only considered to be fallacious if any
of the following critical questions cannot be suc-
cessfully answered,

• CQ1: How well supported by evidence is
the allegation made in the character attack
premise?

• CQ2: Is the issue of the character relevant in
the type of dialogue in which the argument
was used?

• CQ3: Is the conclusion of the argument that α
should be rejected, or is the conclusion that α
should be assigned a reduced weight of credi-
bility?

Therefore, with the argumentation scheme
paradigm, it is possible to partially dissociate the
natural language and the logic of the argument, al-
lowing for a more informed analysis of the reasons
of an argument being fallacious.

In this paper, we integrate the concept of argu-
mentation schemes in the evaluation of machine
learning and Transformer-based language models
for the automatic detection of fallacies in natural
language arguments. It is our objective to under-
stand the way these models, as they have been
proposed in most of the previous work in this topic,
are able to learn the reasons behind a fallacy and
generalise to data outside of the training domain.
Our contribution is therefore threefold: (i) we cre-
ate a fallacy validation corpus consisting of natural
language argumentation schemes; (ii) we provide
new empirical results for the emerging task of iden-
tifying fallacies in natural language text; and (iii)
we analyse the observed errors inside and outside
of the testing data domains considering the argu-
mentation scheme validation corpus, and point out
some of the main limitations of relying exclusively
on LLMs when addressing complex natural lan-
guage reasoning problems.

2 Related Work

The automatic detection of fallacies in natural lan-
guage texts is an emerging topic of research within

the area of Natural Language Processing. One of
the first efforts in developing a database of fallacies
was done in (Habernal et al., 2017) creating “Ar-
gotario”, an educative platform where participants
could improve their debating skills. Through gami-
fication, the authors collected fallacies registered by
the participants belonging to one of the following
five classes: ad hominem, appeal to emotion, red
herring, hasty generalisation, irrelevant authority.
A direct continuation of this work was presented
in (Habernal et al., 2018a), where the resulting cor-
pus from the use of “Argotario” containing 430
annotated arguments was released. In that work,
arguments belonging to the previous five classes
plus a no fallacy set of arguments were compiled,
and a set of preliminary results of experiments with
a Support Vector Machine (SVM) and a Bidirec-
tional Long Short-Term Memory (BiLSTM) neural
network were reported.

Aimed at better understanding the linguistic fea-
tures underlying the Ad Hominem argument, Haber-
nal et al. developed a corpus from user discussions
in the Change My View subreddit on the Reddit
social network (Habernal et al., 2018b). For that
purpose they retrieved the comments that were re-
moved by the administrators because they were la-
belled as rude or hostile by the community, match-
ing one of the non breakable rules proposed in
(Van Eemeren and Grootendorst, 2016) as part of
the pragma-dialectic theory of argumentation. The
authors also reported a set of fallacy detection ex-
periments with a Convolutional Neural Network
(CNN) in which they used this corpus consisting
of 7,242 samples balanced between non-fallacious
and ad hominem classes.

The automatic identification of argumentative
fallacies has also been studied from the propaganda
viewpoint in (Da San Martino et al., 2019), where
the authors annotate news articles containing up
to 18 propaganda techniques and report a series
of experiments on propaganda classification. This
perspective on fallacious argumentation was con-
tinued in a shared task organised for the SemEval
forum (Da San Martino et al., 2020) aimed at the
automatic classification of natural language propa-
ganda.

Based on the pragma-dialectic theory
(Van Eemeren and Grootendorst, 2016) eight
classes of fallacious arguments were annotated in a
corpus of informal fallacies in online discussions
by Sahai et al. (2021). More than 1,700 fallacious
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comments retrieved from Reddit were annotated
into the classes of Appeal to authority, Appeal to
majority, Appeal to nature, Appeal to tradition,
Appeal to worse problems, Black-or-white, Hasty
generalisation, and Slippery slope fallacies.
Furthermore, the authors report results on the
binary task of classifying natural language text as
fallacious or not, and on the 8-class classification
problem of determining the type of fallacy to
which each fallacious comment belongs to. For the
experiments, the authors consider more advanced
models based in the Transformer architecture, and
the granularity network that performed the best in
(Da San Martino et al., 2019).

A simplified version of the task is presented in
(Goffredo et al., 2022), where another corpus of
fallacious argumentation is released. In this pa-
per, the annotation of fallacious arguments is done
from the transcripts of 31 political debates of the
U.S. Presidential Campaigns. The authors anno-
tate six different types of fallacy: Ad Hominem,
Appeal to Emotion, Appeal to Authority, Slippery
Slope, False Cause, and Slogans. In addition to
these classes, 11 sub-classes are also annotated,
providing additional information of the fallacious
arguments. In their experiments, the best results
are reported with a Transformer-based architecture
that combines natural language with argumentative
features. The experimental results reported in that
work are exclusively focused on the task of classify-
ing fallacies, assuming that the fallacy has already
been detected.

Recently, (Alhindi et al., 2022) al explores the
use of multitask instruction-based prompting to
dectect 28 different fallacies across five datasets.
The authors compare the use of T5 (Raffel et al.,
2020) and GPT-3 (Brown et al., 2020) for prompt-
based fallacy classification, and a fine-tuned BERT
(Devlin et al., 2018) model for a more classic
baseline. From their results, it is possible to ob-
serve how the multitask instruction-based prompt-
ing with T5 achieves a significant increase in perfor-
mance compared to the GPT-3 and BERT baselines.
However, the methodology applied in this paper is
similar to the one followed in previous work, in
which the fallacy type of a text sequence is deter-
mined by only taking the natural language of the
sequence into account.

Finally, one of the most recent papers in the au-
tomatic detection of logical fallacies proposes a
new task for pre-training language models based

on the structure of arguments (Jin et al., 2022).
For that purpose, the authors release a corpus con-
sisting of 2,449 argumentative samples labelled
into one of 13 different fallacy types. A set of
experiments comparing Large Language Models
(LLMs) as zero-shot classifiers with Transformer-
based models fine-tuned on the corpus is reported,
emphasising on the importance of looking at struc-
tural reasoning features for this type of classifica-
tion problems.

We can observe how, in the past years, a var-
ied set of relatively small corpora have been anno-
tated and publicly released. Most of them, how-
ever, share a similar paradigm for addressing the
automatic identification of argumentative fallacies.
Short spans of text are labelled with one of the cor-
responding fallacy labels, but no attention is given
to the underlying logic that makes the argument
fallacious or not. Furthermore, all the reported ex-
periments are done in a similar way, the natural
language text is used as the input to learn a set
of N classes (varying from one corpus to another)
directly from the text, and no in-depth error anal-
yses are reported in most of these works. These
limitations might raise some concerns, such as the
impact of non-fallacious arguments being labelled
as fallacious (false positives) while they are not,
just because they share similar words or natural
language patterns. To have a better understanding
of these cases, and the potential problems of rely-
ing only in deep learning algorithms for addressing
a complex problem such as the identification of nat-
ural language fallacies, the argumentation scheme
model of arguments presents itself as a promising
alternative to the models considered in the litera-
ture.

3 Data

In order to validate our hypothesis and to provide
an evaluation outside of the training domain, we
decided to use two different corpora in our exper-
iments. First, the fallacy detection corpus, which
consists of a partial combination of the data de-
scribed in (Sahai et al., 2021) and (Goffredo et al.,
2022). Second, the argumentation scheme valida-
tion dataset, a small collection of natural language
argumentation schemes that we created in this work
in order to evaluate the inferences done by the pre-
dictive models to detect a natural language fallacy
outside of the domains considered during train-
ing. With this second dataset, it is our objective
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to observe how well the model generalises when
detecting natural language fallacies following a dif-
ferent model or structure than the one considered
in the data used for training, similar to what would
happen when deploying the predictive models in
the Wild.

As depicted in Table 1, the fallacy detection
corpus used in this work consists of four fallacy
classes and the non-fallacious class. We selected
the fallacy classes of Appeal to Authority, Appeal
to Majority, Slippery Slope and Ad Hominem since
they represent the majority of the natural language
fallacies commonly used in human dialogues and
debates.

Since the annotation in both corpora was based
on similar fallacy theory, our fallacy detection cor-
pus combines some of the natural languages falla-
cies annotated in U.S. presidential debates (Gof-
fredo et al., 2022), with some others annotated in
social media discussions (Sahai et al., 2021) and
the non-fallacious class. The decision of combin-
ing both corpora is twofold. First, we wanted to
address the automatic detection of natural language
fallacies (not just classifying them as done in (Gof-
fredo et al., 2022)) so non-fallacious samples were
needed. The assumption done in (Goffredo et al.,
2022) of knowing beforehand that some piece of
natural language is fallacious represents a signifi-
cant limitation of the contribution since knowing
the fallacious condition of an input is not trivial,
and represents an important challenge in the area.
The second reason to combine both corpora is to
have a more balanced distribution of samples when
comparing fallacious to non-fallacious samples,
and to expand the natural language domains in
which fallacies can be observed during training.

A sample in our fallacy detection corpus con-
sists of a short snippet of text where the fallacious
(or not) reasoning has been identified, a natural
language context in which the fallacy has been de-
tected (a paragraph in the case of the debates, and
the previous comment of the text snippet in the case
of the social media discussions), and the annotated
label. In order to homogenise the natural language
context in data belonging to both corpora, for the
samples extracted from the debate corpus we con-
sidered as the context only the sentences before
and after the text snippet.

Aimed at validating the performance of ma-
chine learning and deep learning systems to detect
natural language fallacies, we developed a small

Natural Language Input

Fallacy IdentifierMulti-class

Fallacy Classifier

Figure 1: Multi-class and cascaded approaches.

dataset containing natural language argumentation
schemes (Walton et al., 2008). In this dataset, we
included seven different types of argumentation
schemes matching the fallacy classes included in
the fallacy detection corpus: Argument from Ex-
pert Opinion (AFEO), Argument from Position to
Know (AFPK), Argument from Popular Practice
(AFPP), Argument from Popular Opinion (AFPO),
Slippery Slope Argumentation Scheme (SSAS),
Generic Ad Hominem (GAH), and Circumstantial
Ad Hominem (CAH). This way, we can easily re-
late each argumentation scheme with one of the
four fallacy classes included in the fallacy detec-
tion corpus, the Appeal to Authority with AFEO
and AFPO, the Appeal to Majority with AFPP and
AFPO, the Slippery Slope with the SSAS, and the
Ad Hominem with the GAH and CAH. It is impor-
tant to remember that, argumentation schemes are
not fallacious by definition as they are the fallacy
classes used to annotate previous corpora, but they
can only be considered as fallacious if and only if
some of the critical questions cannot be success-
fully answered. Taking this into consideration, in
our argumentation scheme validation dataset, we
included two natural language instances of each
scheme, one in which all the critical questions can
be answered (i.e., valid reasoning), and another that
fails in some aspect (i.e., fallacy). Therefore, our
argumentation scheme validation dataset consists
of fourteen natural language arguments specifically
designed to validate the inference process of the
predictive models in the task of automatically de-
tecting natural language fallacies. These natural
language argumentation schemes have been com-
piled in Table 2.
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Samples Appeal to Authority Appeal to Majority Slippery Slope Ad Hominem Fallacy Total Non-fallacious

(Sahai et al., 2021) 212 196 228 - 636 1650

(Goffredo et al., 2022) 208 - 48 146 402 -

Total 420 196 276 146 1038 1650

Table 1: Class distribution of the fallacy detection corpus.

4 Experiments

4.1 Method

To extend the experimental results previously re-
ported in the literature, we consider the two dif-
ferent approaches to the automatic detection of
argumentative fallacies depicted in Figure 1. First,
we consider a multi-class classification problem in
which fallacy classes and the non-fallacious class
are considered in the same level. In this case, we
will be facing a five-class classification problem.
Second, we consider a cascaded approach in which
we first try to discriminate fallacies from valid rea-
soning. For that purpose, we combine a two-class
classifier in charge of detecting fallacies, with a
four-class classification model that determines the
specific type of the fallacy (i.e., Authority, Majority,
Slipepry Slope, and Ad Hominem).

4.2 Experimental Setup

In our experiments, we have considered three dif-
ferent implementations of the fallacy classifiers
proposed in our method. Aimed at covering some
of the state-of-the-art general approaches in NLP,
we used a Support Vector Machine combined with
natural language embeddings (eSVM), a fine-tuned
RoBERTa for sequence classification, and zero-
shot prompting GPT-3.5-TURBO and GPT-4 with-
out any additional training. We also considered two
versions of each input in our experiments: (i) we
used as our input the text snippet only, and (ii) we
combined the snippet with its context.

Regarding the eSVM, the best results were ob-
tained with the radial basis function kernel, a
gamma equal to one divided by the number of fea-
tures, and C equal to 1000. On the other hand, for
fine-tuning the RoBERTa model, we trained the
model for 20 epochs with a learning rate of 1e-5
and a weight decay of 0.01. Finally, the prompt
used in our experiments with GPT-3.5-TURBO and
GPT-4 to automatically detect and classify natural
language fallacies was designed in three sequential
messages as follows:

▶ You task is to detect a fallacy in the Text Snip-

pet. The label can be “Slippery Slope”, “Ap-
peal to Authority”, “Ad Hominem”, “Appeal
to Majority” or “None”.

▶ Text Snippet: [SAMPLE]

▶ Label:

The first paragraph of the prompt was adapted
for each of the different situations proposed in our
method. For example by removing “None” for
fallacy classification (4-class), and grouping the
fallacy labels into “Fallacy” for fallacy identifica-
tion (2-class).

In all of our experiments, we considered an
80-10-10 split of our data into train, develop-
ment, and test respectively. Furthermore, we
removed all the duplicated text snippets from
the U.S. presidential debates corpus to prevent
the occurrence of the same natural language
snippets in train and test at the same time, as
happened in the experiments reported in (Gof-
fredo et al., 2022). The best performing hyper-
parameters described above were selected based
on the best performance in the development split.
The code and the data used in our experiments
can be publicly accessed at https://github.com/
raruidol/ArgumentMining23-Fallacy.

5 Results

We have grouped the analysis of our results into
two sections. First, we evaluate our models on the
test split of the fallacy detection corpus. Second,
we evaluate these same models when used to de-
tect or classify fallacies in the Wild (i.e., outside
of the training/testing data domain), for which pur-
pose we use the argumentation scheme validation
dataset.

5.1 Experimental Evaluation
Regarding the experimental evaluation, we mea-
sured the performance of the models by calculating
the precision, recall, and macro f1 of the predic-
tions done over the test samples. Table 3 contains
the results of the multi-class classification exper-
iments, Table 4 contains the results of the fallacy
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Arg. Scheme CQs Natural Language Argumentation Schemes

AFEO ✓

Major Premise: “Prof Whittaker is a professor of virology at the Cornell University College”
Minor Premise: “Prof Whittaker said that viruses can be spread by sneezing”
Conclusion: “Viruses can be spread by sneezing”

AFEO ✗

Major Premise: “Stephen Hawking was an expert on AI”
Minor Premise: “Stephen Hawking said that AI could spell the end of the human race”
Conclusion: “AI could spell the end of the human race”

AFPK ✓

Major Premise: “Alice lives in New York”
Minor Premise: “Alice says that New York City Hall is in Lower Manhattan”
Conclusion: “New York City Hall is in Lower Manhattan”

AFPK ✗

Major Premise: “David is a cab driver in London”
Minor Premise: “David says that the best way to get to Tower Bridge is by cab”
Conclusion: “The best way to get to Tower Bridge is by cab”

AFPP ✓

Major Premise: “Most people wear black clothes at a funeral”
Minor Premise: “If most people wear black clothes at a funeral, that is acceptable to do”
Conclusion: “It is acceptable to wear black clothes at a funeral”

AFPP ✗

Major Premise: “Most people drive at least 10 miles per hour over the speed limit”
Minor Premise: “If most people drive at least 10 miles per hour over the speed...
...limit, that is acceptable to do”
Conclusion: “It is acceptable to drive at least 10 miles per hour over the speed limit”

AFPO ✓

General Acceptance Premise: “The majority of climate scientists agree that humans...
...are causing global warming and climate change”
Presumption Premise: “If the majority of climate scientists agree that humans...
...are causing global warming and climate change, there is a reason to believe that is true”
Conclusion: “There is reason to believe that humans...
...are causing global warming and climate change”

AFPO ✗

General Acceptance Premise: “The majority of people we asked agreed that the Earth may be flat ”
Presumption Premise: “If the majority of people we asked agreed that the Earth...
...may be flat, there is a reason to believe that is true”
Conclusion: “There is reason to believe that the Earth may be flat”

SSAS ✓

First Step Premise: “I should go out with my friends rather than study for the exam”
Recursive Premise: “If I don’t pass the exam, this might affect my GPA, which...
...in turn might impact my chances of going to a good college”
Bad Outcome Premise: “Not going to a good college would be a disaster”
Conclusion: “I should not go out with my friends rather than study for the exam”

SSAS ✗

First Step Premise: “We should lower the legal drinking age from 21 to 18 in line with other countries”
Recursive Premise: “If we lower it to 18, next it will be 17, then 16, 15, etc. ”
Bad Outcome Premise: “If we lower the legal drinking age, we’ll have ten-year-olds getting drunk in bars!”
Conclusion: “We should not lower the legal drinking age ”

GAH ✓
Character Attack Premise: “Steve has cheated on a number of past exams”
Conclusion: “We should doubt Steve’s claim that someone else copied his work in this exam”

GAH ✗
Character Attack Premise: “The CEO was convicted of a DUI in college”
Conclusion: “We should doubt the CEO’s sales report”

CAH ✓

Argument Premise: “The car salesman argued that I should buy a gas car because...
...they are more reliable than electric cars”
Inconsistent Commitment Premise: “The car salesman chose to drive an electric car”
Credibility Questioning Premise: “The car salesman is not credible in this case”
Conclusion: “The car salesman’s argument that I should buy a gas car is not valid”

CAH ✗

Argument Premise: “Mark argued that you should not take illegal drugs as they can have dangerous side effects”
Inconsistent Commitment Premise: “Mark has taken illegal drugs in the past”
Credibility Questioning Premise: “Mark is not credible in this case”
Conclusion: “Mark’s argument that you should not take illegal drugs is not valid”

Table 2: Argumentation Scheme validation dataset. A (✓) indicates that the argument successfully answers its
critical questions. A (✗) indicates that some of the critical questions cannot be successfully answered and thus, the
argument is a fallacy.
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Model Precision Recall Macro-F1

RB 21.6 24.6 18.6

eSVM 68.3 55.8 60.3

RoBERTa 68.2 65.3 66.5

GPT-3.5-TURBO 59.0 46.2 45.5

GPT-4 53.5 55.0 51.7

eSVM+[ctx] 67.3 50.0 54.4

RoBERTa+[ctx] 62.0 58.4 59.9

GPT-3.5-TURBO+[ctx] 50.2 32.1 35.8

GPT-4+[ctx] 54.4 51.2 50.8

Table 3: Precision, Recall and Macro-F1 results of the
5-class fallacy detection task. [ctx] represents the con-
textual information added to the input of each model.

detection (i.e., 2-class classification) experiments,
and Table 5 contains the results of the fallacy (i.e.,
4-class) classification experiments. We have also
included the random baseline (RB) in order to rel-
ativise the results with respect to the class com-
plexity of each instance of the task. From all these
results, we have identified two interesting patterns.

First of all, for a corpus of this size (i.e., ∼2000
samples) and distribution, the best results were
consistently achieved by fine-tuning the RoBERTa
architecture. The eSVM model performed slightly
worse and the worst performing approach was the
zero-shot prompts for the GPT-3.5-TURBO and
GPT-4 model. It is important to mention that in
the zero-shot prompting experiments, no parame-
ters were specifically fine-tuned for our data, and
taking this into account, the results were surpris-
ingly good compared to a random or a majority
baseline. Furthermore, we could observe an im-
portant difference between GPT-3.5-TURBO and
GPT-4 when prompted to detect and classify fal-
lacies in natural language. We found out that in
all of the fallacy detection and classification tasks
GPT-4 significantly outperformed GPT-3.5-TURBO.
Specifically in the cascaded approach, GPT-4 was
able to outperform GPT-3.5-TURBO in more than a
20% with respect to macro F1 reaching a maximum
improvement of a 58% in the fallacy classification
task. After removing the negative samples, the GPT-
4 model is able to focus on more relevant linguistic
aspects of the text snippets than its predecessor,
resulting in a significant improvement in this task
(see Table 5). Finally, we were also able to observe
that in general, better results were achieved by the

cascaded approach. Therefore, when addressing
a fallacy identification problem, given the linguis-
tic complexity of this task, it is better to do it by
separating the detection and the classification than
doing both tasks at the same time.

The second pattern that we were able to observe
is that, including the context as we did in our ex-
periments was not helpful at all. Adding more
contextual information to the text snippet resulted
in redundant information that made the task more
difficult for the predictive models. Given the gen-
eralised bad performance of the models when just
including the adjacent text of the snippet to the in-
put, we consider that argumentative context should
be brought into consideration from a different per-
spective (e.g., explicitly modelling the underlying
reasoning of the argument). Since the detection
of fallacious reasoning is a task that involves the
analysis of finer grained reasoning and logical as-
pects of natural language, it might be a better idea
to support the natural language input with some
structural and argumentative features in the line of
what was proposed in (Jin et al., 2022), rather than
just including the adjacent text. However, we could
not integrate such features in our experiments since
part of the fallacy detection corpus did not contain
such annotations. Finally, we would also like to
point out that from the consistent drop of perfor-
mance observed between all of our experiments
with and without context, the development of an
effective segmentation algorithm that focuses on
the relevant linguistic aspects of the text is of ut-
most importance when addressing a high linguistic
complexity task such as the automatic detection of
argumentative fallacies.

5.2 Evaluation in the Wild

In order to validate the behaviour of these models
when making predictions outside of the training do-
mains, we have used the validation dataset created
on the basis of the argumentation scheme model
of argument (see Table 2). For this validation in
the Wild, we have selected the best model of the ex-
perimental evaluation considering both fine-tuning
and prompt-based models independently. As de-
picted in Table 6, we have evaluated the RoBERTa
and GPT-4 models considering both the multi-class
and the fallacy identification tasks (i.e., 5-class and
2-class classification problems respectively) pro-
posed at the beginning of this paper.

Firstly, looking at the 5-class classification re-
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Model Precision Recall Macro-F1

RB 47.1 47.0 46.4

eSVM 77.8 77.5 77.7

RoBERTa 79.8 79.6 79.6

GPT-3.5-TURBO 41.7 46.2 40.6

GPT-4 53.2 53.2 51.1

eSVM+[ctx] 76.8 74.0 74.8

RoBERTa+[ctx] 78.0 78.8 78.3

GPT-3.5-TURBO+[ctx] 47.1 48.8 43.5

GPT-4+[ctx] 56.6 56.7 54.1

Table 4: Precision, Recall and Macro-F1 results of the
2-class fallacy detection task. [ctx] represents the con-
textual information added to the input of each model.

Model Precision Recall Macro-F1

RB 22.9 22.1 22.4

eSVM 69.6 65.5 67.1

RoBERTa 75.4 78.0 76.2

GPT-3.5-TURBO 51.7 46.4 44.6

GPT-4 60.4 60.0 58.3

eSVM+[ctx] 79.7 72.1 74.8

RoBERTa+[ctx] 72.3 72.6 72.3

GPT-3.5-TURBO+[ctx] 45.9 38.1 35.1

GPT-4+[ctx] 58.7 57.0 55.7

Table 5: Precision, Recall and Macro-F1 results of the
4-class fallacy classification task. [ctx] represents the
contextual information added to the input of each model.

Arg. Scheme CQs RoBERTa GPT-4
5-class 2-class 5-class 2-class

AFEO ✓ Authority Fallacy None None

AFEO ✗ Authority Fallacy Authority Fallacy

AFPK ✓ None Fallacy None None

AFPK ✗ Authority Fallacy Authority Fallacy

AFPP ✓ None Fallacy Majority None

AFPP ✗ None Fallacy Majority Fallacy

AFPO ✓ Majority Fallacy Authority None

AFPO ✗ Majority Fallacy Majority Fallacy

SSAS ✓ None Fallacy Slippery Slope None

SSAS ✗ Slippery Slope Fallacy Slippery Slope Fallacy

GAH ✓ None None Ad Hominem Fallacy

GAH ✗ Ad Hominem Fallacy Ad Hominem Fallacy

CAH ✓ None None Ad Hominem Fallacy

CAH ✗ None None Ad Hominem Fallacy

Table 6: Evaluation in the Wild of the fallacy detection
LLMs.

sults, we can observe different behaviour between
RoBERTa and GPT-4. In the case of RoBERTa, it
failed to distinguish the fallacious aspects of the un-
derlying logic of four argumentation schemes. We
can see this problem with both AFEO that are clas-
sified as an authority fallacy, both AFPP that are
classified as non-fallacious while both AFPO are
labelled as an appeal to majority fallacy, and both
CAH that are classified as non-fallacious. This be-
haviour can be attributed to the fact that they look
too similar to the samples labelled as fallacious (in
the case of AFEO and AFPO) or non-fallacious
(in the case of AFPP and CAH) in the training cor-
pora. Only for three out of the seven argumentation
schemes was the model able to correctly distinguish
between fallacious and non-fallacious instances of
the same scheme, this is the case of AFPK, SSAS,
and GAH. Differently, GPT-4 only managed to cor-
rectly distinguish between an instance of the same
argumentation scheme being fallacious or not in
the AFEO and AFPO. All the rest of the argumenta-
tion schemes were labelled as fallacious belonging
to each of its respective fallacy classes. It is inter-
esting to mention that GPT-4 also failed to identify
the fallacy type in the valid AFPO, since the word
“scientist” appeared, the model predicted that it was
an appeal to authority fallacy, being it not a fallacy
and being structured as a popular opinion scheme,
meaning that the authority was not a relevant aspect
in the argumentative reasoning.

Secondly, looking at the 2-class classification
results, the observed behaviour between RoBERTa
and GPT-4 was also significantly different. In the
case of RoBERTa, except for the Ad Hominem
schemes, all the other argumentation schemes were
labelled as fallacious regardless of their logic. The
model was also not able to correctly discriminate a
fallacy in the case of CAH arguments, where both
of them were labelled as non-fallacious. Only the
natural language GAH schemes were correctly dis-
criminated between fallacious or not. On the other
hand, GPT-4 performed surprisingly well in this
instance of the task. All the schemes apart from
the Ad Hominem ones were correctly classified as
fallacious or not. However, both GAH and CAH
schemes were labelled as fallacious, regardless of
the actual reasons (e.g., critical questions) of being
fallacious.

6 Discussion
In this paper, we present the first analysis of the lim-
itations of approaching the fallacy detection prob-
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lem with LLMs. For that purpose, we provide a
new viewpoint to the existing work done in the
automatic identification of natural language falla-
cies through the use of the argumentation scheme
model of arguments. The argumentation scheme
model allows us to partially dissociate the logic
of the argument from the natural language of it,
evidencing the limitation that LLMs have when
used to approach complex natural language tasks
where logical reasoning is involved. For that pur-
pose, we first ran a set of experiments training a
machine learning and a deep learning algorithm
plus prompting two LLMs on existing annotated
corpora for fallacy identification, resulting in new
baselines for this task. Second, we evaluated the
best performing models on a specifically created ar-
gumentation scheme validation dataset that helped
us to understand how well were these models able
to identify fallacies based on the logic of the argu-
ment rather than over-fitting to a natural language
pattern not relevant for the definition of a fallacy.
From our findings we have been able to observe
that there is still much more work to do in this area,
and that relying exclusively on LLMs to approach
such a challenging task in the Wild may not be the
best option.
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Abstract

This paper introduces an approach which oper-
ationalizes the role of discourse connectives
for detecting argument stance. Specifically,
the study investigates the utility of masked lan-
guage model probabilities of discourse connec-
tives inserted between a claim and a premise
that supports or attacks it. The research focuses
on a range of connectives known to signal sup-
port or attack, such as because, but, so, or al-
though. By employing a LightGBM classifier,
the study reveals promising results in stance
detection in English discourse. While the pro-
posed system does not aim to outperform state-
of-the-art architectures, the classification ac-
curacy is surprisingly high, highlighting the
potential of these features to enhance argument
mining tasks, including stance detection.

1 Introduction

The task this paper addresses is argument stance
detection in English discourse. More concretely,
based on the definition of argument following es-
tablished terminology (Stab and Gurevych, 2017;
Stede and Schneider, 2018), where an argument
consists of a claim, a controversial statement, and
a premise, a statement supporting or attacking the
claim, we want to automatically decide whether the
premise supports (label: 1) or attacks (label: 0) the
claim. This task has been modeled in a number of
approaches already (Schiller et al., 2021; Hardalov
et al., 2021). In contrast to these approaches, we
aim at operationalizing the role of connectives with
the following simple idea: We insert one-word con-
nectives, i.e., linking words such as because, but,
so, or although, between the claim and the candi-
date premise and use a language model (LM) to
quantify acceptability. Connectives include coor-
dinators (such as and, or but), subordinators (such
as because, or while), as well as linking adverbs
(such as therefore, or however; Dorgeloh and Wan-
ner 2022). They can express support, attack, or

other types of relations. The underlying hypothesis
is that features obtained from an LM’s probability
for inserting certain connectives between a claim
and premise can improve stance detection. Put
differently, our research question is whether we
can verify whether a premise is a support for or
an attack against a given claim based on explicit
discourse connectives. We show that using proba-
bilities of connectives as features, we obtain a sig-
nificant improvement in stance detection compared
to a majority and a random baseline. This indicates
that, although we do not aim at a competitive argu-
ment mining system in this paper, integrating these
features into argument mining has the potential to
improve existing approaches. We use English data
but we assume that a similar approach should also
work for other languages.1

2 Motivation and Related Work

The expression of stance is linked closely to argu-
mentative structures in discourse since arguments
by definition involve stance, and stance markers are
known to facilitate the processing of argumentative
relations (Stein and Wachsmuth, 2019; Wei et al.,
2021). Besides a variety of other stance markers
(Gray and Biber, 2014), connectives play a crucial
role in that respect. Work on various languages has
shown that the discourse function of connectives is
closely related to that of other linguistic elements
expressing stance or subjectivity in their role for
argumentative discourse. In particular, there seems
to be a “division of labor,” where the presence
of stance markers makes an explicit connective
less expected while fewer stance markers make the
use of specific connectives more likely (Wei et al.
2020). Such a trade-off between connectives and
other cues for stance suggests that markers of one
kind may be omitted if there are cues in the con-
text that make the information of those markers

1The code and results are available at https://
github.com/rstodden/stance-detection .
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already predictable (Uniform Information Density
Hypothesis; Torabi Asr and Demberg 2015), which
motivates here our expectation that discourse con-
nectives also mark argument stance.

Masked LMs (MLMs), e.g., BERT (Devlin et al.,
2019) or RoBERTa (Liu et al., 2019), are bidirec-
tional encoders which are mostly trained on mas-
sive data to solve the task of language modeling.
The intention of language modeling is similar to a
cloze test; the model is trained on extensive unla-
beled data, wherein random tokens (at any position
of a sequence) are masked, enabling the model to
learn how to predict them (Devlin et al., 2019). The
pre-trained MLMs return probabilities for any word
of the vocabulary at the position of the masked to-
ken; the higher the probability the more suitable
the word in the sequence. In recent years, MLMs
are also often used for stance detection.2 Following
Schiller et al. (2021), the current state-of-the-art
model (called MT-DNMDL) across multiple stance
detection datasets is a BERT model (bert-large-
uncased with an additional classification layer; De-
vlin et al. 2019), initially fine-tuned on the GLUE
benchmark (Wang et al., 2018) and subsequently
fine-tuned concurrently on several stance detec-
tion datasets . In contrast to MT-DNMDL and re-
lated models, in our approach we do not predict
the stance based on the weights of an MLM but
make use of the knowledge of MLMs with respect
to connectives as stance markers.

Methodologically, the present study builds on
existing approaches which tackle the problem of
classifying implicit discourse relations by using
masked LMs to explicitate the relations. Specifi-
cally, the models predict how likely a given con-
nective is in sentence pairs without an overtly ex-
pressed discourse relation. For example, Kishi-
moto et al. (2020) experiment with additionally
pre-training and fine-tuning MLMs on texts with
masked connectives (called connective prediction
task), finding that only the first technique provides
gain. Kurfalı and Östling (2021) use a pipeline
approach to classify unlabeled, implicit discourse
relations, where explicit data – a set of 65 candidate
connectives – is concatenated with two sequences
and then fed into an explicit discourse relation clas-
sifier. Recently, Zhou et al. (2022) have tackled
the problem by using a prompt learning method.
Given a template that arises from natural language

2For an overview of existing stance detection datasets and
approaches see Schiller et al. (2021); Hardalov et al. (2021).

use (e.g. ‘Arg1: Arg1. Arg2: Arg2. The conjunc-
tion between Arg1 and Arg2 is <mask>.’), they
select the most frequent and least ambiguous pre-
dicted connective as the answer word to replace the
mask token. We do not use prompting or causal
LMs as we are interested in the probabilities of the
connectives. Masked LMs, in contrast to genera-
tive LMs, are capable of giving the probabilities
of a word at any position of a sequence based on
the left and right context (and not only at the end
of a sequence). To the best of our knowledge, our
work is the first approach to use probabilities of
discourse connectives of masked LMs as features
and to combine them with stance detection.

3 Methods

Our method comprises four components:
1. the concatenation of claims and premises with

a masked token (see subsection 3.2),
2. an LM that estimates the likelihood of a given

connective in the concatenated sequence (see
subsection 3.1 and subsection 3.3),

3. a feature vector which comprises all the proba-
bilities of the connectives (see subsection 3.3),

4. and a binary classifier which, based on the fea-
ture vector, learns whether the premise supports
or attacks the claim (see subsection 3.4).

We hypothesize that the LMs have learned argu-
mentative structures and the usage of connectives.
Therefore, we anticipate that the model will as-
sign higher probabilities to support connectives and
lower probabilities to attack connectives for sup-
port premises, and vice versa for attacks. For ex-
ample, in Example 1, the premise attacks the claim,
and we expect lower probabilities for support con-
nectives like because or since as they would render
the argument incoherent. For attack connectives
like but or although we expect higher probabilities
as they are in line with the attack relation.

(1) [Masking should be mandated]C [MASK]
[it infringes on personal freedoms.]P

3.1 Connectives

We selected connectives from DimLex-Eng (Das
et al., 2018), a lexicon of discourse markers
which contains 100 connectives from the Penn
Discourse Treebank (PDTB; Prasad et al. 2008)
plus 42 from RST-SC (Das and Taboada, 2018),
all annotated with discourse relations. Out of
all 79 single-token connectives, we selected
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those with relevant PDTB relations3: For the
support relation we chose connectives marked
with Contingency.Cause.Result or
Contingency.Cause.Reason (n=18, e.g.
therefore, because), since relations in the con-
tingency class “involve an implication relation,
and hence can be classified as causal” (Sanders
et al., 2021, 21). For the attack relation
we chose Comparison.Contrast and
Expansion.Alternative.Disjunctive
(n=30, e.g. but, however), as they correlate
with the attack relations of undercut and rebut
(Hewett et al. 2019). Finally, some connectives
were excluded as the LMs tokenized them into
subwords (e.g., however: how and ever).4 Table 1
summarizes the resulting 12 support-indicating
and 18 attack-indicating connectives for which
probabilities could be extracted.5 Six connectives
are labeled with the relations of both groups.

For more information on the connectives, we cal-
culated how often a connective is tagged with the
chosen PDTB relations divided by the number of
all occurrences of the connective in DimLex-Eng.
Based on this percentage, we grouped the connec-
tives as follows: Group 1: all attack/support connec-
tives (>0%, n=24), Group 2: not predominatly at-
tack/support connectives (>34%, n=12), i.e., those
which were used in up to 66% of occurrences in
some other PDTB relation, and Group 3: predom-
inantly attack/support connectives (>66%, n=5),
i.e., those which were used in up to 34% of occur-
rences in some other PDTB relation.

3.2 Data & Preprocessing
In comparison to Hardalov et al. (2021) and
Schiller et al. (2021), we reduce the selection of cor-
pora to the following three corpora: ibmcs (Bar-
Haim et al., 2017), perspectrum (Chen et al.,
2019), and argmin (Stab et al., 2018).6 All
corpora (except argmin) have full sentences as

3We excluded all multi-token connectives as the applied
fill-mask pipeline can predict only one token at a time.

4We do not employ Huggingface’s fallback strategy, which
is using subwords instead of the full word, as it could result in
overly general word fragments (e.g., how for however).

5We also extracted all connectives which do not belong to
any of the groups (n=13), henceforth called other. For Dis-
tilBERT and BERT, probabilities of more connectives could
be extracted. However, we found out that using the proba-
bilities of more connectives (n=42) of both LMs as features
could not outperform using fewer connectives of RoBERTa or
XLM-RoBERTa. Hence, we only report results on the reduced
connective set (n=24) for all LMs.

6An overview of the datasets’ meta data can be found in
Table 1 and 2 of Hardalov et al. (2021).

attack support
conn. order % G conn. order % G
unless C-LW-P 98.95 1,2,3 for C-LW-P 100.0 1,2,3
but C-LW-P 73.28 1,2,3 so P-LW-C 100.0 1,2,3
while C-LW-P 52.50 1,2 because C-LW-P 99.53 1,2,3
yet P-LW-C 52.48 1,2 with C-LW-P 60.00 1,2
still P-LW-C 50.53 1,2 since C-LW-P 52.17 1,2
although C-LW-P 47.87 1,2 given C-LW-P 33.33 1
though C-LW-P 47.50 1,2 as C-LW-P 28.53 1
rather P-LW-C 23.53 1 and C-LW-P 2.17 1
except C-LW-P 10.00 1 when C-LW-P 2.02 1
nor C-LW-P 3.23 1 then C-LW-P 1.47 1
instead C-LW-P 2.68 1 if C-LW-P 0.08 1
until C-LW-P 1.85 1 but C-LW-P 0.03 1
or C-LW-P 1.02 1
and C-LW-P 0.70 1
if C-LW-P 0.41 1
then C-LW-P 0.29 1
when C-LW-P 0.20 1
as C-LW-P 0.13 1

Table 1: Connectives with their order (claim-connective-
premise or premise-connective-claim) and usage in
PDTB as attack (left) or support (right). G shows the
group of the connectives for the analysis. Connectives
in italics are both attack as well as support.

claims (= topics) and have (balanced) binary stance
labels.7 For argmin, we changed the one-word
topics to sentences (e.g., for topic “cloning”:

“cloning should be permitted.”).
During preprocessing, we remove any given

punctuation mark at the end of the first argument
component and lower-case the beginning of the sec-
ond part. We then concatenate each pair of premise
and claim with a masked token, e.g., “<mask>,”
that indicates the place for a potential connective.
For every argument, we create the concatenation in
the following two orders, because not all connec-
tives require the same order of claim and premise
(see Table 1): i) claim - masked token - premise
(order C-LW-P), or ii) premise - masked token -
claim (order P-LW-C). Some examples of the con-
catenated sequences are provided in the Appendix,
Table 5. We do not tokenize the data or do any
other preprocessing beyond what has already been
mentioned (or is provided in the original corpus).

3.3 Feature Extraction

We then use these concatenated sequences as input
for a masked LM, e.g., BERT (Devlin et al., 2019).
As output, the LM returns word-probability pairs,
where words with higher probabilities are more
likely to be a suitable fit within the sequence.

We use the pipeline fill-mask of the Python
package transformers (Wolf et al., 2020) to
extract the probabilities of the connectives for

7For our experiments, we used the original train, validation,
and test splits provided by the authors of the datasets.
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the following large LMs: i) DistilBERT-base-un-
cased (Sanh et al., 2019), ii) BERT-base-uncased
& -large (Devlin et al., 2019), iii) RoBERTa-base &
-large (Liu et al., 2019), as well as iv) xlm-RoBER-
Ta-base & -large (Conneau et al., 2020).

The probabilities of either one of those LMs or
of all LMs were then used as features for a clas-
sifier.8 The LMs were not explicitly trained on
argumentative data or structures and they were not
fine-tuned on any other data or task; rather, we use
them in their original form as provided on Hug-
gingFace (Wolf et al., 2020).

3.4 Classifier
To find the best classifier and its best parameters
for stance detection on all three datasets, we built
up a search space of parameters9 and applied meth-
ods of the optuna package (Akiba et al., 2019)
to find the best hyperparameter combination for
each validation set. Based on the best parameter
combination for all probabilities of all LMs with
all attack and support connectives, we averaged
the parameters per validation set. The resulting
parameters were then used for all experiments on
the test sets. LightGBM turned out to be the best
classifier out of six classifiers10, hence, we are re-
porting only the results with LightGBM using the
best hyperparameter setting (see Appendix A).

3.5 Evaluation
For the evaluation protocol, we mostly follow
Schiller et al. (2021); Hardalov et al. (2021):
We evaluate our approaches by calculating the
macro F1-Score, and we report a majority base-
line (always returns the most frequent label) and
a random baseline (randomly returns one label
of the two labels). As further comparison, we
also report results of four state-of-the-art models
(SOTA): i) BERT-large with a classification head
(BERTSDL), ii) BERT fine-tuned on GLUE bench-
mark with a classification head (MT-DNNSDL),
iii) MT-DNNSDL additionally trained on ten
stance detection data sets (MT-DNNMDL; Schiller
et al. 2021), and iv) RoBERTa-base with do-
main expert functions and a classification head
(MoLe; Hardalov et al. 2021).

8An example of probabilities for given sequences is pro-
vided in the Appendix, Table 5.

9For the entire search space per classifier see the code.
10We have also experimented with the following classifiers

and search spaces for them:i) a support vector machine, ii) a
decision tree classifier, iii) a random forest classifier, iv) a
neural multi-layer perceptron, and v) a XGBoost classifier.

4 Results

We first validated our main assumption by measur-
ing Spearman’s correlation coefficient ρ between
the probabilities of the connectives and the stance
per each sample of each dataset. Appendix B sum-
marizes all correlations and significance levels. For
all three datasets, we found that the probabilities of
nearly all connectives significantly correlate with
stance (p-level at least < 0.1; all except with, if, and
when). As expected, the probabilities of the attack
connectives show a negative correlation, whereas
those of the support connectives show a positive
correlation, and the ambiguous connectives show
a mixed picture. However, most correlations are
weak (i.e., ρ < 0.3) except for five moderate (i.e.,
0.3 ≤ ρ < 0.5; except, unless, until, yet, and three
strong ones (i.e., ρ ≥ 0.5; although, though, but).
To sum up, our assumption was validated across
all three datasets. Therefore, we can now turn to
our results on stance detection based on the con-
nectives’ probabilities.

All our models using all connectives (Group 1)
can outperform the two baselines. The best model
with all probabilities (Group 1) of only one LM is
RoBERTa-large (see bold row in the third part of
Table 2). As expected, DistilBERT achieves the
worst results compared to all other LMs, and all
large versions outperform their base versions. We
can infer that the larger the model and the more
data the model was trained on, the more knowl-
edge it has about connectives and, therefore, the
more valuable the connective features are for stance
detection and, hence, the higher the macro F1-
Score. However, the multi-lingual data on which
xlm-RoBERTa is trained seems to reduce the score,
which might be due to its larger vocabulary size
and less distinct probabilities for the connectives.
Further analysis is required to justify this finding.
Overall, combining the probabilities of all 24 con-
nectives (Group 1) of all LMs achieves a higher
macro F1-Score than using the Group 1 probabili-
ties of only one LM (see bold row in the last part
of Table 2). This model outperforms all SOTA
models on argmin and is on par with the SOTA
model on the other two datasets. Comparing all
models based on BERT-large (i.e., BERTSDL, MT-
DNNSDL, MT-DNNMDL, and our BERT-large),
our model achieves similar scores as the other mod-
els on the argmin dataset, although it classifies
just on the probabilities of 24 connectives of neither
fine-tuned nor otherwise preprocessed LMs.

14



Further, we analyzed the ablation of some am-
biguous connectives (see results of Group 2), e.g.,
and or when, and not predominant connectives, e.g.,
instead or given (see results of Group 3).

As can be seen in the last six lines of Table 2 (or
also for all other LMs in the Appendix, Table 6),
the ablations reduce the scores. The more support
and attack connectives (or features), the better the
result. It can be argued that not only distinctive
connectives, such as because or yet, are helpful
for stance detection, but also the presence of other
connectives. Yet, adding additionally the proba-
bilities of all other connectives (n=12), slightly
reduces the F1-Score on argmin and ibmcs (see
last row in Table 2), whereas it increases the score
on perspectrum. Hence, the selection of the
connectives is also important. For example, replac-
ing the 24 support and attack connectives by 24
randomly chosen connectives (12 other and 12 ran-
domly chosen support or attack connectives) the
score drops on average of 5 runs. Further, includ-
ing only the probabilities of the other connectives
(n=12) reduces the score even more.

Also, the combination of attack and support con-
nectives seems to be helpful for stance detection
(see Appendix C). For all datasets, the F1-Score
drops when removing support connectives (by less
than 0.01 points) as well as, more noticeably, when
removing attack connectives (between 0.01 and
0.35 points). When using only connectives which
are in both lists (n=6), the score even drops by one
more 0.01 point. This effect might be due to the
decreasing number of features, as the analysis of
the connectives of Group 3 with the same num-
ber of features (i.e., connectives most often used
for attack or support, n=5) also show a clear drop
in performance. An additional observation is that
some connectives (e.g., and, when) appear in both
groups, indicating that their interpretation as sup-
port or attack is inferred. This highlights that the
role of connectives in signaling stance does not
necessarily demand the explicit expression of the
semantics of the claim-premise relation.

5 Conclusion and Future Work

In this paper, we performed stance detection based
only on the masked LM probabilities of discourse
connectives that are assumed to indicate support or
attack. The classifiers we trained on these features
performed surprisingly well, given that the aim was
not at all to develop a competitive argument mining

models argmin ibmcs perspectrum
majority 0.3383 0.3406 0.3466
random 0.4998 0.4864 0.5011
BERTSDL 0.6167 0.5347 0.8012
MT-DNNSDL 0.6019 0.7066 0.8480
MT-DNNMDL 0.6174 0.7772 0.8374
MoLe 0.6373 0.7938 0.8527
DistilBERT 0.5233 0.5499 0.6079
BERT-base 0.5718 0.5500 0.6442
BERT-large 0.6104 0.5810 0.6828
RoBERTa-base 0.6218 0.5961 0.6890
RoBERTa-large 0.7204 0.7633 0.8274
xlm-RoBERTa-base 0.5830 0.5456 0.6130
xlm-RoBERTa-large 0.6601 0.7247 0.7475
all-LMs (Group 1, n=24) 0.7467 0.7885 0.8314
all-LMs (Group 2, n=12) 0.7218 0.7638 0.8185
all-LMs (Group 3, n=5) 0.6861 0.7449 0.7897
all-LMs (other, n=12) 0.6792 0.6676 0.7539
all-LMs (random, n=24) 0.7286 0.7710 0.8286
all-LMs (all, n=36) 0.7423 0.7850 0.8456

Table 2: First part baselines, second SOTA, third own
models per LM features (Group 1), and last combination
of all feature groups of all LMs. Results of SOTA are
copied from corresponding paper. F1 macro scores.

system. From our results one can conclude that
connectives, i.e. different kinds of linking words,
can help to automatically verify if a premise is
related to a given claim and, with that, also aid
stance detection. Connectives should thus play an
even more prominent role in argument mining.

In future work, we plan to also experiment with
additional punctuation marks between the first part
and the linking word. This is a promising avenue
because some connectives occur more naturally at
a sentence beginning and not between two clauses,
e.g., therefore, or require a preceding comma, e.g.,
but. Furthermore, we plan to integrate features
based on the MLM probabilities of connectives, as
used in this paper, with state-of-the-art approaches
to stance detection that use input embeddings rep-
resenting the actual text of claim and premise. Fi-
nally, we will investigate whether additional pre-
processing of the LMs in the form of fine-tuning
on argumentative data or data with explicit con-
nectives before extracting the MLM probabilities
increases stance detection performance.
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A Hyperparameter of classifiers

Best hyperparameter: {"classifier": "Light-
GBM", "lambda_l1": 0.0001, "lambda_l2": 0.002,
"num_leaves": 220, "feature_fraction": 0.9, "bag-
ging_fraction": 0.8, "bagging_freq": 2}

B Correlation Connectives’ Probabilities
and Stance

argmin ibmcs perspectrum
although -0.24*** -0.54*** -0.53***
except -0.26*** -0.49*** -0.44***
instead -0.13*** -0.36*** -0.28***
nor -0.15*** -0.23*** -0.24***
or -0.04*** -0.12*** -0.10***
rather -0.14*** -0.18*** -0.22***
still -0.20*** -0.27*** -0.22***
though -0.22*** -0.53*** -0.52***
unless -0.2*** -0.35*** -0.36***
until -0.18*** -0.34*** -0.32***
while -0.11*** -0.37*** -0.21***
yet -0.29*** -0.45*** -0.41***
because +0.04*** +0.17*** +0.08***
for +0.07*** +0.07*** +0.13***
given +0.02* +0.07** +0.04***
since +0.07*** +0.18*** +0.06***
so +0.08*** +0.05* +0.03***
with +0.00 -0.13*** +0.01
and +0.09*** -0.13*** +0.09***
as +0.06*** +0.14*** +0.12***
but -0.32*** -0.54*** -0.58***
if -0.01 -0.09*** -0.08***
then -0.02* -0.21*** -0.12***
when -0.02 -0.28*** -0.13***

Table 3: First block attacking connectives, second sup-
porting connectives, and third which are classified as
both. The asterisks indicate the level of significance
(*: p < 0.1, **: p < 0.05, ***: p < 0.01). The bold
face numbers indicate a strong, significant correlation
(ρ ≥ 0.5), underlining a moderate, significant correla-
tion (ρ ≥ 0.3) and the gray numbers are not significant.

C Results per Connective Type

argmin ibmcs perspectrum
attack+support (n=24) 0.7467 0.7885 0.8314
attack (n=18) 0.7305 0.7872 0.8288
support (n=12) 0.7265 0.7531 0.8164
both (n=6) 0.7132 0.7513 0.8058

Table 4: Results per connective set for all LMs.
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ID stance claim-connective-premise because but premise-connective-claim so yet
Train-23 0 [Nuclear energy should be permitted]C [MASK] [it

should be banned from Australia. If terrorists come
they can target the power plant and it would kill
heaps of people .]P

0.000010 < 0.009026 [It should be banned from Australia. If ter-
rorists come they can target the power plant
and it would kill heaps of people]P [MASK]
[nuclear energy should be permitted]C

0.002439 < 0.00033800

Train-2874 1 [Nuclear energy should be permitted]C [MASK]
[nuclear plants also provide stability to the electrical
grid , as their output is constant and reliable .]P

0.000584 > 0.000067 [Nuclear plants also provide stability to the
electrical grid , as their output is constant and
reliable]P [MASK] [Nuclear energy should be
permitted .]C

0.000018 > 0.00000037

Train-9125 0 [Cloning should be permitted]C [MASK] [when we
consider cloning , we must not blindly overlook its
negative implications .]P

0.000005 < 0.002498 [When we consider cloning , we must not
blindly overlook its negative implications]P
[MASK] [cloning should be permitted .]C

0.000014 < 0.00001765

Train-7226 1 [Cloning should be permitted]C [MASK] [a cloned
child could actually enhance the family relationship
for otherwise childless couples .]P

0.000880 > 0.000026 [A cloned child could actually enhance the
family relationship for otherwise childless
couples]P [MASK] [cloning should be per-
mitted .]C

0.000061 > 0.00000006

Table 5: Cherry-picked examples of the argmin dataset including masking input and probabilities of connectives
in both claim-premise orders. The < and > signs show the expected relation between the support and attack
connectives in examples with positive and negative stance. The examples represent the opinions of the annotators
and not necessarily those of the authors of this paper.

Group 1 (n=24) Group 2 (n=12) Group 3 (n=5)
argmin ibmcs perspectum argmin ibmcs perspectum argmin ibmcs perspectum

DistilBERT 0.5233 0.5499 0.6079 0.5120 0.5373 0.5753 0.5006 0.5331 0.5690
BERT-base 0.5718 0.5500 0.6442 0.5448 0.5314 0.5939 0.5213 0.5316 0.5593
BERT-large 0.6104 0.5810 0.6828 0.5705 0.5898 0.6366 0.5610 0.5494 0.6154
RoBERTa-base 0.6218 0.5961 0.6890 0.6019 0.5842 0.6508 0.5757 0.5709 0.6152
RoBERTa-large 0.7204 0.7633 0.8274 0.7080 0.7670 0.8021 0.6683 0.7422 0.7677
xlm-RoBERTa-base 0.5830 0.5456 0.6130 0.5678 0.5473 0.5899 0.5455 0.5530 0.5608
xlm-RoBERTa-large 0.6601 0.7247 0.7475 0.6171 0.7082 0.7287 0.6070 0.6921 0.7149
all_LMs 0.7467 0.7885 0.8314 0.7218 0.7638 0.8185 0.6861 0.7449 0.7897

Table 6: Results per LM and feature set.
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Abstract

The use of argumentation in education has
shown improvement in students’ critical think-
ing skills, and computational models for argu-
mentation have been developed to further assist
this process. Although these models are useful
for evaluating the quality of an argument, they
often cannot explain why a particular argument
score was predicted, i.e., why the argument is
good or bad, which makes it difficult to provide
constructive feedback to users, e.g., students,
so that they can strengthen their critical think-
ing skills. In this survey, we explore current
NLP feedback systems by categorizing each
into four important dimensions of feedback
(Richness, Visualization, Interactivity and Per-
sonalization). We discuss limitations for each
dimension and provide suggestions to enhance
the power of feedback and explanations to ulti-
mately improve user critical thinking skills.

1 Introduction

Argumentation is the field of elaborating and
presenting arguments to engage in debate, con-
vince others, and eventually reach agreements.
In this context, an argument is made of a con-
clusion (i.e., a claim) supported by reasons (i.e.,
premises) (Toulmin, 1958). Computational argu-
mentation emerged as a way to support argumenta-
tion. It is a subfield of natural language processing
(NLP) that deals with the automated representa-
tion, evaluation, and generation of arguments. It in-
cludes tasks such as mining arguments (Al-Khatib
et al., 2016), assessing arguments’ quality (El Baff
et al., 2018), reconstructing implicit assumptions
in arguments (Habernal et al., 2018) or even pro-
viding constructive feedback for improving argu-
ments (Naito et al., 2022), to name a few.

In education, learning how to argue (e.g., writ-
ing argumentative essays, debates, etc.) has
been shown to improve students’ critical thinking
skills (Pithers and Soden, 2000; Behar-Horenstein
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Figure 1: Overview of some NLP feedback systems
categorized into our feedback dimensions.

and Niu, 2011). To further improve critical think-
ing skills, several researchers have been working
on computational argumentation and specifically
argumentative feedback systems to provide support
and to assist learners in improving the quality of
their arguments (Habernal et al., 2017; Wachsmuth
et al., 2017; Lauscher et al., 2022).

Although argumentative feedback systems are
proven to assist students’ learning and reduce teach-
ers’ workload (Twardy, 2004; Wambsganß et al.,
2021), such systems still lack the ability to deeply
explain how an argument can be improved; i.e.,
not only providing a holistic label or score, but ex-
plaining particularly why this result was given by
automatic evaluation rubrics. Such explanations as
feedback can ultimately explain and visualize the
results comprehensively for the users so that users
can understand and improve their argumentation
skills. The lack of ability in current systems to
provide deep explanations as feedback motivated
our interest in investigating the current state of ar-
gumentative feedback generation.

In this survey, we focus on different kinds of
feedback given to learn how to argue. Inspired
by the sections Tutorial Feedback and Architec-
ture and Technology mentioned in Scheuer et al.
(2010), we combine features of feedback systems,
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Your argument has an invalid generalization. 
  

 American cuisine is not just hamburgers.

Richness = What/Why

Interactivity = Who

Visualization = How

American cuisine is not just hamburgers.  

American cuisine is not healthy. 
Indeed hamburgers are not healthy.

 Oh, what else is American?

Legend:

= Child

= Model

= Student

Your argument has an invalid generalization. 
  

 American cuisine is not just hamburgers.

Personalization = To Whom

  What    
Why        

 American cuisine is not healthy.  
  
 Hamburgers are not healthy.

Careful you are simplifying! 
American cuisine is not just hamburgers.For example, Cobb salad is.

Figure 2: Example of four feedback for each dimension (Richness, Visualization, Interactivity and Personalization).

formulate four distinct dimensions and categorize
existing papers into these dimensions (Figure 1):

• Richness: Level of feedback details given by
a model, i.e., what is the error identified by
the model and why it is an error.

• Visualization: Model’s ability to present feed-
back, i.e., how the feedback is shown to the
end user.

• Interactivity: Model’s ability to allow the user
to communicate with other users or the model
itself, i.e., with whom the user is talking.

• Personalization: Model’s ability to adapt the
feedback to the users’ background, i.e., to
whom the feedback is given.

Figure 2 shows four different dimensions of feed-
back (Richness, Visualization, Interactivity, and
Personalization), for a given argument consisting
of two claims and one premise. In this example, in
the Richness dimension, a faulty generalization in
the argument is identified (cf. What) and explained
(cf. Why). Visualization would add symbols and
highlight important feedback elements to make it
more understandable. Interactivity would allow the
user to ask for more explanations to the model. Per-
sonalization would consider that the user is a child
and provide appropriate feedback on that basis.

Towards better argumentative feedback, this sur-
vey aims to give an overview of argumentative feed-

back systems. We explore work that provide feed-
back answering one or multiple questions among
the types: What/Why (§4), How (§5), Who (§6), and
To Whom (§7). Finally, we discuss remaining chal-
lenges and potential ways to overcome them (§8) in
order to develop systems that provide feedback or
detailed explanations in a way so that learners can
improve their critical thinking skills. We believe
this survey can aid researchers in understanding
current explanations in argumentation and broaden
their horizon on argumentative feedback.1

2 Related Work

Several surveys have been done in the field of
argumentation (Ke and Ng, 2019; Habernal and
Gurevych, 2016; Lawrence and Reed, 2020; Wang
et al., 2022) and explainability (Danilevsky et al.,
2020; Islam et al., 2021; Hartmann and Sonntag,
2022). As we would like to focus on how well a
model can explain its results as a type of feedback
for learners, we present here recent surveys related
to feedback or explainability in argumentation.

Beigman Klebanov and Madnani (2020) present
the progress in automated writing evaluation, using
Page (1966) to frame the presentation. In this sur-
vey, the succinct feedback section enumerates dif-
ferent systems for writing assistant and highlights
the inconclusiveness of research on effectiveness

1For more details, papers mentioned in this survey are cat-
egorized at https://kmilia.github.io/teach_me_how_
to_argue/.
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of automated writing evaluation.
Vassiliades et al. (2021) highlights the potential

of argumentation in explainable AI systems. They
provide an exhaustive overview of argumentation
systems by grouping them based on domain, such
as law. For each domain, papers are compared by
tasks (e.g., argument classification). Despite the ex-
tensiveness of their survey, some topics to improve
explanations in argumentative systems received lit-
tle attention. For example, frameworks that include
arguments with commonsense knowledge and di-
verse attack relations between them have rarely
been discussed, even though they can enhance the
model’s explainability (Saha et al., 2021).

Čyras et al. (2021) focus on the different frame-
works, types, and forms of explanations. They
distinguish intrinsic approaches (i.e., models us-
ing argumentative methods) from post-hoc ap-
proaches (i.e., non-argumentative models that pro-
vide complete or partial explanations). They dis-
cuss multiple forms of argumentation, such as dia-
logue. Their final roadmap covers the need to focus
more on properties and computational aspects of
argumentation-based explanations. Whereas they
focus on how argumentation can be used to enhance
the explainability of models, our work discusses
what kind of feedback (i.e., explanations) on argu-
mentation models can provide.

Moreover, our work distinguishes itself from
the surveys previously mentioned by giving an
overview of automatized feedback on argumenta-
tion from the angle of rich (§4), visual (§5), in-
teractive (§6), and personalized (§7) explanations
inspired by Scheuer et al. (2010).

3 Pedagogy

Before discussing the four dimensions mentioned a
priori, it is essential to know the pedagogy used to
teach argumentation and adopted by computational
models. This section presents some standard peda-
gogical methods used in teaching how to argue.

Toulmin model The Toulmin model (Toulmin,
1958), often seen as the foundation of teaching ar-
gumentation, is a popular framework for construct-
ing, analyzing and evaluating arguments, and can
contribute to the improvement of students’ argu-
mentative writing (Rex et al., 2010; Yeh, 1998) as
well as critical thinking skills (Giri and Paily, 2020).
This approach deconstructs an argument into six
elements (Appendix, Figure 4), and students are
taught to identify each element within an argument.

By identifying elements from the Toulmin model,
models can provide users with rich feedback.

Rhetorical structure theory Based on Mann
and Thompson (1988), the rhetorical structure the-
ory was originally developed in the context of
computer-based text generation in order to attribute
a formal structure to a text (Hou et al., 2020). This
theory employs graphical representations, such as
mind maps or graphs, to illustrate the relationships
between different components of the text’s archi-
tecture. This visual approach can help students
visualize the connections between different con-
cepts and enhance their understanding of complex
topics (Matsumura and Sakamoto, 2021). The ad-
vent of tools like Tiara (Putra et al., 2020) has given
rise to the deployment of the rhetorical structure
theory, i.e. the generation of visual feedback.

Collaborative argumentation In collaborative
argumentation-based learning, also described as
CABLE by Baker et al. (2019), individuals work to-
gether to construct, refine, and evaluate arguments
on a particular topic or issue. The main goal of
collaborative argumentation is to foster construc-
tive dialogue, critical thinking, and the exploration
of different perspectives. Weinberger and Fischer
(2006) differentiate four dimensions of CABLE:

• Participation: Do learners participate at all?
Do they participate on an equal basis?

• Epistemic: Are learners engaging in activities
to solve the task (on-task discourse) or rather
concerned with off-task aspect?

• Argumentative: Are learners following the
structural composition of arguments and their
sequences?

• Social: To what extent do learners refer to the
contributions of their learning partners? Are
they gaining knowledge by asking questions?

Veerman et al. (2002); Baker et al. (2019) show
CABLE’s positive effects on students’ argumenta-
tion development. Nevertheless, they also highlight
the challenges of this method, as not every dialogue
can be predicted. By using CABLE, models can
generate interactive feedback.

Socratic questioning The Socratic questioning is
a common teaching strategy, described in Schauer
(2012); Abrams (2015). With this method, the stu-
dent is guided through reflexive questions towards
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solving a problem on their own, instead of receiv-
ing directly a solution. The user receives feedback
which is tailored to their background, i.e., person-
alized feedback.

Recently, this method has been integrated into
large language models (LLMs) to more effectively
adhere to user-provided queries (Ang et al., 2023;
Pagnoni et al., 2023), to enhance the ability of such
models in generating sequential questions (Shrid-
har et al., 2022), and also to enhance the explain-
ability of these models (Al-Hossami et al., 2023).

Nevertheless, the Socratic questioning is now
raising debates among researchers focusing on ped-
agogy in argumentation. Indeed, Kerr (1999) and
Christie (2010) pointed out its inefficiency and abu-
siveness as students are forced to give imperfect
answers in a hurry and endure criticism.

4 Richness - What is an Error and Why?

To improve students’ critical thinking skills, we
first need to evaluate their argumentative texts, i.e.,
identify argumentative errors. In this section, we
focus on models providing shallow explanations,
i.e., models that identify what should be corrected
in the arguments. We discuss relevant works that
identify properties such as the structure of argu-
ments which is helpful in this process.

Components Identifying argumentative compo-
nents is one of the fundamental tasks in argumen-
tation (Teufel, 1999; Stab and Gurevych, 2014; Jo
et al., 2020). Such works primarily focus on iden-
tifying components such as claims and premises.
More recently, the usefulness of identifying such
components can be seen in tasks such as counter-
argument generation. For example, in Alshomary
et al. (2021), weak premises are identified and
ranked to generate counter-arguments.

Relations After identifying the different compo-
nents of an argumentative text, it is necessary to
distinguish the multiple relations between them,
ultimately to assert the arguments’ quality. Indeed,
supporting or refuting a claim is made of complex
logical moves, such as promoting, contradicting,
or acknowledging a fact. To identify the different
relations patterns, Yuan et al. (2021) focus on find-
ing interactive argument pairs, whereas Mim et al.
(2022) enables annotating complex attack relations.

Schemes In addition to components and relations,
Walton et al. (2008) proposed a set of roughly 80
logical argumentation schemes to categorize the

underlying logic. Each scheme has a set of criti-
cal questions which provide a template to assess
the strength of the argument depending upon the
associated scheme. Since the first work on auto-
matically detecting argumentation schemes in ar-
gumentative texts (Feng and Hirst, 2011), the use
of such schemes has been explored in tasks such as
essay scoring (Song et al., 2014).

Fallacies Although a good structure with a claim
and premises is necessary for a good argument,
it is not sufficient. An argument has more com-
plex properties, such as its logical, dialectical, and
rhetorical aspects. A fallacy is a logical error or
deceptive argument that undermines the validity of
a conclusion or reasoning, which poses a substan-
tial issue due to its propensity to generate miscom-
munication. Towards teaching students to avoid
making errors in logical reasoning, logical falla-
cies have received attention (Habernal et al., 2017;
Bonial et al., 2022; Zhivar et al., 2023; Nakpih
and Santini, 2020). Motivated by the gamification
method made by Habernal et al. (2017), Bonial
et al. (2022) aimed to capture similar fallacy types
for news articles, but the low distribution of fallacy
types in the wild makes identification challenging.
However, most natural texts do not have recurrent
specific patterns, compared to current datasets, like
the Logic and LogicClimate datasets (Jin et al.,
2022). Moreover, given the large number of logical
fallacies that exist (over 100 types), long arguments
can be grouped into multiple fallacies, resulting in
difficulties in classification (Goffredo et al., 2022).

Debate patterns In a case of a debate, an op-
ponent is willing to give a counter-argument syn-
chronously and interactively. Analyzing and eval-
uating a debate is a difficult task as we need to re-
trieve not only the argumentation structure of each
opponent but also the relations between them. Bao
et al. (2022) focuses on argument pair extraction
(APE), which consists of finding two interactive
arguments from two argumentative passages of a
discussion. Although the APE task gives insights
into relations between different argumentative texts,
it does not indicate complex relations (i.e., how
claims, supports, attacks and the intention of the
speakers are interrelated). To palliate this issue,
Hautli-Janisz et al. (2022) identified and analyzed
the dialogical argumentative structure of debates us-
ing Inference Anchoring Theory (IAT) (Budsziyska
et al., 2014). Following the same IAT theory, Kik-
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teva et al. (2022) showed that the type of questions
(e.g., pure, assertive, and rhetorical questions) leads
to different argumentative discourse. Focused more
on the opponent’s side, Naito et al. (2022) propose
diagnostic comments for assessing the quality of
counter-arguments by providing expressive, infor-
mative and unique templates. The feedback is then
written by template selection and slot filling.

In-Depth Explanations Although identifying
such argumentative structures (components, rela-
tions, and schemes) and properties (fallacies and
debate patterns) is important, it has limitations in
terms of effective feedback. Identifying a missing
claim or a wrong premise is insufficient to under-
stand how to improve the argumentation properly.
Thus, we relate the identification of structure and
properties to shallow explanations in the sense that
users can still benefit from the output of the models.

Shallow explanations can be difficult to under-
stand, especially for beginners, as they tend to be
minimalist and lack guidance. To explain more ef-
fectively the errors in an argument, a model should
go a step further, hence by providing in-depth expla-
nations, which attempt to identify the argument’s
implicit components to explain why it is an error in
a particular argument. In Figure 2, we implicitly
know that hamburgers belong to the American cui-
sine, as same as the Cobb salad, a healthy garden
salad from California. Therefore, if the model is
able to reason out this implicit knowledge, it can
better explain the invalid generalization in Figure 2.

Implicit Knowledge and Reasoning in Argu-
ments To provide in-depth explanations, we need
to know how to refine the argument, i.e., how
to identify implicit information. Recently, many
works have focused their attention on this aim. The
main goal of such studies is to make the structure
and reasoning of arguments explicit to explain the
arguments for humans better. Additionally, this fo-
cus can eventually help build robust argumentation
machines that can be enriched with language under-
standing capacity. Following the pioneer works of
Razuvayevskaya and Teufel (2017), the ExpLAIN
project (Becker et al., 2021) and Jo et al. (2021)
are one such example that focuses extensively on
reconstructing implicit knowledge in arguments by
relying on knowledge graphs among others. Tak-
ing a step further in this direction, Heinisch et al.
(2022) and Saadat-Yazdi et al. (2023) proposed to
utilize such implicit information to bridge the im-

plicit reasoning gap in arguments to help students
explain their arguments better.

Large annotated corpora are required to improve
implicit reasoning detection for models. To address
this need, various studies have proposed methods
for annotating implicit knowledge, leading to the
development of multiple datasets (Becker et al.,
2020; Singh et al., 2021, 2022). In Singh et al.
(2021), semi-structured warrants, i.e. links between
a claim and evidence (c.f. Appendix Figure 4),
were annotated via crowdsourcing, whereas Becker
et al. (2020) focus on reconstructing omitted in-
formation, semantic clause types, and common-
sense knowledge relations through expert annota-
tion. Corpora can be dedicated to a specific domain
or sentence patterns. For example, (Singh et al.,
2022) focused on domain-specific knowledge using
six topics. However, implicit knowledge may take
various forms, such as warrants, causal relations,
facts, beliefs, or assumed-known arguments. Thus,
revealing implicit knowledge in an unknown text
through annotated datasets can be challenging.

In recent years, LLMs have made significant
progress in exhibiting reasoning abilities. A com-
prehensive overview of the current state of reason-
ing abilities in LLMs is provided in the survey
Huang and Chang (2023). The increasing interest
in LLMs and implicit reasoning prompted the first
ever workshop on natural language reasoning and
structured explanations in 2023 (Dalvi Mishra et al.,
2023). This workshop discussed that while LLMs
have demonstrated good capabilities to find implicit
components within an argument, they often cannot
correctly explain the logical reasons behind their re-
sponses. To bridge this gap, a novel category of ex-
planation techniques has arisen, playing a vital role
in shaping the logical reasoning of models. One
such example is the chain-of-thought prompting
(Wei et al., 2022; Wang et al., 2023a), which em-
ploys explanations as a means for LLMs to emulate
human reasoning procedures. While the references
Huang and Chang (2023) and Dalvi Mishra et al.
(2023) do not primarily focus on argumentative
tasks, they can be a valuable source of inspiration
in argumentation.

5 Visualization - How to Show the Error?

The effectiveness of any argument does not solely
rely on its content but also on its presentation. This
is where visualization of argumentative feedback
emerges as a crucial factor. Visualizing feedback
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empowers individuals to perceive the intricacies of
an argument in a more comprehensive manner. By
using visual aids like graphs, feedback becomes
more accessible and engaging, fostering construc-
tive discussions. In this section, we discuss how
visualization impacts argumentative feedback.

Highlights A simple approach to visualization
is highlighting, i.e., application of visual emphasis
on a specific pattern with the intention of drawing
the viewer’s attention to this specific pattern. For
example, Lauscher et al. (2018) identify the argu-
ment component (Claim, background, data) and
visualizes them by highlighting the text in different
colors. Similarly, Chernodub et al. (2019) allow
the user to choose the model to use and the com-
ponents to highlight. Wambsganss et al. (2022b)
take a step further by highlighting and presenting
scores that give a quick overview of users’ skills.

Highlighting serves as an essential key step in
the cognitive input process, enabling viewers to
quickly identify crucial argumentative structures.
However, its use should be complemented with
other visualization techniques to ensure a more pro-
found exploration and comprehension of complex
explanations. Studies conducted by Lauscher et al.
(2018); Chernodub et al. (2019); Wambsganss et al.
(2022b) shed light on the potentials and limitations
of highlighting, paving the way for future advance-
ments in data visualization methodologies.

Multiple views To overcome the shallowness of
highlighting, several researchers add to their sys-
tem other views, such as diagrams showing the
argumentative structure. For example, to compare
two drafts of an essay, Zhang et al. (2016); Afrin
et al. (2021) use a revision map made of color-
coded tiles, whereas Putra et al. (2021) rely on a
tree to reorder arguments.

Based on the work of Wambsganß et al. (2020),
Xia et al. (2022) and Wambsganss et al. (2022a)
use a text editor which highlights components, a
graph view which shows the argumentative struc-
ture, and a score view showing the user’s perfor-
mance. Based on the classroom-setting evaluation,
students using such systems wrote texts with a bet-
ter formal quality of argumentation compared to
the ones using the traditional approach.

Nevertheless, the current accuracy of such sys-
tems’ feedback still leaves a large improvement
space in order for users to be motivated to use them.
More recent work such as Zhang et al. (2023) incor-

porate feedback generated by state-of-the-art LLMs
in their graphical systems. Nonetheless, factual in-
accuracies, as well as inconsistent or contradictory
statements, are still generated, exposing the user to
confusion and leaving room for improvement.

Dialogue Systems In the realm of visualization,
a novel approach gaining attraction is the inte-
gration of dialogue systems to enhance the inter-
action between users and visual representations.
Dialogue systems, commonly known as chatbots
like ChatGPT, have been increasingly explored for
their potential to facilitate information comprehen-
sion (Rach et al., 2020; Wambsganß et al., 2021).

This kind of representation is challenging in
terms of user-friendliness. Particularly, in a peda-
gogical context, users may have difficulties visu-
alizing their previous feedback and progress. In-
deed, users may be lost in the discussion flow and
struggle to keep track of the ongoing discussions,
lessons, or feedback because the representation
does not provide clear signposts or structure. Stu-
dents may forget a specific lesson and want to ver-
ify some information, or they simply need to reread
their lessons and exercises. However, finding spe-
cific information in a chat discussion may take
much effort. Thus, it is important (i) to have a chat
session per lesson, exercise or test and (ii) to keep
structured notes of the issues users face and how
these issues can be solved. Eventually, a personal
dashboard showing a user’s progress through time
could be beneficial not only for students but also for
teachers. Indeed, with a dashboard, teachers can
see if a specific student needs more attention. More-
over, teachers sometimes need to compare students
among them, specifically during a test. Therefore,
we believe that to improve the user-friendliness
of pedagogical dialogue systems, other visual ele-
ments should be used.

Despite the growing popularity of both graphs
and chatbots in data visualization, limited work has
directly compared their effectiveness in improving
critical thinking skills. Further research is needed
to provide more nuanced insights on the compari-
son on one hand between both approaches and on
the other between works among the same approach.

The importance of visualization lies in its ability
to enhance the understanding of complex ideas. In
this section, we highlighted the potential of the
visualization of argumentative feedback and how it
can improve students’ learning process.
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6 Interactivity - Who Talks to the User?

Teaching how to argue is a multifaceted task that
demands more than the dissemination of theoretical
knowledge; it requires fostering interactive learn-
ing environments that facilitate active engagement
and practice. The traditional approach to teach-
ing argumentation often centers on lecturing and
one-way communication, where instructors impart
information to students. While didactic methods
have their place in education, a more interactive
pedagogical approach, one that encourages learners
to actively participate, can be used. In this section,
we will see in which ways current argumentative
computational models enable a form of interaction.

Interaction between different users NLP sys-
tems mostly allow communication between a user
and a conversational agent. Nonetheless, some
works chose to apply the CABLE pedagogy (§3)
by allowing a user to dialog with other users. Fol-
lowing the footsteps of Petasis (2014), Lugini et al.
(2020) track real-time class discussions and help
teachers annotate and analyze them. Recent works
such as Zhang et al. (2023) plan to add a collabora-
tive setting in their future work.

The collaboration between multiple users within
NLP systems is promising. Nevertheless, only a
few works focus on the CABLE pedagogy. It is
essential to acknowledge that some challenges and
barriers have hindered its use in NLP, possibly due
to the difficulty of designing and evaluating such
tools, as human resources in a real-class setting
(e.g., students, teachers) are required.

Interaction with a conversational agent As
seen in §5, several research papers have showcased
the feasibility of employing current conversational
agents for educational purposes (Lee et al., 2022;
Macina et al., 2023; Wang et al., 2023b). Often
based on state-of-the-art language models, these
agents have shown great capabilities in understand-
ing and generating human-like responses. They
can engage in dynamic and contextually relevant
conversations, making them potentially valuable
tools for educational purposes.

The use of conversational agents as dialog
tutors has been explored outside of argumenta-
tion (Wambsganß et al., 2021; Mirzababaei and
Pammer-Schindler, 2022; Aicher et al., 2022). For
instance, in Mirzababaei and Pammer-Schindler
(2022), an agent examines arguments to determine
a claim, a warrant, and evidence, identifies any

missing elements, and then assists in completing
the argument accordingly. Wambsganß et al. (2021)
create an interactive educational system that uses
interactive dialogues to teach students about the
argumentative structure of a text. The system not
only provides feedback on the user’s texts but also
learning sessions with different exercises.

Research on chatbots in education is still prelimi-
nary due to the limited number of studies exploring
the application of effective learning strategies using
chatbots. This indicates a significant opportunity
for further research to facilitate innovative teaching
methods using conversational agents (Hwang and
Chang, 2021). However, extraction and classifica-
tion of useful data remain challenging, as the data
collected are noisy and much effort still has to be
made to make it trainable (Lin et al., 2023). Re-
searchers must also continue to account for ethical
considerations, including biased representations
and data privacy safeguards, to ensure that their
chatbots positively impact users (Kooli, 2023).

Overall, integrating interaction in teaching how
to argue is not merely a pedagogical choice but
an essential requirement to cultivate adept arguers
who can navigate the intricacies of argumentation.
Therefore, we encourage researchers to consider
this dimension in their future pedagogical systems.

7 Personalization - To Whom is it For?

Even if the feedback mentioned in §4 are a step
towards good guidance, they are static, which can
be problematic. Beginners and professionals in
argumentation do not need the same amount of
feedback. A child and an adult have different levels
of understanding and knowledge. Therefore, it
is essential that a model knows to whom it should
explain the errors and hence how to adapt its output
by providing personalized explanations.

Levels of explanations A first approach to per-
sonalization is to discretize different users’ profi-
ciency levels in argumentation into a small num-
ber of categories. For instance, with the system
described in Wambsganß et al. (2020) and Wamb-
sganss et al. (2022a), users can select their own
level among the following categories: Novice, Ad-
vanced, Competent, Proficient, Expert.

Although Wambsganß et al. (2020) and Wamb-
sganss et al. (2022a) propose different granularity
levels of explanations, their study is restrained to
students from their university. Having end-users
from different backgrounds may imply the need
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for new levels of explanations. Wachsmuth and
Alshomary (2022) show that the explainee’s age
affects the way an explainer explains the topic at
hand. Thus, we consider that information such as
the learner’s age should be considered in future
interactive argumentative feedback systems, where
terminology such as fallacy and their existence
would require different explanation approaches for
younger students (i.e., elementary) compared to
older students.

Self-personalization For more personalized
feedback, systems such as Hunter et al. (2019) and
Putra et al. (2020) rely on user’s inputs. They al-
low users to make their custom tags or to choose
their preferences among a set of rubrics. Never-
theless, manually personalizing the system can be
overwhelming and time-consuming for users.

Next directions Hunter et al. (2019) argue that
the next direction for personalized argumentative
feedback would be to develop argumentation chat-
bots for persuasion and infer the user’s stance based
on the discussion. Chatbots’ personalization ca-
pabilities enable them to tailor their responses to
individual learners’ needs and learning styles, po-
tentially enhancing the effectiveness of the tutoring
process (Lin et al., 2023). However, bridging the
gap among personalized chatbots (Qian et al., 2021;
Ma et al., 2021), personalized educational meth-
ods (González-González et al., 2023; Ismail et al.,
2023; Liu et al., 2020) and argumentation has re-
mained unexplored. Thus, we think researchers
should focus in the future on providing more per-
sonalized explanations (i.e., precisely adjusted by
considering the learner’s background) to improve
the users’ critical thinking skills efficiently.

8 Discussions

Teaching how to argue through NLP systems holds
significant promise for enhancing students’ learn-
ing process. However, existing research in this area
presents various open issues. In this section, we
explore some difficulties in designing and evaluat-
ing computational models for argumentation and
discuss some methods for mitigating them.

Evaluating different systems The evaluation of
NLP systems often relies on human assessment,
which is insightful. However, this reliance makes
it hard to reproduce the evaluation and to compare
different systems. To the best of our knowledge,

no research has focused on comprehensive compar-
ative studies of different end-to-end systems. The
lack of direct comparisons between similar systems
hampers the understanding of their relative advan-
tages and limitations. As researchers and educators,
it becomes overwhelming to discern which system
best fits specific pedagogical objectives. A possible
reason for this issue resides in the restricted access
to various tools. Indeed, many systems may not be
accessible, limiting researchers to test them. Addi-
tionally, the lack of guidelines to evaluate systems
for learning argumentation exacerbates the diffi-
culty in evaluating these systems in a systematic
manner. Current systems’ performance is evalu-
ated with metrics such as coherence. Nevertheless,
new evaluation methods such as the ones described
in Heuer and Buschek (2021) should be explored.
Therefore, we should promote open-source projects
and the research of standard guidelines.

Domain Adaptation Towards effectively ex-
plaining output to improve critical thinking skills
of users, future systems must be capable of un-
derstanding the topic of discussion in a way that
argumentation errors (e.g., fallacies) can be iden-
tified. In a pedagogical setting, teachers have the
ability to choose new topics of discussion annually;
hence, systems must also be capable of adapting to
various domains. Recent works have focused on
domain adaptation for tasks such as short answer
scoring (Funayama et al., 2023), which focus on
training models for several tasks to learn common
properties helpful in evaluating unseen topics. We
must also adopt such strategies for computational
argumentation to ensure the most reliable feedback
is given to the user.

Collaboration NLP researchers and pedagogical
researchers generally conduct their research inde-
pendently, thus creating a gap. We suggest that
researchers from both fields must come together
to ensure that appropriate and sufficient explana-
tions are provided to learners. Ideally, a system for
linking various educational schools and providers
with artificial intelligence researchers could signif-
icantly help assist with ensuring systems can be
properly evaluated.

Ethics Tailoring a constructive feedback system
to each user’s background and current worldview
would benefit the user significantly. Nevertheless,
the creation of such a system presents significant
challenges in navigating ethical issues (Hovy et al.,
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Figure 3: Current and future directions of teaching argumentation with NLP systems. Boxes with a specific color
correspond to a specific dimension, whereas the ones in black are general directions.

2017; Trust et al., 2023). Hence, conceiving novel
systems with an ethics by design approach remains
important (Leidner and Plachouras, 2017). Ethics
by design is a concept that emphasizes the integra-
tion of ethical considerations and principles into
the design and development of products, systems,
technologies, and processes from the very begin-
ning. It promotes the idea that ethical considera-
tions should be a fundamental part of the design
process rather than added as an afterthought or
compliance requirement. This approach aims to
prevent and mitigate potential ethical issues, such
as privacy violations, bias, discrimination, and lack
of transparency, by building ethical principles and
values into the core of a project. In order to add
this principles in a project, Leidner and Plachouras
(2017) suggest an Ethics Review Board (ERB) for
companies and research institutions, as well as a
list of remedies that researchers can consider when
facing ethical dilemmas.

9 Conclusion

In our survey, we explored several works provid-
ing feedback in argumentation, following various
dimensions: Richness (§4), Visualization (§5), In-
teractivity (§6), and Personalization (§7). Figure 3

summarizes the pedagogy, current achievements
and potential future directions of each dimension.

As potential areas for improvement to enhance
the quality of educational argumentative systems,
we highlighted the following points: (1) generate
accurate, constructive feedback for a real-life in-
put(§4-5), (2) tailor the output based on the user’s
background (§6-7), (3) evaluate and compare end-
to-end systems more deeply(§8), (4) improve mod-
els’ abilities to adapt to unknown topics(§8), (5)
collaborate with pedagogical teams and actual stu-
dents(§8), and finally (6) take into consideration
ethical issues(§8). For instance, in challenge (2),
the use of conversational agents becomes increas-
ingly frequent. However, such systems still leave
room for improvement, particularly their ability to
tailor discussions based on the user’s background.

We hope our survey contributes to enriching
the research community focused on argumentation
with a comprehensive understanding of current per-
spectives in NLP systems for teaching how to argue.
In our future work, we will focus further on real-
life and end-to-end systems (Challenges (1) and
(3)). We plan to prototype a system to measure the
effects of different feedback on users and evaluate
it in actual classrooms (Appendix, Figure 5).
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Limitations

This survey offers an overview of NLP feedback
systems in argumentation. Despite our best efforts,
some limitations may still exist in this research.

Paper selection Our survey primarily focuses
on argumentative feedback systems in the context
of NLP and human-machine interaction, but there
may be valuable insights from other feedback sys-
tems that could be applied to argumentation. For
instance, feedback systems for grammatical errors,
such as (Liang et al., 2023), could inspire new
argumentative feedback systems. Moreover, we
excluded non-English articles in our survey and
prioritized works dedicated to students rather than
teachers (e.g., Datta et al., 2021).

Categorization Based on our understanding and
subjective opinions, we have categorized the works
into four dimensions. It could be relevant to have
external opinions on this categorization.

Descriptions The descriptions provided in this
survey are generally concise to ensure comprehen-
sive coverage within the constraints of page limits.
We hope this survey can be a reference, directing
readers to more detailed information in the respec-
tive works.

Experiments It is important to note that this sur-
vey is purely informational and lacks experimental
data or empirical results. Conducting comparative
experiments with different feedback systems could
offer more substantial guidance. However, this
aspect is left for future research.
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Kristijonas Čyras, Antonio Rago, Emanuele Albini,
Pietro Baroni, and Francesca Toni. 2021. Argumen-
tative xai: A survey.

33



A Appendix

CLAIM 
Conclusion, main idea 

Example: There are dogs nearby.

DATA 
Evidence, Grounds 

Example: You hear barking and howling in the distance.

QUALIFIER 
Identifies the scope of the claim’s truth 

Example: So there is a high probability that…

WARRANT 
Explains how the data leads to the claim 

Example: Dogs are animals that bark and howl.

BACKING 
Explains why the warrant has the authority 

Example: You already have heard dogs barking and howling

REBUTTAL 
Addresses a counterargument 

Example: There are no wolves in this city.

COUNTERARGUMENT 
Opposing argument that may be raised against 

Example: However, it could be a wolf as they also bark and howl.

Figure 4: Six elements of the Toulmin’s model.

Creation of a dataset 
about constructive 

argumentative 
feedback 

Generation of 
constructive 

feedback

Implementation of a user-friendly interface 
and integration of the generated feedback 

Evaluation 
of effects on 

students

Overall Goal: Improvement of Critical Thinking Skills 

I think that school uniforms 
should be banned. Uniforms 
can remove the wall of 
status. They oppose the 
spirit of unity and its 
celebration. They also look 
very nice and respectful.

History Training Mode

Your argument, “They also look very 
nice and respectful.” seems to rely on 
your experience or judgment.

If you are using an argument based on 
your own experience, consider 
explaining this.
You had a similar issue with the topic 
“In favor or against veganism.”

Topic
School Uniforms: Good or Bad?

Suggestion: Add the phrase ‘Based 
on my personal experience’ to your 
argument.

Maria Suzuki
Level: Semi-pro, See Profile

Figure 5: Preliminary sketch design of an end-to-end system to learn argumentation.
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Abstract

The conventional method of extracting argu-
ments from sentences solely relies on word
proximity, disregarding the syntactic structure
of the sentence. This approach often leads to
inaccuracies, especially when identifying argu-
mentative span boundaries. In this research,
we investigate the benefits of utilizing a con-
stituency tree representation of sentences to pre-
dict Argument Discourse Units (ADUs) at the
token level. We first evaluate the effectiveness
of utilizing the constituency tree representation
for capturing the structural attributes of argu-
ments within sentences. We demonstrate empir-
ically that the constituency structure surpasses
simple linear dependencies among neighboring
words in terms of effectiveness. Our approach
involves leveraging graph neural networks in
conjunction with the constituency tree, adapt-
ing it specifically for argument unit recognition.
Through extensive evaluation, our model out-
performs existing approaches in recognizing
argument units at the token level. Furthermore,
we employ explainability methods to assess the
suitability of our model architecture, providing
insights into its performance.

1 Introduction

Argument identification within documents serves
as the initial step in studying rhetorical speech pro-
cesses, student essays, or political debates. The
objective is to accurately identify Argument Dis-
course Units (ADUs), defined as minimal analysis
units, within sentences, and predict their stance and
relation to each other.

Previous works on token-level argument analysis
(Trautmann, 2020) have employed language mod-
els such as Bidirectional Encoder Representations
from Transformers (BERT) (Devlin et al., 2019), in
conjunction with probabilistic models like Condi-
tional Random Field (CRF) (Lafferty et al., 2001).
This combination enhances overall prediction co-
herence with constrained fine-tuning.

The study of arguments and discourse has been
approached from a grammatical perspective, in-
cluding frameworks such as Rhetorical Structure
Theory (Mann and Thompson, 1987), one of the
conclusion from the annotation guideline (Stede
and Taboada) is the use of syntax to better identify
the Elementary Discourse Units (EDU). Building
grammatical parsers is a complex task that has re-
ceived extensive research attention. The results
achieved thus far are promising and can serve as a
foundation for various applications.

In this research, we investigate the benefits of
incorporating grammatical structure into a BERT-
CRF model for argument unit recognition, with
a specific focus on the constituency tree repre-
sentation of sentences (as illustrated in Figure 1).
This representation consists of a tree where inte-
rior nodes represents the grammatical structure of
the sentence, along with leaf nodes (nodes without
children) corresponding to the words within the
sentence.

The primary objectives of this paper are:

• Evaluate the potential benefits of using the
constituency tree for argument unit recog-
nition and develop rules to modify the con-
stituency tree into a structure better suited for
identifying argument structure (Section 3).

• Assess the effectiveness of Graph Neural Net-
work (GNN) models combined with a CRF
layer in leveraging the syntactic information
encoded in the constituency tree representa-
tion (Sections 4, 5, and 6).

2 Related Works

Argumentation Theory The precise definition
of the concept of argument is an important step
when creating dataset annotation rules. The identi-
fication of argument is strongly related to the dis-
course structure of the text and the identification
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Figure 1: Constituency tree representation of the sentence, according to the Universal POS tags categories (where
we limit the depth of the tree to 3): "However, when adjusted for inflation, the new federal minimum is still less
than the minimum wage through most of the period from 1961 to 1981." from the AURC dataset. The green nodes
represents words or spans with "PRO" label and the grey nodes represents words and spans with "NON" label.

of Elementary Discourse Units. As introduced in
the Rhetorical Structure Theory (RST) by Mann
and Thompson (1987), the Elementary Discourse
Units (EDU) refers to a minimal unit of meaning
within a larger discourse or conversation. It rep-
resents a self-contained piece of information that
contributes to the overall structure and coherence
of a discourse. A non-elementary Discourse Unit
(DU) is called a complex discourse unit (CDU).
The structure of a document is the set of linked
DUs. As presented by Jo et al. (2019), Argument
Discourse Unit (ADU) are units of meaning that
contribute to the development and presentation of
an argumentative structure. ADUs typically con-
tain propositions, claims, evidence, or reasoning
that support or challenge a particular standpoint or
claim.

In practical applications, while certain studies
rely on the annotator’s judgment to determine the
boundary of an ADU, many studies prefer to utilize
a set of syntactic rules as a foundation (Stede and
Taboada). This approach is favored because em-
ploying syntactic structure for annotating a sizable
corpus at the token level is comparatively easier
(Carlson and Marcu).

Tree Structure Representation in Natural Lan-
guage Processing (NLP) Substantial evidence
(Crain and Nakayama, 1987) supports the hypothe-
sis that semantic interpretation of sentences by hu-
mans involves a tree-structured, hierarchical com-
putation, where smaller constituents recursively
combine into larger constituents, until we reach the
full sentence.

In NLP, pioneer work (Gildea and Palmer, 2002)
presenting the benefits of using constituency tree
representation has failed to scale into production.
According to the authors, this is caused by the lack
of a reliable model to generate constituency tree
representation of the sentences. However, recent

promising results (Zhang, 2020) were made in con-
sistency and dependency parsing.

Other papers have recently studied the use of
tree structure to incorporate syntactic information
to their models. Marcheggiani and Titov (2017)
uses Graph Convolutional Networks (GCNs) based
on the dependency tree structure of the sentence
for semantic role labeling. Beck et al. (2018) uses
GNNs for generation tasks from abstract mean-
ing representation. Recently, Murty et al. (2022)
demonstrate that for some tasks, transformers mod-
els become more "tree-like" over the course of train-
ing and in some cases unsupervisedly recovering
the same trees as supervised parsers. Showing the
importance of constituency tree in the learning pro-
cess of the Transformers models.

Segmentation of argumentative units in texts has
been explored in Ajjour et al.. The research indi-
cates that both structural and semantic features are
pivotal for segmenting argument units across var-
ious domains. However, within specific domains,
semantic features stand out as the most effective
for identifying the boundaries of these units.

3 Evaluation of the node similarity

In the subsequent section, we evaluate the effec-
tiveness of utilizing the constituency tree repre-
sentation for capturing the structural attributes of
arguments within sentences. In Subsection 3.2, we
introduce three metrics to assess the proximity of
nodes in the tree concerning their argumentative
label. Additionally, in Subsection 3.3, we propose
modifications to the tree to enhance its suitability
for argument recognition.

3.1 Experimental Setup

Our experimental setup involves the utilization of
four argument datasets: ARG2020 (Alhindi and
Ghosh, 2021), AURC (Trautmann et al., 2020),
CDCP (Park and Cardie, 2018), and UKP (Stab
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and Gurevych, 2014) (detailed in subsection 5.1).
These datasets share a common characteristic, as
they are all annotated at the token level, meaning
that each word in the sentences is assigned a la-
bel. To represent the sentences in the datasets as
constituency trees, we employ the Berkeley Neu-
ral Parser (BENEPAR) (Kitaev and Klein, 2018),
which is introduced in subsection 5.2. As a brief
reminder, in the context of a constituency tree, a
node without any children is referred to as a "leaf,"
while an "Interior Node (IN)" is a node that has
child nodes.

As the labels for the interior nodes (IN) of the
constituency tree were not initially provided, we
made the decision to annotate these interior nodes
following the same labeling rules utilized in the
AURC (presented in 5.1) for sentence labeling. Our
approach prioritizes the "no argument" label as less
significant compared to the others, selecting the
more predominant label among the remaining op-
tions. This strategy enables us to effectively learn
the representation of IN nodes while ensuring con-
sistency with the sentence-level labeling annota-
tions.

3.2 Label proximity computation
One of the main advantages of adding a con-
stituency tree to argument identification methods
is the greater proximity of words that belong to the
same grammatical class. In this section, we aim to
validate the intuition that words belonging to the
same grammatical class have more often the same
label than words that are only neighbours in the
sense of the linear representation of the sentence.

We have established three metrics to evaluate
the suitability of employing the constituency tree
representation for argument unit recognition. The
three proportions computed, summarized in Table
1 and illustrated in Figure 2, are the following.

• Leaf-Leaf similarity metric: This refers to
the ratio of nodes in a linear chain sentence
(Table 1 column 3) representation that have
both the same label and are adjacent to each
other. In the cases where a constituency tree
representation is available (Table 1 columns 4,
5, 6), we further narrow down this set of nodes
to those that not only share the same label but
also have the same parent node (illustrated in
color red of Figure 2).

• Leaf-IN similarity metric: Only when a con-
stituency tree representation is available (Ta-

ble 1 columns 4, 5, 6), this indicates the pro-
portion of leaf nodes that share the same label
as their corresponding parent node (illustrated
in color blue of Figure 2).

• IN-IN similarity metric: Only when a con-
stituency tree representation is available (Ta-
ble 1 columns 4, 5, 6), this measures the ratio
of interior nodes that are connected by an edge
and have the same label (illustrated in color
orange of Figure 2).

The Leaf-Leaf metric tends to favor deeper trees,
as deeper trees contain neighboring nodes that
belong to finer grammatical categories and the
same Argumentative Discourse Unit (ADU). How-
ever, an excessively deep tree is not desirable as
it reduces the proximity between parent and child
nodes. Metrics 2 and 3 are used to address this
bias.

Indeed, regarding the Leaf-Leaf metric, we ob-
serve a stronger proximity between neighboring
words within the same grammatical class com-
pared to neighboring words when the grammatical
structure is not considered. Additionally, the con-
stituency tree with a maximum depth of 4 exhibits
greater node similarity than the tree with a maxi-
mum depth of 2 or 3. As for the other two metrics,
when the tree becomes too deep, the distance be-
tween words of the same grammatical class may
become longer than that between words of differ-
ent grammatical classes. This leads us to impose a
limit on the maximum allowed tree depth. Setting
a depth cap at 4 may not necessarily be the best
choice, as the constituency tree with a maximum
depth of 3 demonstrates better results concerning
grammatical class similarity. In conclusion, these
findings prompt us to experiment with a maximum
depth of 3 for our models.

3.3 Fine grained stats
In this section, we explore the possibility of trans-
forming the constituency tree to better align it with
grammatical structures, with the aim of reducing
tree complexity while maintaining its ability to seg-
ment into Argumentative Discourse Units (ADUs).
To achieve this, we consider the grammatical class
of nodes and identify those that exhibit higher co-
herence with the ADU segmentation. In practical
terms, this involves examining the grammatical la-
bels of linked nodes to determine whether parent
and child nodes share the same label or differ in
nature.
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Metrics Dataset No tree Depth 2 Depth 3 Depth 4
With Constituency tree

Leaf-Leaf similarity

ARG2020 95.4 % 97.9% 98.2 % 98.6 %
AURC 97.1 % 98.3% 98.4% 98.6 %
CDCP 97.8 % 99.6 % 99.7 % 99.7 %
UKP 91.9 % 97.9% 97.9% 98.3 %

Leaf-IN similarity

ARG2020 // 91.8% 92.9 % 59.2%
AURC // 90.2% 91.3% 84.2%
CDCP // 98.1% 98.7 % 68.9%
UKP // 89.2 % 89.7 % 49.8%

IN-IN similarity

ARG2020 // 91.7% 95.1% 88.3%
AURC // 88.5% 93.3% 92.9%
CDCP // 96.4% 97.8% 90.4%
UKP // 85.1 % 92.1% 84.3%

With reduced Constituency tree

Leaf-Leaf similarity

ARG2020 // // 98.2 % 98.6%
AURC // // 98.4% 98.6%
CDCP // // 99.8% 99.7%
UKP // // 97.8% 98.3%

Leaf-IN similarity

ARG2020 // // 93 % 59.2%
AURC // // 91.4% 84.2%
CDCP // // 98.8% 68.7%
UKP // // 90% 50%

IN-IN similarity

ARG2020 // // 95 % 88.3%
AURC // // 93.4% 92.9%
CDCP // // 97.8% 90.1%
UKP // // 92.1% 84.4%

Table 1: Assessment of three measures to evaluate the suitability of the constituency tree representation. The first
section of the table examines the evaluation of the constituency tree with varying the maximum depths allowed for
the tree, while the second section focuses on the assessment of the tree reduction method from Subsection 3.3.

Table 2 provides a snapshot of the statistics ob-
served in the datasets for the most common gram-
matical classes present in the constituency trees.
We observe significant differences across the stud-
ied datasets. The argumentation structure in the
AURC and CDCP datasets align more closely with
the syntactic structure, compared to the UKP and
ARG2020 datasets. This is consistent with the fact
that the CDCP and AURC datasets are both online
feedback datasets and UKP and ARG2020 are both
student essays datasets.

When a particular constituency class consistently
shares the same grammatical label as its children,
it indicates coherence with the grammatical struc-
ture. In such cases, our reduction method involves
simplifying the tree structure by grouping all its
children and removing the intermediate interior
node. In practice, we establish a threshold. If the
ratio of identical labels exceeds this threshold as

outlined in Table 2, we simplify the structure at
this level. This adjustment reduces tree complexity
while preserving the fact that words sharing the
same parent node are more likely to have the same
grammatical label.

For a tangible illustration based on Table 2, con-
sider the AURC dataset where the tag "NML", rep-
resenting nominal modifiers, has a ratio of 97%.
This indicates that 97% of the time, its child ele-
ments bear the same labels. Given that a nominal
modifier is a noun that adjusts another noun (effec-
tively functioning as an adjective) it makes sense
for them to share the same labels. Therefore, sim-
plifying the structure to retain only the parent node
"NML" and treating all the leaf nodes below it as its
direct children appears to be an effective strategy.

The latter part of Table 1 illustrates the updated
proximity statistics after the tree transformation.
We observe that the three metrics are preserved
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Figure 2: Visualization of the label proximity metrics on the constituency tree representation of the sentence:
"However, when adjusted for inflation, the new federal minimum is still less than the minimum wage through most
of the period from 1961 to 1981." from the AURC dataset. The blue arrows represent the edges analyzed for the
Leaf-IN metric, the orange arrows for the IN-IN metric, and the red arrows for the Leaf-Leaf metric.

across all four datasets. We can thus reduce the
complexity of the constituency tree in order the
accelerate the training process of the models while
hoping to preserve its capacity. We will evaluate
this assumption in Section 5 and 6.

4 Presentation of our Model

In this section, we present a detailed overview of
the architecture and components of our proposed
model for argument unit recognition.

4.1 Baseline: Linear chain approach
The reference model, to which our model will be
compared, has been introduced by Trautmann et al.
(2020). It is composed of two modules. In the
first module, the sentence is tokenized following
the BERT tokenizer and the BERT model is fine-
tuned for token classification, where the output of
the last layer matches the number of classes of
the dataset. In the second module, a linear chain
Conditional Random Field (Lafferty et al., 2001)
is applied to estimate the probability of each la-
bel class. The main intuition of this model is to
leverage the BERT LLM "semantic knowledge"
and then to improve the results by incorporating a
linear chain dependency structure for the syntactic
part. This takes advantage of neighbours depen-
dency relations between words. The good results
of this model lead us to use it as a competitive
benchmark for our approach based on constituency
trees as input representations of sentences.

4.2 Our model: Graph Neural Network
approach

A major difficulty in choosing a graph neural layer
architecture is that each sentence has a different tree
representation. Hence, the model needs to be ag-
nostic to the lack of completeness of the tree struc-

tures from the dataset. The message passing design
enables to share the model weights among the net-
work nodes, thus the results do not depend on the
upfront global tree structure access. The Graph
Attention Layer (GAT) (Veličković et al., 2018) al-
lows to combine the attention mechanism with the
graph structure in a message passing design, pre-
serving the syntactic structural information of the
sentence. In order to improve the model stability,
adding multi-head attention layers is beneficial to
the training step. The different heads are then ag-
gregated in order to provide the next hidden states
of the neural network. To leverage the dependency
structure of the sentence, we integrate a multi-layer
GAT (Graph Attention Network) model between
the BERT module and the linear chain CRF. For
the CRF, we use the implementation from (Gard-
ner et al., 2017), which was present in the baseline
model. The idea behind this architecture is the fol-
lowing. The GAT model outputs the probability
of each label for each node in the graph. When
subsequently employing a linear chain CRF, we
retain only the leaf nodes to represent the sentence
in a traditional linear chain format. As illustrated
in Figure 3, first, the BERT language model out-
puts the sentence hidden representation. Next, the
information is spread to the graph neighbours at
each iteration. In that way, we expect to reach a
better consistency between neighbour nodes when
we train on a restricted dataset.

5 Experimental Setup

In the next sections, we present a comprehensive
evaluation of our proposed model for argument unit
recognition using constituency tree representations
and GNNs with a CRF layer. We compare the per-
formance of our model against existing approaches
and analyze its effectiveness in capturing syntactic
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Dataset Parent node type Number of same labels Number of different labels ratio

ARG2020

VP 25710 13911 65 %
NP 18414 9767 65 %
S 28169 14325 66%

PP 9744 4097 68 %
SBAR 8545 5099 63 %
ADJP 1293 753 63 %
NML 182 101 64%
ADVP 344 211 62 %

AURC

VP 30342 3274 90 %
NP 29792 2279 93 %
S 28202 9181 75 %

PP 12878 1173 92 %
SBAR 9474 2517 79 %
ADJP 2316 269 90 %
NML 638 22 97 %
ADVP 411 58 88 %

CDCP

VP 4112 1623 72 %
NP 2608 840 76 %
S 3960 1371 74 %

PP 1253 386 76 %
SBAR 1607 725 69 %
ADJP 202 49 80 %
NML 48 13 79 %
ADVP 81 27 75 %

UKP

VP 25266 15789 61 %
NP 17147 12534 57 %
S 29179 23857 55 %

PP 8952 7265 55 %
SBAR 8210 6498 56 %
ADJP 1400 1276 52 %
NML 106 94 53 %
ADVP 519 440 54 %

Table 2: Extracts from the metrics of Evaluation of fine grained stats. We present only the parent nodes that appear
most frequently in the training dataset.

information from the constituency tree.
First, we describe the experimental setup and

datasets used for evaluation

5.1 Data Source

ARG2020 (Alhindi and Ghosh, 2021) is an argu-
ment mining corpus annotated with argumentative
structure composed of "claims" and "premises". It
is composed of 145 English argumentative essays
selected through the Writing Mentor Educational
App. It is based on middle school students writ-
ing. The claims is defined as a potentially arguable
statement that indicates a person is arguing for or
arguing against something. The premises is de-

fined as the reasons given by either for supporting
or attacking the claims.

Argument Unit Recognition and Classification
(AURC) (Trautmann et al., 2020) is a corpus for
argument mining that includes annotations for ar-
gumentative structure information, capturing the
polarity of arguments on a given topic. The cor-
pus consists of 8000 sentences, evenly distributed
across 8 topics. The authors distinguished between
PRO (supporting), CON (opposing) arguments, and
NON (non-argumentative) words for each topic, in
order to construct sentence-level labels. Their la-
beling rule is as follows: if only NON words occur,
the sentence is labeled as NON. If both NON and
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Figure 3: Illustration of the model architecture on an example of a sentence. We present the three distinct modules
composing the model with their associated input/output. The colored node after the Graph Neural Network refers to
the nodes where the label predicted in "PRO", this phrase is taken from the AURC dataset. The Ex refers to the
embeddings from the BERT model, the interior nodes are initialized with the 0 vector.

only PRO (or only CON) words occur, the label
PRO (or CON) is assigned. If both PRO and CON
words occur, the label that appears more frequently
is assigned. In (Trautmann et al., 2020), the authors
distinguish between "in-domain" settings, where
the domain of the arguments is present in both the
training and test datasets, and "cross-domain" set-
tings, where the domains in the test dataset are not
found in the training dataset. In our experiments,
we focus solely on the "in-domain" scenario.

The Cornell eRulemaking Corpus (CDCP)
(Park and Cardie, 2018) is a corpus for argument
mining that includes annotations for argumenta-
tive structure information, specifically capturing
the evaluability of arguments. The corpus com-
prises 731 user comments on the Consumer Debt
Collection Practices rule issued by the Consumer
Financial Protection Bureau. The resulting dataset
contains a total of 4931 elementary unit annotations
and 1221 support relation annotations.

Argument Annotated Essays corpus (UKP)
consists of a collection of persuasive essays gath-
ered by (Stab and Gurevych, 2014). This essay

corpus is equipped with annotations of argument
components at the clause level, as well as argumen-
tative relations. Specifically, it includes annotations
for major claims, claims, and premises, which are
interconnected through argumentative support and
attack relations. The corpus was annotated by three
raters, achieving an inter-annotator agreement of
alpha = 0.72 for argument components and alpha
= 0.81 for argumentative relations. In total, the
corpus consists of 90 essays containing 1673 sen-
tences.

The models are trained individually on each of
the four datasets, conforming to the respective label
schemes they offer. For comparison with the base-
line, we adhere to the train-test splits presented in
the original datasets’ experiments when available.
In cases where these are not provided, we employ
a random sampler to allocate 20% of the sentences
for testing and 80% for training. Subsequently, the
sentences are segmented into chunks of 64 tokens
each.

5.2 Constituency tree construction
One of the main advantages of incorporating a
constituency tree into traditional methods is the
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Test Intervals Best values Relative parameters importance
Learning rate 10−5 to 10−3 2.8 · 10−5 30 %
Maximum gradient allowed 10−1 to 102 9.7 49 %
Number of GAT layers 1 to 3 2 2 %
Number of unit per GAT layers 50 to 300 290 and 100 2 %
Number of heads per GAT layers 1 to 3 3 and 3 7 %
Number of linear layers 1 to 3 2 5 %
Number of unit per linear layers 50 to 250 100 and 100 5 %

Table 3: Feature importance of the BERT-GAT-CRF model with Constituency Tree evaluate on the AURC evaluation
dataset.

AURC CDCP ARG2020 UKP
BERT 68 % 80 % 75 % 81 %
BERT - CRF 69 % 81 % 75.5 % 81.6 %
BERT - GAT 64 % 75.5 % 75.2 % 79.3 %
BERT - GAT - CRF with Constituency Tree 72.8 % 81.5 % 76.1 % 82.8 %
BERT - GAT - CRF with Reduced Constituency Tree 73.2 % 83.1 % 75.9 % 81.4 %

Table 4: F1-score of the different models at token level on the test dataset.

increased proximity of words belonging to the
same grammatical class compared to words that
are merely adjacent in a linear sentence represen-
tation. This can be further illustrated by referring
to the constituency tree depicted in Figure 1. In
this sentence, the distribution of ADUs aligns with
the grammatical structure of the sentence. For in-
stance, although the words "inflation" and "the"
are neighboring words in the sentence, they are
positioned further apart in the constituency tree
structure. This leads to improved identification of
boundaries between ADUs.

For our preprocessing step, we employed a
neural network model called the Berkeley Neu-
ral Parser (BENEPAR) (Kitaev and Klein, 2018),
which has been trained on 11 different languages
and is available with Spacy and works with GPUs.
We utilized the weights provided by the model’s
development team for our experimentation.

5.3 Hyperparameters Optimization

The BERT-GAT-CRF model has a significantly
larger number of hyperparameters compared to the
BERT-CRF model. This is primarily attributed to
the extensive hyperparameters associated with the
GAT, such as the number of layers, units per layer,
and number of heads. To determine the optimal
hyperparameters for this model, we employed the
Optuna library (Akiba et al., 2019). Optuna is a
framework specifically designed for efficient hyper-
parameter optimization. To evaluate the relative im-

portance of different hyperparameters in our model,
we conducted experiments on the AURC dataset
and presented the results in Table 3. Notably, we
observed that the most influential hyperparameters
are the learning rate and the maximum gradient
value allowed. Empirically, we found that uncon-
strained gradients led the model to converge to a
local optimum, where the label "NO" was assigned
to every word. This local optimum emerges due to
the dataset’s imbalance, which tends to favor the
absence of arguments.

6 Models Evaluation

6.1 Results Presentation

While the original paper by Trautmann et al. (2020)
introduced metrics such as token level, span level,
and sentence level, our focus lies primarily on im-
proving argument border recognition rather than
argument stance identification. Consequently, our
model excels in token-level performance, showcas-
ing superior results. However, our model achieves
comparable outcomes at the sentence and span lev-
els.

The results pertaining to token-level classifica-
tion are outlined in Table 4. In accordance with
the insights from Table 1, we computed our models
with a maximum depth of 3. Our best-performing
model consists of BERT-GNN-CRF with Reduced
Constituency Tree. These outcomes highlight the
significant advancements achieved by our proposed
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model in argument unit recognition. By leverag-
ing the constituency tree representation, integrating
GNNs and CRF, and incorporating reduced con-
stituency trees, our model excels in capturing the
intricacies of argument structures.

7 Conclusion

In conclusion, this research study introduces a
novel method for identifying the boundary of
ADUs using the sentence constituent tree represen-
tation. Our model effectively spreads information
across the graph and achieves promising results on
a small dataset.

Previously identified errors in these datasets
include the incorrect recognition of argumenta-
tive segment spans and inaccurate classification
of stances. In this study, we focus on improving the
span detection problem and successfully enhance
the method for identifying ADU boundaries.

However, it is worth noting that some argument
mining datasets does not strictly adhere to gram-
matical correctness, as noted in (Trautmann et al.,
2020). This limitation arises from sentences where
subjects are absent, which hampers the perfor-
mance of models relying solely on grammatical
structure. This issue could be resolved by devis-
ing annotation rules that more strictly align with
the syntactic structure of sentences. Furthermore,
the second type of error, which pertains to posi-
tion identification, is primarily attributed to the
limitations of the BERT model. The dataset only
provides sentences with a maximum length of 64,
thereby restricting the available context for ADUs
and impeding our model’s capability. Many argu-
ments require deeper domain knowledge to fully
comprehend the underlying issues.
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Abstract

We propose a re-ranking approach to improve
the retrieval effectiveness for non-factual com-
parative queries like ‘Which city is better, Lon-
don or Paris?’ based on whether the results
express a stance towards the comparison ob-
jects (London vs. Paris) or not. Applied to
the 26 runs submitted to the Touché 2022 task
on comparative argument retrieval, our stance-
aware re-ranking significantly improves the re-
trieval effectiveness for all runs when perfect
oracle-style stance labels are available. With
our most effective practical stance detector
based on GPT-3.5 (F1 of 0.49 on four stance
classes), our re-ranking still improves the effec-
tiveness for all runs but only six improvements
are significant. Artificially “deteriorating” the
oracle-style labels, we further find that an F1
of 0.90 for stance detection is necessary to sig-
nificantly improve the retrieval effectiveness
for the best run via stance-aware re-ranking.

1 Introduction

Argument retrieval is the task of identifying and
ranking text passages or documents based on their
topical relevance to an argumentative query and
based on their argumentativeness (i.e., the pres-
ence and quality of arguments). Current argument
search engines like args.me (Wachsmuth et al.,
2017) or ArgumenText (Stab et al., 2018) mainly
focus on retrieving pro and con arguments on so-
cially relevant and potentially controversial topics
like ‘nuclear energy’ or ‘plastic bottles’ but they
do not directly target to find pros and cons for the
different options in “everyday” non-factual compar-
isons like ‘Which city is better, London or Paris?’.

Such information needs were in the focus of
the comparative argument retrieval task at the
Touché 2022 lab (Bondarenko et al., 2022b). Given
a query with two comparison objects (e.g., the Lon-
don vs. Paris example), the goal was to retrieve
results that contain arguments for or against either
object. Many participants of the task improved over

a BM25 baseline (Robertson et al., 1994) by using
neural (re-)ranking models like ColBERT (Khattab
and Zaharia, 2020) or mono- and duoT5 (Pradeep
et al., 2021), and by taking estimated argument
quality into account. Still, none of the participants
successfully exploited stance information for the
ranking (i.e., whether a result expresses a stance on
the comparison objects or not) even though stance
detection was also offered as a subtask at Touché.

We close this gap and, as our first contribution,
suggest a simple stance-aware re-ranking approach
that can be applied to the retrieval results for any
comparative query: rank documents that do not ex-
press a stance on the comparison objects below any
documents that do. In an evaluation on the 26 runs
submitted to the Touché 2022 task, we find that our
re-ranking significantly improves the retrieval ef-
fectiveness of all runs when using the task’s official
ground truth stance labels (i.e., assuming a “per-
fect” oracle-style stance detector). When instead
using the participants’ stance predictions, hardly
any run’s effectiveness can be improved as the par-
ticipants’ stance detectors are not effective enough
(F1 ≤ 0.31 on the four classes ‘pro first object’, ‘pro
second object’, ‘both equal’, and ‘no stance’).

As our second contribution, we thus target
a better practical stance detection effectiveness
and compare three approaches: (1) a fine-tuned
sentiment-prompted RoBERTa model (Liu et al.,
2019), (2) a zero-shot stance detector based on a
pre-trained Flan-T5 model (Chung et al., 2022),
and (3) GPT-3.5 (Brown et al., 2020) with few-
shot prompting. Among these, the GPT-3.5-based
stance detector is the most effective with an F1
of 0.49. Using the stances detected with GPT-3.5,
our stance-aware re-ranking can again improve the
retrieval effectiveness of all 26 runs but only 6 of
the improvements (23%) are significant. In fur-
ther experiments, we artificially perturb the ground
truth stance labels to analyze what stance detection
effectiveness is necessary to significantly improve
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the retrieval effectiveness of the best run via stance-
aware re-ranking and find that an F1 of 0.90 is re-
quired. Our code and data are publicly available.1

2 Re-Ranking Scenario: Touché 2022

Our re-ranking scenario is that of the Touché 2022
shared task on comparative argument retrieval.
Given one of 50 non-factual comparative queries,
relevant text passages from a collection of about
one million passages should be retrieved and
ranked, and (optionally) their stances be detected.
For our experiments, we use the 26 runs (ranked
lists of results) submitted to the task, as well as the
relevance + quality assessments and the stance la-
bels that the task organizers provided (Bondarenko
et al., 2022b). In the task, the retrieval effective-
ness of the submitted runs was evaluated using
nDCG@5 (Järvelin and Kekäläinen, 2002) for top-
ical relevance and for argument quality, and the
stance detection effectiveness was evaluated using
macro-avg. F1 on the four stance classes.

3 Stance-Aware Re-Ranking

Interestingly, none of the Touché participants suc-
cessfully used stance information in their retrieval
approaches. This is somewhat surprising as, in-
tuitively, helpful retrieval results for non-factual
comparative queries should express some stance to-
wards the comparison objects (either favoring one
of the objects or stating that both are equal). Our
suggested re-ranking approach thus simply moves
all results that do not express a stance to the end
of a ranking (i.e., below any result that expresses a
stance), while preserving the relative order of the
documents that express a stance. Table 1 shows
a respective example for a top-5 re-ranking. We
have implemented this stance-aware re-ranking ap-
proach in the PyTerrier framework (Macdonald
et al., 2021) as a module that expects a ranking and
stances for the individual results as inputs.

4 Initial Re-Ranking Experiments

In our initial experiments, we re-rank the top-5 re-
sults of each of the 26 runs submitted to Touché
based on the task’s ground truth stance labels (i.e.,
assuming “perfect” oracle-style stance detection) or
based on the participants’ detected stances. Follow-
ing the Touché setup, we report nDCG@5 scores
for relevance and for quality and refer to the runs by
their team names (e.g., Aldo Nadi or Captain L.).

1Code and data: github.com/webis-de/ArgMining-23

Table 1: Example of our stance-aware re-ranking. Re-
sults with no stance (‘⊥’) are moved below all results
with a stance (‘O1/2’: pro first / second object; ‘=’: both
equal) that keep their original relative ordering.

Approach Rank
1 2 3 4 5

Original run ⊥ O1 ⊥ = O2

Our re-ranking O1 = O2 ⊥ ⊥

4.1 Oracle-Style Stances

To demonstrate the potential of our stance-aware re-
ranking, we first re-rank based on “perfect” stances
from the Touché ground truth. The results in col-
umn ‘Oracle’ of Table 2 show that our re-ranking
then significantly improves almost all nDCG@5
scores—only the improvement of the quality score
of the quality-wise best run (Aldo Nadi A) is not
significant. Interestingly, the scores of the oracle-
style re-ranking often are close to a run’s hypothet-
ical optimal top-5 re-ranking (column ‘Opt.’).

Comparing a run’s rank in the original leader-
board (column ‘#’ in ‘Touché’) to the potential rank
if the oracle-style re-ranking was applied to only
that run (‘#’ in ‘Oracle’; ‘∆’ indicates the rank
change), one can, for instance, observe that the
relevance-wise top-3 runs each could reach rank 1.

4.2 Touché Participants’ Detected Stances

When we re-rank based on the participants’ de-
tected stances, the effectiveness of hardly any run
can be improved (column ‘Orig.’ in Table 2); some
even get worse (e.g., Captain L. B). Compared to
the oracle scenario, the participants’ stance detec-
tion is not effective enough (F1 ≤ 0.31). We thus
aim to improve the practical stance detection.

5 Improving the Stance Detection

Targeting better practical stance detection, we com-
pare three approaches: (1) a fine-tuned sentiment-
prompted RoBERTa model (Liu et al., 2019),
(2) a zero-shot stance detector based on a pre-
trained Flan-T5 model (Chung et al., 2022), and
(3) GPT-3.5 (Brown et al., 2020) with few-shot
prompting. Following Touché, we use macro-
avg. F1 to compare the detection effectiveness (class
distribution: ‘pro first object’ 19%, ‘pro second ob-
ject’ 13%, ‘both equal’ 20%, ‘no stance’ 48%).

For the RoBERTa-based detector, we fine-tune
a RoBERTa model using the sentiment-prompting
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Table 2: Effectiveness (as nDCG@5) of the runs submitted to the Touché 2022 task on comparative argument
retrieval (referred to by their Touché team names) and with our stance-aware re-ranking; originally submitted
(‘Touché’), best achievable when re-ranking the top-5 (‘Opt.’), and after stance-aware re-ranking of the top-5 with:
ground truth stance labels (‘Oracle’), simulated labels with an F1 of about 0.75 (‘Simul.’), stance detected with
GPT-3.5, Flan-T5, or RoBERTa, and with a team’s original detection approach (two teams did not detect stance;
grayed out). The ‘#’ columns denote an approach’s rank in the task leaderboard; for re-rankings, these columns give
the rank the re-ranking would have achieved if all other runs would stay as submitted to Touché. Differences in
effectiveness or rank compared to the originally submitted run are shown in the ‘∆’ columns; statistically significant
effectiveness differences are bold-faced (Student’s t-test, α = 0.05, Bonferroni correction for the multiple tests).

Run Touché Opt. Oracle (F1=1.00) Simul. (F1≈0.75) GPT-3.5 (F1=0.49) Flan-T5 (F1=0.39) RoBERTa (F1=0.34) Orig. (F1≤0.31)

Score # Score Score ∆ # ∆ Score ∆ # ∆ Score ∆ # ∆ Score ∆ # ∆ Score ∆ # ∆ Score ∆ # ∆

Topical relevance

Captain L. B 0.76 1 0.81 0.79 (+0.03) 1 (0) 0.78 (+0.02) 1 (0) 0.78 (+0.02) 1 (0) 0.76 (±0.00) 1 (0) 0.77 (+0.01) 1 (0) 0.75 (−0.01) 2 (↓1)
Captain L. A 0.76 2 0.82 0.79 (+0.03) 1 (↑1) 0.77 (+0.01) 1 (↑1) 0.78 (+0.02) 1 (↑1) 0.76 (±0.00) 1 (↑1) 0.76 (±0.00) 1 (↑1) 0.75 (−0.01) 3 (↓1)
Captain L. D 0.75 3 0.81 0.78 (+0.03) 1 (↑2) 0.77 (+0.02) 1 (↑2) 0.77 (+0.02) 1 (↑2) 0.76 (+0.01) 1 (↑2) 0.75 (±0.00) 3 (0) 0.75 (±0.00) 3 (0)
Captain L. E 0.73 4 0.79 0.75 (+0.02) 4 (0) 0.74 (+0.01) 4 (0) 0.74 (+0.01) 4 (0) 0.72 (−0.01) 4 (0) 0.73 (±0.00) 4 (0) 0.73 (±0.00) 4 (0)
Captain L. C 0.72 5 0.78 0.75 (+0.03) 4 (↑1) 0.75 (+0.03) 4 (↑1) 0.74 (+0.02) 4 (↑1) 0.72 (±0.00) 5 (0) 0.73 (+0.01) 5 (0) 0.72 (±0.00) 5 (0)
Aldo Nadi E 0.71 6 0.77 0.74 (+0.03) 4 (↑2) 0.73 (+0.02) 4 (↑2) 0.72 (+0.01) 6 (0) 0.71 (±0.00) 6 (0) 0.71 (±0.00) 6 (0) 0.71 (±0.00) 6 (0)
Aldo Nadi A 0.70 7 0.75 0.73 (+0.03) 4 (↑3) 0.72 (+0.02) 6 (↑1) 0.70 (±0.00) 7 (0) 0.71 (+0.01) 6 (↑1) 0.70 (±0.00) 7 (0) 0.70 (±0.00) 7 (0)
Aldo Nadi D 0.67 8 0.73 0.70 (+0.03) 7 (↑1) 0.69 (+0.02) 8 (0) 0.68 (+0.01) 8 (0) 0.68 (+0.01) 8 (0) 0.68 (+0.01) 8 (0) 0.67 (±0.00) 8 (0)
Aldo Nadi C 0.64 9 0.70 0.67 (+0.03) 8 (↑1) 0.67 (+0.03) 9 (0) 0.65 (+0.01) 9 (0) 0.64 (±0.00) 9 (0) 0.63 (−0.01) 9 (0) 0.64 (±0.00) 9 (0)
Katana A 0.62 10 0.69 0.65 (+0.03) 9 (↑1) 0.64 (+0.02) 9 (↑1) 0.65 (+0.03) 9 (↑1) 0.63 (+0.01) 10 (0) 0.62 (±0.00) 10 (0) 0.62 (±0.00) 10 (0)
Katana C 0.60 11 0.67 0.64 (+0.04) 9 (↑2) 0.63 (+0.03) 10 (↑1) 0.62 (+0.02) 10 (↑1) 0.61 (+0.01) 11 (0) 0.60 (±0.00) 11 (0) 0.60 (±0.00) 11 (0)
Captain T. A 0.57 12 0.64 0.61 (+0.04) 11 (↑1) 0.61 (+0.04) 11 (↑1) 0.59 (+0.02) 12 (0) 0.58 (+0.01) 12 (0) 0.58 (+0.01) 12 (0) 0.57 (±0.00) 12 (0)
Captain T. B 0.57 13 0.64 0.61 (+0.04) 11 (↑2) 0.59 (+0.02) 12 (↑1) 0.58 (+0.01) 12 (↑1) 0.57 (±0.00) 13 (0) 0.57 (±0.00) 13 (0) 0.57 (±0.00) 13 (0)
Captain T. C 0.56 14 0.62 0.59 (+0.03) 12 (↑2) 0.58 (+0.02) 12 (↑2) 0.57 (+0.01) 13 (↑1) 0.57 (+0.01) 14 (0) 0.56 (±0.00) 15 (↓1) 0.56 (±0.00) 14 (0)
Katana B 0.56 15 0.63 0.60 (+0.04) 11 (↑4) 0.59 (+0.03) 12 (↑3) 0.58 (+0.02) 12 (↑3) 0.56 (±0.00) 16 (↓1) 0.56 (±0.00) 15 (0) 0.56 (±0.00) 15 (0)
Captain T. E 0.56 16 0.64 0.60 (+0.04) 12 (↑4) 0.59 (+0.03) 12 (↑4) 0.58 (+0.02) 12 (↑4) 0.57 (+0.01) 14 (↑2) 0.56 (±0.00) 16 (0) 0.56 (±0.00) 16 (0)
Aldo Nadi B 0.55 17 0.61 0.58 (+0.03) 12 (↑5) 0.57 (+0.02) 14 (↑3) 0.56 (+0.01) 16 (↑1) 0.55 (±0.00) 17 (0) 0.55 (±0.00) 17 (0) 0.55 (±0.00) 17 (0)
Captain T. D 0.54 18 0.61 0.58 (+0.04) 12 (↑6) 0.56 (+0.02) 16 (↑2) 0.56 (+0.02) 16 (↑2) 0.54 (±0.00) 18 (0) 0.54 (±0.00) 18 (0) 0.54 (±0.00) 18 (0)
Olivier A. A 0.48 19 0.57 0.55 (+0.07) 17 (↑2) 0.53 (+0.05) 19 (0) 0.52 (+0.04) 19 (0) 0.50 (+0.02) 19 (0) 0.51 (+0.03) 19 (0) 0.49 (+0.01) 19 (0)
Puss in B. A 0.47 20 0.55 0.52 (+0.05) 19 (↑1) 0.50 (+0.03) 19 (↑1) 0.49 (+0.02) 19 (↑1) 0.47 (±0.00) 20 (0) 0.47 (±0.00) 20 (0) 0.47 (±0.00) 20 (0)
Grimjack E 0.42 21 0.48 0.46 (+0.04) 21 (0) 0.45 (+0.03) 21 (0) 0.44 (+0.02) 21 (0) 0.42 (±0.00) 21 (0) 0.43 (+0.01) 21 (0) 0.42 (±0.00) 21 (0)
Grimjack C 0.38 22 0.46 0.44 (+0.06) 21 (↑1) 0.41 (+0.03) 22 (0) 0.41 (+0.03) 22 (0) 0.39 (+0.01) 22 (0) 0.40 (+0.02) 22 (0) 0.38 (±0.00) 22 (0)
Grimjack B 0.38 23 0.46 0.44 (+0.06) 21 (↑2) 0.42 (+0.04) 22 (↑1) 0.41 (+0.03) 22 (↑1) 0.39 (+0.01) 22 (↑1) 0.40 (+0.02) 22 (↑1) 0.38 (±0.00) 23 (0)
Grimjack D 0.35 24 0.41 0.38 (+0.03) 22 (↑2) 0.36 (+0.01) 24 (0) 0.36 (+0.01) 24 (0) 0.35 (±0.00) 24 (0) 0.35 (±0.00) 24 (0) 0.35 (±0.00) 24 (0)
Grimjack A 0.34 25 0.43 0.40 (+0.06) 22 (↑3) 0.38 (+0.04) 22 (↑3) 0.38 (+0.04) 22 (↑3) 0.37 (+0.03) 24 (↑1) 0.37 (+0.03) 24 (↑1) 0.34 (±0.00) 25 (0)
Asuna A 0.26 26 0.34 0.32 (+0.06) 26 (0) 0.30 (+0.04) 26 (0) 0.28 (+0.02) 26 (0) 0.27 (+0.01) 26 (0) 0.27 (+0.01) 26 (0) 0.26 (±0.00) 26 (0)

Argument quality

Aldo Nadi A 0.77 1 0.83 0.80 (+0.03) 1 (0) 0.78 (+0.01) 1 (0) 0.78 (+0.01) 1 (0) 0.78 (+0.01) 1 (0) 0.78 (+0.01) 1 (0) 0.77 (±0.00) 1 (0)
Aldo Nadi C 0.76 2 0.81 0.79 (+0.03) 1 (↑1) 0.78 (+0.02) 1 (↑1) 0.77 (+0.01) 2 (0) 0.76 (±0.00) 2 (0) 0.76 (±0.00) 2 (0) 0.76 (±0.00) 2 (0)
Aldo Nadi E 0.75 3 0.80 0.77 (+0.02) 2 (↑1) 0.77 (+0.02) 2 (↑1) 0.75 (±0.00) 3 (0) 0.74 (−0.01) 3 (0) 0.75 (±0.00) 3 (0) 0.75 (±0.00) 3 (0)
Captain L. B 0.74 4 0.82 0.77 (+0.03) 2 (↑2) 0.77 (+0.03) 2 (↑2) 0.77 (+0.03) 2 (↑2) 0.76 (+0.02) 3 (↑1) 0.75 (+0.01) 3 (↑1) 0.74 (±0.00) 5 (↓1)
Captain L. A 0.74 5 0.82 0.77 (+0.03) 2 (↑3) 0.77 (+0.03) 2 (↑3) 0.77 (+0.03) 2 (↑3) 0.76 (+0.02) 3 (↑2) 0.75 (+0.01) 3 (↑2) 0.74 (±0.00) 5 (0)
Captain L. D 0.73 6 0.79 0.75 (+0.02) 4 (↑2) 0.74 (+0.01) 4 (↑2) 0.75 (+0.02) 3 (↑3) 0.75 (+0.02) 4 (↑2) 0.73 (±0.00) 6 (0) 0.73 (±0.00) 6 (0)
Captain L. E 0.71 7 0.76 0.73 (+0.02) 7 (0) 0.72 (+0.01) 7 (0) 0.72 (+0.01) 7 (0) 0.72 (+0.01) 7 (0) 0.71 (±0.00) 7 (0) 0.71 (±0.00) 7 (0)
Captain L. C 0.70 8 0.77 0.72 (+0.02) 7 (↑1) 0.71 (+0.01) 7 (↑1) 0.72 (+0.02) 7 (↑1) 0.70 (±0.00) 8 (0) 0.70 (±0.00) 8 (0) 0.70 (±0.00) 8 (0)
Aldo Nadi D 0.66 9 0.73 0.69 (+0.03) 9 (0) 0.68 (+0.02) 9 (0) 0.68 (+0.02) 9 (0) 0.67 (+0.01) 9 (0) 0.68 (+0.02) 9 (0) 0.66 (±0.00) 9 (0)
Katana C 0.64 10 0.71 0.67 (+0.03) 9 (↑1) 0.68 (+0.04) 9 (↑1) 0.66 (+0.02) 9 (↑1) 0.66 (+0.02) 10 (0) 0.65 (+0.01) 10 (0) 0.64 (±0.00) 10 (0)
Katana A 0.64 11 0.72 0.68 (+0.04) 9 (↑2) 0.67 (+0.03) 9 (↑2) 0.67 (+0.03) 9 (↑2) 0.66 (+0.02) 10 (↑1) 0.65 (+0.01) 10 (↑1) 0.64 (±0.00) 11 (0)
Katana B 0.64 12 0.70 0.67 (+0.03) 9 (↑3) 0.66 (+0.02) 9 (↑3) 0.66 (+0.02) 10 (↑2) 0.64 (±0.00) 12 (0) 0.64 (±0.00) 11 (↑1) 0.64 (±0.00) 12 (0)
Captain T. E 0.60 13 0.67 0.63 (+0.03) 13 (0) 0.62 (+0.02) 13 (0) 0.62 (+0.02) 13 (0) 0.61 (+0.01) 13 (0) 0.60 (±0.00) 13 (0) 0.60 (±0.00) 13 (0)
Captain T. B 0.59 14 0.65 0.62 (+0.03) 13 (↑1) 0.61 (+0.02) 13 (↑1) 0.61 (+0.02) 13 (↑1) 0.60 (+0.01) 13 (↑1) 0.59 (±0.00) 14 (0) 0.59 (±0.00) 14 (0)
Captain T. A 0.59 15 0.65 0.62 (+0.03) 13 (↑2) 0.62 (+0.03) 13 (↑2) 0.61 (+0.02) 13 (↑2) 0.60 (+0.01) 14 (↑1) 0.59 (±0.00) 15 (0) 0.59 (±0.00) 15 (0)
Captain T. C 0.58 16 0.64 0.61 (+0.03) 13 (↑3) 0.60 (+0.02) 13 (↑3) 0.60 (+0.02) 13 (↑3) 0.59 (+0.01) 15 (↑1) 0.58 (±0.00) 16 (0) 0.58 (±0.00) 16 (0)
Olivier A. A 0.57 17 0.65 0.62 (+0.05) 13 (↑4) 0.61 (+0.04) 13 (↑4) 0.61 (+0.04) 13 (↑4) 0.59 (+0.02) 16 (↑1) 0.59 (+0.02) 15 (↑2) 0.58 (+0.01) 17 (0)
Aldo Nadi B 0.57 18 0.63 0.60 (+0.03) 13 (↑5) 0.58 (+0.01) 16 (↑2) 0.58 (+0.01) 17 (↑1) 0.58 (+0.01) 17 (↑1) 0.58 (+0.01) 16 (↑2) 0.57 (±0.00) 18 (0)
Captain T. D 0.57 19 0.65 0.61 (+0.04) 13 (↑6) 0.60 (+0.03) 13 (↑6) 0.59 (+0.02) 15 (↑4) 0.58 (+0.01) 17 (↑2) 0.57 (±0.00) 17 (↑2) 0.57 (±0.00) 19 (0)
Puss in B. A 0.48 20 0.54 0.51 (+0.02) 20 (0) 0.49 (+0.01) 20 (0) 0.49 (+0.01) 20 (0) 0.49 (+0.01) 20 (0) 0.50 (+0.02) 20 (0) 0.48 (±0.00) 20 (0)
Grimjack E 0.40 21 0.47 0.44 (+0.04) 21 (0) 0.42 (+0.02) 21 (0) 0.42 (+0.02) 21 (0) 0.41 (+0.01) 21 (0) 0.43 (+0.03) 21 (0) 0.40 (±0.00) 21 (0)
Grimjack D 0.37 22 0.42 0.39 (+0.02) 22 (0) 0.38 (+0.01) 22 (0) 0.38 (+0.01) 22 (0) 0.38 (+0.01) 22 (0) 0.37 (±0.00) 22 (0) 0.37 (±0.00) 22 (0)
Grimjack C 0.36 23 0.44 0.41 (+0.05) 21 (↑2) 0.40 (+0.04) 22 (↑1) 0.39 (+0.03) 22 (↑1) 0.39 (+0.03) 22 (↑1) 0.40 (+0.04) 22 (↑1) 0.36 (±0.00) 23 (0)
Grimjack B 0.36 24 0.44 0.41 (+0.05) 21 (↑3) 0.40 (+0.04) 22 (↑2) 0.39 (+0.03) 22 (↑2) 0.39 (+0.03) 22 (↑2) 0.40 (+0.04) 22 (↑2) 0.36 (±0.00) 24 (0)
Grimjack A 0.34 25 0.42 0.39 (+0.05) 22 (↑3) 0.38 (+0.04) 22 (↑3) 0.38 (+0.04) 22 (↑3) 0.38 (+0.04) 22 (↑3) 0.36 (+0.02) 25 (0) 0.34 (±0.00) 25 (0)
Asuna A 0.33 26 0.42 0.38 (+0.05) 22 (↑4) 0.37 (+0.04) 22 (↑4) 0.35 (+0.02) 25 (↑1) 0.35 (+0.02) 25 (↑1) 0.35 (+0.02) 25 (↑1) 0.33 (±0.00) 26 (0)
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idea and data of Bondarenko et al. (2022a). For
the Flan-T5-based detector, we let Flan-T5 predict
stances for each sentence in a passage (to avoid
truncation at 512 tokens) using 4 zero-shot prompts
(one per comparison object and pro/con) and then
aggregate the stances (prompts and aggregation:
Appendix A). Finally, for the GPT-3.5-based detec-
tor, we few-shot prompt GPT-3.52 with four exam-
ples (one per stance) that consist of a comparative
query, two comparison objects, a text passage, and
a stance + short explanation (prompt: Appendix B).

Using GPT-3.5-based stances (with an F1 of 0.49,
it is our most effective practical stance detector),
our re-ranking approach can improve all nDCG@5
scores, but only 6 of the relevance-wise (23%)
and 12 of the quality-wise improvements (46%)
are significant (column ‘GPT-3.5’ in Table 2). The
relevance-wise top-3 runs each would reach rank 1
after re-ranking, while the quality-wise best run
cannot be “dethroned”. The Flan-T5-based stances
(F1 of 0.39) also suffice to move the relevance-wise
top-3 runs to rank 1 (column ‘Flan-T5’ in Table 2),
while for the RoBERTa-based stances (F1 of 0.34)
only the relevance-wise second run could make it
to the top (column ‘RoBERTa’ in Table 2).

6 Testing Limits with Simulated Stances

To analyze the (potential) impact of stance detec-
tors that are more effective than our currently most
effective practical approach (GPT-3.5-based; F1
of 0.49), we gradually artificially deteriorate the
ground truth stances as follows. From the pas-
sages with ground truth stance labels, we itera-
tively randomly select one without replacement
and sample a stance label from the ground truth
label distribution (O1: 19%, O2: 13%, =: 20%,
⊥: 48%; a sampled label for a passage could be the
same as in the ground truth) until the F1 of the per-
turbed ground truth falls below a desired stopping
threshold. Using this process, we simulate “stance
detectors” with F1 scores of 0.95, 0.9, 0.85, . . . ,
0.25, 0.2. For each threshold, we run the process
ten times with different random seeds to obtain ten
perturbed ground truths per target F1 score. The
ten perturbed ground truths are then each used to
re-rank a run’s retrieval results and the resulting
ten nDCG@5 scores are averaged—to somewhat
smooth out possible randomization effects.

2Accessed via its API on January 19, 2023; default param-
eters (model: text-davinci-003, temp.: 0.0, max tokens: 64,
top-p: 1.0, frequency penalty: 0.0, presence penalty: 0.0).
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Figure 1: Effectiveness improvements of the top-3
teams’ best runs when re-ranked with stance labels of
the simulated target F1 scores. For each target F1 score,
the improvement is averaged over the re-rankings with
the ten simulated ground truths of that F1 score. The 16
actually discrete improvement values per run are con-
nected as line plots for a better visual discriminability.
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Figure 2: Minimum simulated stance detection F1 scores
for which the stance-aware re-ranking significantly im-
proves an original Touché run (given by their nDCG@5
score before re-ranking). For each F1 score, the im-
provement is averaged over the re-rankings with the ten
simulated ground truths of that F1 score.

As an example, column ‘Simul.’ in Table 2
shows the effects of a simulated stance detection
with an F1 of 0.75—midst of the perfect oracle
and our currently best practical detector (GPT-3.5-
based). One can observe that the F1= 0.75-based
re-ranking improves the effectiveness scores of all
runs, as is the case with GPT-3.5-based stances, and
that a few more of the differences are significant—
none of the relevance-wise top-8, though.

To clarify whether there is a relationship between
stance detection F1 and retrieval effectiveness im-
provement, Figure 1 shows the effectiveness scores
when re-ranking the top-3 teams’ best runs with the
perturbed ground truths of different target stance
detection F1 scores. One can clearly observe that an
increasing stance detection F1 yields increased re-
trieval effectiveness improvements (relevance and
quality; trends similar for other runs and teams).

The minimally needed stance detection F1 so
that the respective stance-aware re-ranking signif-
icantly improves an original run is shown in Fig-
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ure 2 (runs given by their initial nDCG@5 scores).
As for the relevance-wise improvements, one can
observe a clear trend that runs with a better ini-
tial effectiveness require better stance detection to
yield significant improvements. For the relevance-
wise best runs, even almost perfect stance detection
F1 scores of 0.9 or 0.95 are needed to yield signifi-
cant relevance-wise improvements.

As for the quality-wise improvements, no clear
trend is observable. Two “outliers” of runs with a
good initial effectiveness only require some rather
low stance detection F1 for significant improve-
ments, but many runs with quite different ini-
tial quality-wise effectiveness require pretty high
F1 scores. Interestingly, the quality-wise best run
Aldo Nadi A can never be significantly improved,
even with perfect oracle-style stance labels.

7 Conclusion

We have proposed a simple stance-aware re-ranking
approach for non-factual comparative queries that
just moves results that do not express a stance on
the comparison objects below any results that do.
For all 26 runs submitted to the Touché 2022 task
on comparative argument retrieval, our re-ranking
can significantly improve the retrieval effectiveness
when using the official Touché stance labels (i.e.,
assuming a “perfect” oracle-style stance detector).
Then again, re-ranking based on the stances de-
tected by the task participants (F1 ≤ 0.31) hardly
improves any run. We thus experimented with other
stance detectors to achieve better practical stance
effectiveness. Using our most effective detector
(GPT-3.5-based; F1 of 0.49), the re-ranking can
again improve the retrieval effectiveness for all
26 runs but only 6 of the relevance-wise and 12
of the quality-wise improvements are significant.
In a final experiment with controlled perturbation
of the ground truth stances, we found that better
stance detection effectiveness tends to yield better
re-ranking effectiveness and that a stance detection
F1 of 0.90 is necessary to significantly improve the
relevance-wise most effective run.

Substantially improving the practical stance de-
tection effectiveness thus is an interesting direction
for future work that could also be the basis for a
diversified result presentation: splitting the results
into three separate lists for ‘pro first object’, ‘pro
second object’, and ‘both equal’. Besides, our re-
ranking approach does not yet consider any poten-
tial confidence scores of a stance detection model

and also no potentially predicted stance “magni-
tude”. Developing stance detectors that assign
a confidence or stance magnitude might actually
be helpful to further improve the stance-aware re-
ranking (e.g., to rank results with high-confidence
stances above the ones with low confidence).
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A Flan-T5 Prompts and Aggregation

Positive prompt:
<sentence>
Is this sentence pro <object Ox>? yes or no

Negative prompt:
<sentence>
Is this sentence against <object Ox>? yes or no

On these prompts, Flan-T5 usually generates some
longer answer text. We derive object stance
scores stOx for the objects O1 and O2 based on
whether the outputs contain some “trigger” terms
like yes, no, pro, or con (left table below). After-
wards, we map the object stance scores to sentence
stance scores sts (right table below).

A passage’s stance is the average of all con-
tained sentences’ stances (ignoring sentences with-
out stance) mapped to: > 0 ‘pro first obj.’, < 0 ‘pro
second obj.’, 0 ‘both equal’, ⊥ ‘no stance’.

Flan-T5 output contains Stance

Pos. prompt Neg. prompt stOx

(yes∨pro)∧¬no (yes∨con)∧¬no 0
(yes∨pro)∧¬no (¬yes∧¬con)∨no 1
(¬yes∧¬pro)∨no (yes∨con)∧¬no 0
(¬yes∧¬pro)∨no (¬yes∧¬con)∨no ⊥

Sentence Stance

stO1 stO2 sts

⊥ ⊥ ⊥
a a 0
a ⊥ a
⊥ a −a
a b a− b

B GPT-3.5 Prompt (Few-Shot)

You will be shown a text passage that compares two
objects. Decide if the passage provides arguments
pro first object, pro second object, both equal, or
no stance is given. First, we start with examples
and definitions. Please read them carefully.

Question: Apple vs Microsoft: Which is better?
Answer passage: I switched from PC to Mac about
2 years ago, after becoming familiar with Macs
using my sister’s computer. I will NEVER go back
to PCs. I also like that Macs are simplified for basic
things such as photos, music, internet, and e-mail.
Truthfully, the only programs I have issues with are
Microsoft applications like Word and IE. I think
Apple’s superiority comes from the fact that Macs
are inherently more stable systems.
First object: Apple, second object: Microsoft.
Explanation: The answer provides a strong pro
argument (opinion) for MAC (which is referred to
as Apple). Note, that the text passage may not use
the same object names as the question, e.g., it can
contain synonyms or abbreviations or just mention
only one object. Stance: pro first object.

Question: Is it better to dual-boot or run a VM?
Answer passage: Dual boot is a waste of time. I
describe it to people as the 5-minute alt-tab. [. . . ]
I avoid dual boot like the plague. VM all the way.
Or, just use a single OS that does what you want.
Windows with Cygwin provides a lot of the Unixy
stuff that people need.
First object: to dual-boot, second object: run a VM.
Explanation: The answer provides a strong opinion
that a VM is better than a dual-boot. Note, that the
text passage may not use the same object names as
the question, e.g., it can contain synonyms or ab-
breviations or just mention only one object. Stance:
pro second object.

Question: Who would win in a battle, a squirrel or
a bird?
Answer passage: First of all, it depends on the
bird’s size. The bird has the initial advantage of
flying away. [. . . ] But if it is small, it would fly
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away. And you know, the winner never runs away
from the battlefield.
First object: squirrel, second object: bird.
Explanation: The answer suggests that under some
condition a bird would win, but without the condi-
tion a squirrel would. This means both could win a
fight, and they are equal. Stance: both equal.

Question: Which to choose a pie or a tart?
Answer passage: Generally speaking, a pie refers to
a pastry covered with a lid, like a typical apple pie.
A tart is open-topped, like a quiche, or a French
tartes aux pommes. [. . . ] Regional variations also
apply.
First object: pie, second object: tart.
Explanation: The answer does not provide any pro
or con arguments or opinions. The answer simply
describes what a pie and a tart are. According to the
definition of stance (see above), there is no stance
in the passage. Stance: no stance.

Also, select “no stance” if the text passage does not
contain arguments / opinions toward the objects
(that is neither the first nor second object nor their
synonyms are in the text).

Now, I have a question comparing first object:
<first object> and second object: <second object>:
Question: <question>
Identify whether the following text is “pro first
object”, “pro second object”, “both equal”, or “no
stance”. Please, answer only with “pro first object”,
“pro second object”, “both equal”, or “no stance”:
Answer passage: <passage>
Stance:
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Abstract

Legal arguments are one of the key aspects of
legal knowledge which are expressed in various
ways in the unstructured text of court judge-
ments. A large database of past legal argu-
ments can be created by extracting arguments
from court judgements, categorizing them, and
storing them in a structured format. Such a
database would be useful for suggesting suit-
able arguments for any new case. In this paper,
we focus on extracting arguments from Indian
Supreme Court judgements using minimal su-
pervision. We first identify a set of certain
sentence-level argument markers which are use-
ful for argument extraction such as whether a
sentence contains a claim or not, whether a
sentence is argumentative in nature, whether
two sentences are part of the same argument,
etc. We then model the legal argument extrac-
tion problem as a text segmentation problem
where we combine multiple weak evidences in
the form of argument markers using Integer
Linear Programming (ILP), finally arriving at a
global document-level solution giving the most
optimal legal arguments. We demonstrate the
effectiveness of our technique by comparing it
against several competent baselines.

1 Introduction

In the field of argument mining, extraction of le-
gal arguments from court judgements has been re-
ceiving increasing attention (Poudyal et al., 2020;
Grundler et al., 2022; Habernal et al., 2023). Most
of these approaches are supervised in nature in the
sense that they need a significantly large corpus of
documents from a specific area (e.g., ECHR - Euro-
pean Court of Human Rights) which are annotated
with legal arguments. In this paper, we focus on
extracting legal arguments from Indian Supreme
Court judgements using minimal supervision. Our
goal is to construct a large database of past legal ar-
guments by extracting legal arguments from court
judgements, categorizing them, and storing them

in a structured format. Such a database would be
useful in building a high-level legal decision sup-
port system where some of its features could be –
i) suggesting suitable arguments given a new case
description, ii) learning to estimate the strength of a
new argument based on the similar past arguments
that helped to win the case.

In this paper, we focus specifically on extraction
of legal arguments and to the best of our knowledge,
this is the first such attempt for – i) legal argument
extraction without any in-domain supervision and
ii) argument extraction from Indian court judge-
ments. For categorizing the arguments, we propose
to simply map them to the statute facets which were
recently proposed in our previous work (Pawar
et al., 2023). A statute facet is any important spe-
cific aspect of an Act which can be potentially used
in legal arguments in a case related to the Act. For
example, following are statute facets from India’s
Industrial Disputes Act – workman, illegal strikes,
and notice of retrenchment.

We consider a legal argument as a sequence of
contiguous sentences in a court judgement which
constitute a complete and coherent argument. A
legal argument generally consists of a sentence con-
taining a major claim (or conclusion) and other sen-
tences acting as sufficient premises for that claim.
Table 1 shows a few examples of such legal argu-
ments where the statute facets from India’s Indus-
trial Disputes Act (1947) are also underlined.

A major challenge in legal argument extraction
from Indian court judgements is the unavailability
of a training dataset where the legal arguments are
annotated by human experts. Hence, we first pro-
pose to identify certain argument markers within
sentences of a court judgement which are weak
indicators of presence of a legal argument. Here,
we refer to these argument markers as weak evi-
dences because individually any marker is not a
strong enough indicator of a legal argument and it
is also not possible to automatically identify these
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Arguments
- There were different systems of dearness allowance for the operators and the clerical and subordinate staff in the appellant
company.
- That such a different system of dearness allowance for employees working under the same employer is not warranted is clear
from the decisions of this Court in the cases of Greaves Cotton & Co. and Bengal Chemical & Pharmaceutical Works Ltd.
- Therefore the Tribunal was justified in devising a uniform scale of dearness allowance applicable to all the employees of the
appellant. (claim)
- It is therefore clear that the claim for bonus can be made by the employees only if as a result of the joint contribution of capital
and labour the industrial concern has earned profits. (claim)
- If in any particular year the working of the industrial concern has resulted in loss there is no basis nor justification for a
demand for bonus.
- Bonus is not a deferred wage, because if it were so it would necessarily rank for precedence before dividends.
- The dividends can only be paid out of profits and unless and until profits are made no occasion or question can also arise for
distribution of any sum as bonus amongst the employees.
- If the industrial concern has resulted in a trading loss, there would be no profits of the particular year available for distribution
of dividends, much less could the employees claim the distribution of bonus during that year.

Table 1: Examples of legal arguments from court judgements related to Industrial Disputes Act.

Argument Marker What does it indicate for a sentence S?
Claim sentence (C) whether S makes any claim or draw some conclusion
Argumentative sentence (A) whether S is argumentative in nature, i.e., is it either a claim or a premise of some argument
Sentence pair relation (SP) whether S and its previous sentence belong to the same argument
Statute Facets (F) the statute facets mentioned in S
Discourse connectors (D) whether S has a discourse relation with its previous sentence through a causal discourse

marker such as therefore or hence
Argument agent (AA) whether S has a different argument agent (i.e., entity making the argument) than its

previous sentence
Subjectivity score (SS) whether S is a subjective sentence

Table 2: List of various argument markers used

argument markers with high accuracy. Table 2
shows the list of various argument markers used
and it can be observed that the statute facets are also
used as one of the argument markers. Each argu-
ment marker is identified either by using linguistic
rules/patterns (for C, F, D, AA) or, by learning a
classifier using training data from another area –
ECHR (for AS and SP), or by using an off-the-
shelf library (for SS). We then use Integer Linear
Programming (ILP) to combine the weak evidences
provided by these argument markers to arrive at a
final document-level solution leading to identifica-
tion of legal arguments. The ILP framework also
enables us to represent various domain rules in the
form of constraints and objectives. The main con-
tributions of this work are:
• Argument markers: Techniques for identifying
various argument markers (Section 3.1).
• ArgExt-ILP: An ILP-based technique for legal
argument extraction (Section 3.3).
• Dataset: A dataset of 10 court judgements from
Indian Supreme Court containing 127 arguments,
which is the first such arguments-annotated dataset
for Indian court judgements (Section 5.1).
• Evaluation metrics: A set of evaluation metrics
for comparing the predicted arguments with the

gold-standard arguments (Section 5.3).

2 Problem Definition

The problem is formally defined as follows:
Input: (i) A court judgement document J (se-
quence of N sentences S1, S2, · · · , SN ), and (ii)
A set of statute facets f1, f2, · · · , fk for an Act A
Output: A set of extracted arguments where any
ith argument is a tuple (is, ie) such that all the con-
tiguous sentences starting from Sis to Sie constitute
the argument.
Scope and assumptions: If there are multiple ar-
guments present in J , they must be mutually ex-
clusive, i.e., no sentence is common between any
two such arguments. Also, another simplifying
assumption is that an argument consists of contigu-
ous sentences which may not be always true1. Ex-
tending our techniques to extract non-contiguous
arguments is to be tackled as a part of future work.

3 Proposed Techniques

In this section, we describe identification of vari-
ous argument markers and our proposed argument
extraction techniques which use these markers.

1In ECHR corpus (Poudyal et al., 2020), almost 50% argu-
ments consist of contiguous text
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3.1 Argument Markers

3.1.1 Claim sentences (C)

As any legal argument must contain at least one
claim sentence, it becomes one of the most impor-
tant argument markers. It is very challenging to
identify claim sentences without any direct super-
vision. We attempted to train sentence classifiers to
identify claims using training data from ECHR cor-
pus as well as using zero-shot text classification us-
ing open source LLMs like falcon-7b-instruct (Al-
mazrouei et al., 2023). However, these attempts
were not successful. Therefore, we designed a set
of linguistic rules/patterns by observing the claim
sentences in court judgements.
LR1: If a sentence contains a copula verb which is
modified by a causal discourse marker (e.g., there-
fore, hence) as an adverbial modifier then it may be
a claim. E.g., Therefore, he was not a workman.
LR2: If a sentence contains a non-copula verb
which is modified by a causal discourse marker as
an adverbial modifier and also modified by a modal
verb (e.g., would, could) then it may be a claim.
E.g., Therefore, as Ram was not a workman his
case would not be covered by the IDA...
LR3: We prepared a list2 of nouns and verbs
which indicate some kind of claim, conclusion,
view, or opinion. Examples of such nouns/verbs
are opinion, conclusion, contended, concluded,
etc. If a sentence contains any of these followed
by a complement clause containing actual
claim/conclusion/opinion then it may be a claim.
For example, consider the following sentences
where such noun/verb and the complement
clause are highlighted – We are of the opinion that
the High Court erred in not awarding compensation
to the appellant., The learned counsel contended
that the respondent was denied a fair hearing.
LR4: We also prepared a list of adjectives and
adverbs with positive or negative sentiment, e.g.,
erroneous, incorrectly, valid, wrongly, illegally.
If a sentence contains any one of these words
to evaluate something or to express an opinion
about something, then it may be a claim. Fol-
lowing are example sentences – The order of the
Labour Court deciding the reference against the
respondent-workman is illegal., The said stand of
the workers union is not consistent with the nature
of the complaint.

2The complete lists of words used in these patterns are
provided in Appendix A.

3.1.2 Argumentative sentences (AS)
Identification of argumentative sentences has been
studied in many domains (e.g., essays, debates, le-
gal, etc.) and the techniques employed are mostly
supervised in nature (Poudyal et al., 2020). Argu-
mentative sentences can be thought of as a superset
of claim sentences in the sense that both claims
as well as their premises are part of argumentative
sentences. We used a BERT-based sentence clas-
sifier which combines the [CLS] representation of
a sentence and attention weighted average of the
other tokens to get the overall representation of
the sentence. It is trained using training data from
multiple sources (e.g., ECHR corpus, essay cor-
pus, rhetorical role corpus, and Indian judgements
corpus) as described in Ali et al. (2022).

3.1.3 Sentence pair relation (SP)
The goal here is to predict whether any two sen-
tences belong to the same argument or not. For
this, we used a BERT-based sentence pair clas-
sifier (where two sentences are separated by a
[SEP] token) which is trained using the ECHR
corpus (Poudyal et al., 2020). The positive training
examples (10418) are created by taking all the pairs
present within an argument whereas the equal num-
ber of negative pairs are chosen randomly such that
the sentences in each pair are not part of the same
argument. We used this classifier for each pair of
contiguous sentences in a court judgement to pre-
dict the probability that these sentences belong to
the same argument.

3.1.4 Statute facets (F)
We considered all the noun phrase facets extracted
from Industrial Disputes Act3 using the technique
described in previous work (Pawar et al., 2023). We
matched each facet with each sentence in a court
judgement ensuring that morphological variations
are handled (e.g., employer and employers). The
intuition is that if a facet is present in a sentence
then it is more likely to be argumentative in nature.
Moreover, presence of a common facet across most
sentences in an argument is also a weak measure
of coherence. E.g., in the first argument of Table 1,
the facet dearness allowance is present in all its
sentences. Hence, even though statute facets are
not strong indicators of a legal argument on their
own, they may help as weak argument markers (see
ablation results in Section 5.4).

3Because all our test files are chosen to be related to IDA.
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3.1.5 Discourse connectors (D)
If a sentence is connected with its previous sen-
tence through a causal discourse connector (e.g.,
therefore, consequently) then it is a strong indi-
cation of coherence between the two sentences.
Moreover, it is also a weak indication of the cur-
rent sentence being a claim. Hence, we identify
this information about discourse connectors using
the rules described in Ali et al. (2022).

3.1.6 Argument agent (AA)
An argument agent is the entity who is putting
forward any argument such as appellant, lower
court, or respondent. If argument agents of the two
contiguous sentences are different then it is a good
indicator of non-cohesion between them. Hence,
for each sentence, we identify whether its argument
agent is different from its previous sentence using
the rules described in Ali et al. (2022).

3.1.7 Subjectivity score (SS)
We compute subjectivity score for each sentence in
a court judgement using TextBlob library4. Here,
the intuition is that if a sentence is subjective then
it is more likely to be an opinion or a claim.

3.2 ArgExt-Rules
We propose a simple rule-based technique which
uses the information about argument markers in a
court judgement to extract legal arguments from it.
Algorithm 1 describes this technique in detail. In-
tuitively, this technique simply tries to extract a set
of coherent and complete arguments without using
any optimization technique, ensuring that either the
first or last sentence in each argument is a claim
sentence along with some additional constraints.
It expands each claim sentence (say Si for which
C[i] = 1) in either forward or backward direction
to identify a complete argument. While expanding
the argument in either of the directions, it adds a
new sentence to the argument only if that sentence
mentions at least one facet from F and it lies in the
same paragraph as that of Si. A new sentence may
still be added even if it does not mention any facet
but at most one such sentence is allowed in an ar-
gument only as an intermediate sentence. As Si is
expanded in both forward and backward directions,
the above process results in two candidate argu-
ments – R1 (where Si is expanded backward) and
R2 (where Si is expanded forward), where only
one of them has to be selected. If Si contains a

4https://textblob.readthedocs.io/en/dev/

Data: J : court judgement with N sentences
{S1, · · ·SN}, C: binary array of length N s.t.
C[i] = 1 if ith sentence contains a claim, P :
array of length N s.t. P [i] indicates paragraph
number, D: binary array of length N s.t.
D[i] = 1 if ith sentence is connected to its
previous sentence through a causal discourse
marker, SP : real-valued array of length N s.t.
SP [i] indicates the probability that ith and
(i− 1)th sentences are part of the same
argument, F : set of statute facets from act A

Result: Args: set of arguments extracted from J
Args := {}
for Si ∈ J do

if C[i] == 1 then
R1 := {Si}; j := i− 1
while Sj exists AND Sj contains at least

one facet from F AND Pj == Pi do
R1 := R1 ∪ {Sj}; j := j − 1

R2 := {Si}; j := i+ 1
while Sj exists AND Sj contains at least

one facet from F AND Pj == Pi do
R2 := R2 ∪ {Sj}; j := j + 1

if D[i] == 1 then Args := Args ∪R1 ;
else

PR1 := Avg pairwise SP values in R1

PR2 := Avg pairwise SP values in R2

if PR1 > PR2 then
Args := Args ∪R1 ;

else Args := Args ∪R2 ;

return Args
Algorithm 1: Algorithm for ArgExt-Rules

discourse marker which connects it to its previous
sentence (i.e., if D[i] = 1) then R1 is selected as a
more coherent argument. Otherwise, average sen-
tence pair similarity score is computed for both R1

and R2 and the one with higher score is selected.
The algorithm may result in overlapping arguments
which are resolved as follows. For each pair of
overlapping arguments, we discard that argument
which contains lesser number of argumentative sen-
tences than the other.

3.3 ArgExt-ILP

We now describe our principal technique ArgExt-
ILP which uses Integer Linear Programming (ILP)
for combining multiple weak evidences provided
by argument markers to extract actual arguments.
ILP provides a suitable framework where the con-
straints and the objective can incorporate – (i) the
information about argument markers (e.g., each ar-
gument should start or end with a claim sentence)
and (ii) various types of domain knowledge about
legal arguments (e.g., an argument is unlikely to
cross paragraph boundaries). Thus, an optimal so-
lution to an ILP program leads to a set of predicted
arguments which conform to the argument markers
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and satisfy these domain rules as much as possible.
Tables 3 and 4 show our ILP formulation in de-

tail. For each input document (i.e., court judgement
J), an ILP program is prepared using the informa-
tion about various argument markers in that doc-
ument. The ILP program is then solved to obtain
the predicted arguments from that document. The
information about argument markers is provided
to ILP through various input parameters such as C
(claim sentences), AS (argumentative sentences),
SP (sentence pair relations) as described in Ta-
ble 3. The decision variables X and Y are binary
variables. They are designed to represent the out-
put (i.e., the predicted arguments) in such a way
that the jth column of the matrix X − Y contains
1’s in only those rows which correspond to sen-
tences constituting the jth argument (see Table 3).
In other words, (X[i, j]− Y [i, j]) equals 1 if and
only if ith sentence is part of the jth argument. The
constraints C1 to C5 ensure that the extracted ar-
guments are non-overlapping and correspond to
contiguous sentences only. The constraint C6 en-
sures that each extracted argument contains a claim
sentence as its first or last sentence. For any j,
(X[i, j]−X[i− 1, j]) is 1 for only one i (because
of the constraint C1) which corresponds to the first
sentence of the jth argument. Similarly, for any j,
(Y [i+ 1, j]− Y [i, j]) is 1 only for one i (because
of the constraint C2) which corresponds to the last
sentence of the jth argument. Hence, the left hand
side of C6 is at least 1 if and only if jth argument
contains a claim sentence as its first or last sen-
tence. Also, the right hand side of C6, i.e., X[N, j]
is 1 only if jth argument exists, otherwise it is 0.
Similarly, other constraints C7 to C9 are added to
conform to other domain knowledge based rules
as described in Table 3. Table 4 describes the ob-
jective which is minimized. The overall objective
consists of 3 terms. The first term Obj1 attempts
to minimize the number of claim, subjective, and
argumentative sentences which are not part of any
extracted argument. Obj2 ensures that as far as
possible, the sentence pairs on argument bound-
aries are not related to each other. Obj3 tries to
maximize the overall number of facets which are
part of the extracted arguments.

4 Related Work

Extraction of legal arguments: We discuss some
of the most relevant techniques for extraction of
legal arguments here. Poudyal (2016) identified

the argumentative sentences and used soft clus-
tering technique to form an argument which con-
sists of premises and claims. They automatically
identified the premise/claim structure within an
argument using multiple features such as lexical,
syntactic (tree kernel), dependency, n-gram, etc.
The top n features are selected using gain-ratio for
both classifying argumentative and premise/claim
type sentences. Wei et al. (2017) proposed to
use ILP to jointly solve multiple sub-tasks in ar-
gument mining such as argumentation component
type classification and relation classification. We
are also using ILP in our proposed technique, but
we have modelled argument extraction differently
as a text segmentation problem. One of the most
significant work in legal argument extraction is
by Poudyal et al. (2020) where they released an
arguments-annotated corpus of 42 judgements of
European Court of Human Rights (ECHR). They
also presented BERT-based baseline techniques for
three key tasks in argument extraction – argument
clause recognition, clause relation prediction, and
premise/conclusion recognition. Grundler et al.
(2022) released Demosthenes which is a corpus of
40 judgements of the Court of Justice of the Eu-
ropean Union on matters of fiscal state aid. The
corpus contains annotations for three hierarchi-
cal levels of information – the argumentative el-
ements, their types, and their argument schemes.
Recently, Habernal et al. (2023) proposed an inter-
esting alternate perspective that rather than simpli-
fying arguments into generic premises and claims,
it is more important to capture rich typology of
arguments for gaining insights into the particular
case and applications of law in general. They pro-
posed a new annotation scheme accordingly for
capturing 16 argument types and 5 argument ac-
tors for each argument, where an argument is a
text span. The text span of an argument was al-
lowed to cross sentence boundaries but not para-
graph boundaries. They released a large corpus of
373 annotated court decisions and also proposed
sequence labelling techniques for identifying argu-
ment text spans. We have used their model as one
of the baselines. Other techniques for legal argu-
ment extraction are (Mochales and Moens, 2011;
Trautmann, 2020; Xu and Ashley, 2023; Zhang
et al., 2023; Santin et al., 2023).

Text Segmentation: This task is relevant for our
work because we have modelled argument extrac-
tion as a text segmentation problem. Some generic
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Input parameters:
N : No. of sentences in the court judgement J
M : Maximum no. of arguments in any court judgement
K: Total no. of facets in the Act A
C: Binary array of length N such that C[i] = 1 iff ith sentence contains any claim. (Section 3.1.1)
D: Binary array of length N such that D[i] = 1 iff ith sentence contains support indicating discourse markers such as therefore
and consequently which link it to the (i− 1)th sentence. (Section 3.1.5)
AS: Binary array of length N such that AS[i] = 1 iff ith sentence is argumentative in nature. (Section 3.1.2)
AA: Binary array of length N such that AA[i] = 1; iff ith sentence’s argument agent (such as appellant, respondent, lower
court, judge) is different from the previous sentence’s agent. (Section 3.1.6)
F : Binary matrix of size N×K such that F [i, k] = 1 iff ith sentence contains kth facet and F [i, k] = 0 otherwise (Section 3.1.4)
P : Binary array of length N such that P [i] = 1; iff ith sentence belongs to a new (different) paragraph as compared to the
(i− 1)th sentence.
SP : Real-valued array of length N such that SP [i] = the probability that the ith sentence and the (i− 1)th sentence belong to
the same argument. (Section 3.1.3)
SS: Real-valued array of length N such that SS[i] = the subjectivity score of the ith sentence. (Section 3.1.7)
Decision variables:
X: Binary matrix of size N ×M such that X[i, j] = 1, ∀i≥k iff jth argument starts at the kth sentence. X[i, j] = 0,∀i<k

Y : Binary matrix of size N ×M such that Y [i, j] = 1, ∀i>k iff jth argument ends at the kth sentence. Y [i, j] = 0, ∀i≤k

Constraints:
C1: For a fixed j, X[:, j] should be monotonically increasing. X[i− 1, j] ≤ X[i, j]; ∀i,j s.t. 2 ≤ i ≤ N, 1 ≤ j ≤ M

C2: For a fixed j, Y [:, j] should be monotonically increasing. Y [i− 1, j] ≤ Y [i, j]; ∀i,j s.t. 2 ≤ i ≤ N, 1 ≤ j ≤ M

C3: The start of an argument should be before its end. X[i, j] ≥ Y [i, j]; ∀i,j s.t. 1 ≤ i ≤ N, 1 ≤ j ≤ M

C4: jth argument should start only after (j − 1)th argument ends. Y [i, j − 1] ≥ X[i, j]; ∀i,j s.t. 1 ≤ i ≤ N, 2 ≤ j ≤ M

C5: Any argument should contain at least one sentence.∑N−1
i=1 ((i+ 1) · (Y [i+ 1, j]− Y [i, j]))−∑N

i=2(i · (X[i, j]−X[i− 1, j])) ≥ X[N, j]; ∀j s.t. 1 ≤ j ≤ M

C6: At least one of the first sentence or the last sentence of any argument should contain a claim.∑N
i=2(C[i] · (X[i, j]−X[i− 1, j])) +

∑N−1
i=1 (C[i] · (Y [i+ 1, j]− Y [i, j])) ≥ X[N, j]; ∀j s.t. 1 ≤ j ≤ M

C7: Any argument should not start with a sentence containing discourse connector to its previous sentence.∑N
i=2 D[i] · (X[i, j]−X[i− 1, j]) ≤ 0; ∀j s.t. 1 ≤ j ≤ M

C8: If a sentence contains an argument agent which is different from the previous sentence then such sentence can either be the
first sentence in some argument or it may not be part of any argument.∑M

j=1(X[i, j]− Y [i, j])−∑M
j=1(X[i, j]−X[i− 1, j]) +AA[i] ≤ 1; ∀i s.t. 2 ≤ i ≤ M

C9: Any argument should not be spread across multiple paragraphs.
(X[i, j]− Y [i, j])− (X[i, j]−X[i− 1, j]) + P [i] ≤ 1; ∀i,j s.t. 2 ≤ i ≤ N, 1 ≤ j ≤ M

Table 3: Input parameters, decision variables and constraints used in ArgExt-ILP

Objective: Minimize Obj1 +Obj2 −Obj3

Obj1: Minimize the number of claim, argumentative, and subjective sentences which are not part of any extracted argument.
Obj1 =

∑N
i=1(C[i] + SS[i] +AS[i]) ·

(
1−

(∑M
j=1(X[i, j]− Y [i, j])

))

Obj2: Minimize the average of probability scores that ith and (i− 1)th sentences belong to the same argument when they occur
on an argument boundary.

Obj2 =
∑M

j=1
1
2

(∑N
i=2 SP [i] · (X[i, j]−X[i− 1, j]) +

∑N−1
i=1 SP [i+ 1] · (Y [i+ 1, j]− Y [i, j])

)

Obj3: Maximize the total number of facets mentioned within the extracted arguments.
Obj3 =

∑M
j=1

(∑N
i=1

(∑K
k=1 F [i, k]

)
· (X[i, j]− Y [i, j])

)

Table 4: Objectives used in ArgExt-ILP
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text segmentation techniques have been proposed
like C99 algorithm (Choi, 2000) which identifies
optimal segments, semantic segmentation tech-
nique (Alemi and Ginsparg, 2015) which incorpo-
rates semantic word embedding while identifying
the segments. Some recent work using deep learn-
ing for text segmentation is by Lattisi et al. (2022)
where they are using BERT model’s Next Sentence
Prediction (NSP) probability as a coherence score
between sentences in their objective. Moro and
Ragazzi (2022) employs self-segmentation tech-
nique to extract the semantic chunks from a long
legal documents, where they fine-tuned the Legal-
BERT model with metric learning setup to incor-
porate the segment semantics. Our technique is
motivated by the work of Palshikar et al. (2019)
which also uses the ILP framework for identifying
certain types of sections in a document.

5 Experiments

5.1 Annotated Dataset for Evaluation

We identified 10 court judgements related to in-
dustrial disputes from the Supreme Court of In-
dia5. These judgements were annotated manu-
ally with gold-standard legal arguments6 These 10
judgements contain 1524 sentences spread across
418 paragraphs overall. The total of 127 gold-
standard arguments were identified during the man-
ual annotation process. Each argument is rep-
resented by its start and end sentence numbers
where each sentence in between is considered as a
part of the argument. Annotators were also asked
to identify a sentence for each argument which
contains its major claim. To estimate the inter-
annotator agreement (IAA), we used the pygamma-
agreement library (Titeux and Riad, 2021) which
is based on (Mathet et al., 2015). We used the
positional dissimilarity based γ statistic for com-
paring the arguments identified by two annota-
tors and the average value of γ was observed to
be 0.405. As another estimate for IAA, we also
used the same evaluation metrics (described in Sec-
tion 5.3) which we use to evaluate the predicted
arguments. The F1-scores for the IAA were ob-
served as follows: Arg-exact=0.3, Arg-subset=0.47,
Arg-overlap=0.56, and Arg-sentences=0.59. The
IAA scores are not very strong which indicates the

5Downloaded from http://www.liiofindia.org/in/
cases/cen/INSC/

6The annotation guidelines are shared in Appendix C. The
dataset would be shared upon request.

difficulty level and subjective nature of the task.
For training the classifiers needed for identify-

ing the argument markers AS and SP, we used the
ECHR corpus as it is similar to our dataset in the
sense that it is also a corpus of court judgements
which is annotated for legal arguments by lawyers.
However, this corpus did not help in identifying
claims with reasonable accuracy by training a clas-
sifier, hence we had to rely on the linguistic rules.
This shows that even though this corpus is similar
to our dataset, there are some differences, espe-
cially the language used for claim sentences.

5.2 Baselines

Baseline-TextSeg: We use C99 algorithm (Choi,
2000) for segmenting the court judgements. We
retain only those text segments as legal arguments
which contain at least one claim sentence, and dis-
card all the remaining text segments.
Baseline-RhetoricalRoles: We obtained rhetor-
ical roles for each sentence in each judgement
using the opennyai python package7 based on
the work of Kalamkar et al. (2022). Each se-
quence of contiguous sentences which is labelled
by the same argument indicating rhetorical role
(ARG_RESPONDENT or ARG_PETITIONER) is identi-
fied as a legal argument.
Baseline-LegalArgs: This baseline is based on
the technique proposed by Habernal et al. (2023)
where a paragraph is given as an input to a se-
quence labelling model which labels each token in
the paragraph with appropriate argument type using
BIO encoding. For making it comparable with our
problem setting, we merged all their 16 argument
types into a single type, re-trained the roberta-large
model on their training dataset, and used the model
to infer the argument labels on each paragraph in
our evaluation dataset. We also extended the to-
ken level classification output to sentence level, i.e.,
even if a subset of tokens in a sentence is labelled
as part of an argument by the model, we consider
the entire sentence as a part of the argument.

5.3 Evaluation Metrics

For evaluating the predicted arguments, we propose
a set of new metrics. These are in the form of tradi-
tional precision, recall and F1-score scores only but
they differ from each other in how true positives
(TP), false positives (FP), and false negatives (FN)
are computed based on when two arguments are

7https://pypi.org/project/opennyai/
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Metric Technique With predicted claims With gold-standard claims
P R F1 P R F1

Arg-exact

Baseline-LegalArgs (Habernal et al., 2023) 0.206 0.055 0.087 0.296 0.063 0.104
Baseline-RhetoricalRoles Kalamkar et al. (2022) 0.012 0.016 0.014 0.031 0.016 0.021
Baseline-TextSeg (Choi, 2000) 0.029 0.047 0.036 0.058 0.047 0.052
ArgExt-Rules 0.088 0.094 0.090 0.257 0.142 0.183
ArgExt-ILP 0.145 0.197 0.167 0.330 0.283 0.305

Arg-subset

Baseline-LegalArgs (Habernal et al., 2023) 0.417 0.118 0.184 0.576 0.150 0.238
Baseline-RhetoricalRoles Kalamkar et al. (2022) 0.160 0.205 0.179 0.351 0.213 0.265
Baseline-TextSeg (Choi, 2000) 0.251 0.433 0.318 0.434 0.441 0.438
ArgExt-Rules 0.223 0.165 0.190 0.684 0.205 0.315
ArgExt-ILP 0.380 0.551 0.450 0.641 0.661 0.651

Arg-overlap

Baseline-LegalArgs (Habernal et al., 2023) 0.500 0.134 0.211 0.667 0.142 0.234
Baseline-RhetoricalRoles Kalamkar et al. (2022) 0.243 0.205 0.222 0.385 0.157 0.223
Baseline-TextSeg (Choi, 2000) 0.251 0.409 0.311 0.447 0.362 0.400
ArgExt-Rules 0.294 0.315 0.304 0.486 0.268 0.345
ArgExt-ILP 0.427 0.575 0.490 0.690 0.598 0.641

Arg-sentences

Baseline-LegalArgs (Habernal et al., 2023) 0.470 0.129 0.203 0.739 0.140 0.235
Baseline-RhetoricalRoles Kalamkar et al. (2022) 0.521 0.259 0.346 0.624 0.218 0.323
Baseline-TextSeg (Choi, 2000) 0.403 0.708 0.514 0.529 0.616 0.569
ArgExt-Rules 0.594 0.331 0.425 0.901 0.263 0.407
ArgExt-ILP 0.506 0.768 0.610 0.758 0.752 0.755

Table 5: Evaluation results for argument extraction by various techniques

With predicted claims:
Objective Arg-Exact Arg-Subset Arg-Overlap Arg-Sentences

Obj1 +Obj2 −Obj3 0.167 0.450 0.490 0.610
Without Obj1 0.106 0.352 0.397 0.525
Without Obj2 0.168 0.427 0.474 0.606
Without Obj3 0.173 0.448 0.502 0.612

With gold-standard claims:
Objective Arg-exact Arg-subset Arg-overlap Arg-sentences

Obj1 +Obj2 −Obj3 0.305 0.651 0.641 0.755
Without Obj1 0.197 0.527 0.535 0.660
Without Obj2 0.340 0.659 0.694 0.764
Without Obj3 0.287 0.638 0.647 0.762

Table 6: Ablation study for objectives in ArgExt-ILP (F1-scores)

considered to be “matching” with each other. If a
gold-standard argument “matches” with a predicted
argument, then a TP is counted, otherwise a FN is
counted. Further, if a predicted argument does not
“match” with any gold-standard argument, then a
FP is counted. The following metrics correspond
to different ways of “matching”:
Arg-exact: A predicted argument is considered to
be “matching” with a gold-standard argument if
their start and end sentence indices are same.
Arg-subset: A gold-standard argument is consid-
ered to be “matching” with a predicted argument if
the set of sentence indices within the gold-standard
argument is a proper subset of the set of sentence
indices of the predicted argument.
Arg-overlap: Two arguments are considered to be
“matching” with one another if Jaccard similarity
between the sets of sentence indices within the two
arguments is greater than or equal to 0.5.
Arg-sentences: Unlike the above metrics where

TP/FP/FN are counted at argument-level, in this
metric, these are counted at a sentence level. A
sentence in any predicted argument is considered a
TP if it is also part of some gold-standard argument,
otherwise it is considered as a FP. Similarly, a sen-
tence in a gold-standard argument is considered as
a FN if it is not part of any predicted argument.

5.4 Evaluation Results

Table 5 shows the comparative performance of our
proposed argument extraction techniques with re-
spect to the baselines. It can be observed that
ArgExt-ILP outperforms all other techniques across
all evaluation metrics. Even though ArgExt-ILP
and ArgExt-Rules are based on the same argu-
ment markers, ArgExt-ILP consistently outper-
forms ArgExt-Rules. This shows that the ILP
framework is helpful in combining multiple weak
evidences in the form of argument markers and po-
tentially conflicting domain rules in a more princi-
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With predicted claims:
Constraints Arg-exact Arg-subset Arg-overlap Arg-sentences

All constraints in Table 3 0.167 0.450 0.490 0.610
Without C6 0.080 0.418 0.416 0.530
Without C7 0.147 0.423 0.450 0.601
Without C8 0.157 0.459 0.472 0.604
Without C9 0.060 0.548 0.244 0.540

With gold-standard claims:
Constraints Arg-exact Arg-subset Arg-overlap Arg-sentences

All constraints in Table 3 0.305 0.651 0.641 0.755
Without C6 0.086 0.435 0.422 0.535
Without C7 0.352 0.641 0.656 0.746
Without C8 0.347 0.679 0.694 0.772
Without C9 0.132 0.649 0.395 0.598

Table 7: Ablation study of the constraints in ArgExt-ILP (F1 scores)

pled manner than a rule-based logic. However, the
performance of ArgExt-ILP is still far from being
perfect and this highlights the challenging nature
of the task. The error analysis shows that there are
mainly two sources of errors - (i) incorrect identifi-
cation of claim sentences and (ii) incorrect bound-
ary identification of the arguments. In order to esti-
mate the effect of the first source, we re-run all the
techniques assuming gold-standard claim sentences
are known. Table 5 shows the detailed results in this
setting in the last 3 columns. Again, ArgExt-ILP
outperforms all other techniques and also improves
significantly over its own performance with pre-
dicted claim sentences. This shows that there still
scope for improvement in identification of argu-
ment markers like claims so as to improve the end-
to-end argument extraction. More implementation
details for ArgExt-ILP are provided in Appendix B.

Ablation Studies for ArgExt-ILP: Table 6 shows
the results of ablation for the multiple objectives
used in ArgExt-ILP. It can be observed that the
objective Obj1 is the most important one as the
performance drops the most if we remove it. The
objective Obj2 is contributing when we are using
predicted claim sentences which is a more practi-
cal setting, whereas the objective Obj3 has mixed
results across various metrics. Similarly, Table 7
shows the results of ablation studies for the multiple
constraints used in ArgExt-ILP. The constraints C6

and C9 are the most significant ones as removing
them results in reduced performance consistently.

Argument Markers Identification Accuracy: Ta-
ble 8 shows the accuracy with which individual
argument markers C, AS and SP are identified. It
can be observed that individually these markers are
not identified with very high accuracy and hence
we are considering them as weak evidences.

Argument Marker P R F1
C (linguistic rules) 0.422 0.724 0.533
AS (prob ≥ 0.5) 0.356 0.612 0.450
SP (prob ≥ 0.2) 0.577 0.653 0.613

Table 8: Evaluation results for argument markers

6 Conclusions and Future Work

We proposed a technique to extract legal arguments
from Indian Supreme Court judgements by first
identifying a set of certain argument markers and
then incorporating them in an Integer Linear Pro-
gramming (ILP) framework with domain knowl-
edge based constraints. Individually, these argu-
ment markers are weak indicators of arguments
mentioned in the text of a judgement, but the in-
formation from multiple such markers gets com-
bined effectively in our ArgExt-ILP technique. We
annotated a small dataset of 10 court judgements
containing 127 legal arguments and evaluated our
techniques on it along with multiple competent
baselines. We demonstrated that ArgExt-ILP out-
performs other baselines across multiple evalua-
tion metrics. To the best of our knowledge, this
is the first attempt to extract legal arguments from
Indian court judgements and also a first arguments-
annotated dataset for the same. As part of future
work, our argument extraction techniques need to
be improved further in multiple aspects – (i) the
accuracy of identifying individual argument mark-
ers needs to be improved further which will auto-
matically improve ArgExt-ILP’s performance, (ii)
we plan to do away with some of our simplifying
assumptions to also extract overlapping and non-
contiguous arguments, and (iii) we plan to evaluate
our techniques on a wider variety of court judge-
ments such as judgements other than industrial dis-
putes and also from other geographies than India.
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A Details about linguistic rules

Following are the complete details about various
list of words used in by the linguistic rules for
identification of claim sentences.
List of causal discourse markers used in LR1
and LR2: therefore, thus, hence, consequently,
moreover, furthermore, similarly, likewise, accord-
ingly, thereby
List of nouns used in LR3: opinion, belief, im-
pression, indication, judgement, assessment, esti-
mation, position, argument, argumentation, sub-
mission, contention, objection, justification, con-
clusion, claim, clarification.
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List of verbs used in LR3: sustain, contend, argue,
debate, assert, conclude, assess, believe, maintain,
submit, show, demonstrate, prove, appear, seem,
clear, justify, conclude, claim, affirm, arrogate,
indicate, clarify, hold, opine. Also note that the
list contains only the base forms of these verbs but
while matching in the sentence, we consider all
the morphological variations such as conclude ⇒
concluded, concluding, concludes.
List of negative adjectives used in LR4: unfair,
erroneous, incorrect, wrong, inaccurate, inexact,
imprecise, invalid, fallacious, misleading, illogi-
cal, unsound, faulty, flawed, spurious, unfounded,
unjustified, illegal, inappropriate, inconsistent, un-
sustainable, unwarranted
List of positive adjectives used in LR4: correct,
accurate, exact, precise, valid, logical, justified,
warranted, consistent, sustained, fair, legal, appro-
priate, permitted, maintainable.
List of negative adverbs used in LR4: inconsis-
tently, unfairly, erroneously, incorrectly, wrongly,
mistakenly, illegally, inappropriately, spuriously.
List of positive adverbs used in LR4: consistently,
fairly, correctly, legally, appropriately.

B Implementation Details

For solving ILP programs in ArgExt-ILP, we used
the glpk solver8 through Python’s pyomo library9.
For better running time efficiency, we split each
judgement into two parts, solve two separate ILP
programs, and later merge their solutions to get the
final output. We used M = 10 so that at most 20
arguments can be extracted from each judgement.
Also while splitting a judgement, we make sure
that it is always split at a paragraph boundary. As
there is a constraint (C9) which ensures that no
extracted argument can cross paragraph boundaries,
we believe that this is a reasonable approximation.

C Annotation Guidelines

The following guidelines were shared with the an-
notators.
Goal: To identify legal arguments mentioned in
court judgements. We assume each legal argument
to be a chunk of contiguous sentences in the court
judgement such that each chunk corresponds to a
complete and coherent argument.
Annotation format: For each coherent and com-
plete argument (consisting of a chunk of k con-

8https://www.gnu.org/software/glpk/
9https://pypi.org/project/Pyomo/

tiguous sentences), the the following details are
noted – Filename (file name of the court judgement),
StartSentNo (sentence number of the first sentence of an

argument), EndSentNo (sentence number of the last sen-

tence of the argument), ClaimSentNo (sentence number

of the sentence which contains the key claim/conclusion of

the argument).

General guidelines:
1. Only contiguous sentences should be identified
as an argument.
2. No overlapping arguments should be identified.
3. Each identified argument should be “complete”
(as self-sufficient as possible to understand it) and
“coherent” (should be mainly related to only one
topic or legal point).
4. There should be at least one sentence in an argu-
ment which contains some “claim” being made or
some “conclusion” being arrived at or some legal
point be argued about. It also includes some opin-
ion being expressed or some decision (or evaluation
of lower court decision) that judge/court arrives at.
Generally, the ultimate “claim” in an argument oc-
curs either as the first sentence or the last sentence
within the contiguous sentences identified as a le-
gal argument. Some examples of "claims" are as
follows:
• the leniency shown by the Labour Court is clearly unwar-

ranted and would in fact encourage indiscipline (evaluation
of lower court decision)
• The finding is based on surmises (opinion)
• the petitioner who is working as an Area Sales Executive

is not a workman within the meaning of Section 2(s) of the

Industrial Disputes Act, 1947. (conclusion or legal point)

Some examples of sentences which DO NOT con-
tain any "claim":
• A review application, however, was filed inter alia on the

premise that the workmen were not entitled to claim any bonus.

(a past event or fact)
• Section 12 of the Act provides the duties of the Conciliation

Officer. (referring to a statute)
• This Court while allowing the appeal directed the respon-

dent No.2 the Labour Commissioner, Chandigarh to make a

reference under Section 12 of the Act. (direction by a court)

Please note that the above are just some types of
sentences which are not “claims” such as a past
event, fact, direction by a court, or reference to a
statutes, etc. There may be several additional types
of sentences which are not “claims”.
5. There should be at least one sentence in an argu-
ment which contains supporting facts, statements,
evidences, or any other premises including prior
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cases, statutes etc. which support the major “claim”
or “conclusion” in the argument.
6. An argument may consist of a single sentence,
i.e., both “claim” and its supporting premises are
present in the single sentence.
7. Even if we are using the terminology “argu-
ment”, the argument need not be made only by the
contesting parties (appellant/plaintiff and respon-
dent/defendant). The argument may correspond to
reasoning given by lower court / current court to
arrive at certain conclusion.
8. There can be multiple “claims” in an argument.
But there exists only one major claim which may
be supported by intermediate claims.
9. Opinion of any court (judge) can be considered
as a claim. E.g., the order of Labour Court as af-
firmed by High Court can not be sustained
10. An argument can be found within sentences
which are quoted from some prior case. That means
the sentences are not about the current case but
show why certain argument was made or decision
was taken in a prior case.
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Abstract

Learning to make effective arguments is vital
for the development of critical-thinking in stu-
dents and, hence, for their academic and ca-
reer success. Detecting argument components
is crucial for developing systems that assess
students’ ability to develop arguments. Tra-
ditionally, supervised learning has been used
for this task, but this requires a large corpus
of reliable training examples which are often
impractical to obtain for student writing. Large
language models have also been shown to be
effective few-shot learners, making them suit-
able for low-resource argument detection. How-
ever, concerns such as latency, service reliabil-
ity, and data privacy might hinder their practi-
cal applicability. To address these challenges,
we present a low-resource classification ap-
proach that combines the intrinsic entailment
relationship among the argument elements with
a parameter-efficient prompt-tuning strategy.
Experimental results demonstrate the effective-
ness of our method in reducing the data and
computation requirements of training an argu-
ment detection model without compromising
the prediction accuracy. This suggests the prac-
tical applicability of our model across a variety
of real-world settings, facilitating broader ac-
cess to argument classification for researchers
spanning various domains and problem scenar-
ios.

1 Introduction

In today’s educational landscape, the development
of critical thinking and persuasive writing skills
holds significant importance. The ability to con-
struct compelling arguments is essential for effec-
tive communication and argumentative writing en-
ables students to express ideas clearly, present clear
evidence, and address counterarguments effectively.
These skills are vital for academic success, profes-
sional growth, and civic engagement (Farra et al.,
2015; Bertling et al., 2015). Therefore, having a
system to analyze and detect argumentation in stu-

dents’ writing would be essential for educators to
assess and provide feedback on students’ argumen-
tative skills and foster continuous growth in their
argumentative writing skills. Furthermore, by us-
ing the tool to evaluate their writing, students can
identify any weaknesses or gaps in their arguments
and make necessary revisions independently. This
promotes self-reflection and empowers students to
take ownership of their learning, improving their
critical thinking and communication skills.

However, the task of detecting arguments within
students’ essays poses several challenges due to
the nuanced nature of argumentation. Construct-
ing an argument involves presenting a “claim” and
supporting it with “premises.” However, claims
can take various forms, ranging from explicit state-
ments to implicit assertions that require inferential
reasoning. Similarly, premises may be stated ex-
plicitly or indirectly implied, further complicating
the process of argument detection.

Traditional supervised models for argument anal-
ysis often rely on large amounts of training data to
achieve satisfactory performance. Collecting and
annotating such data can be time-consuming and
resource-intensive, making it challenging to build
large training datasets that cover the diverse range
of argumentative patterns and structures present in
student essays. Moreover, the practical deployment
of large language models such as GPT (Radford
et al., 2019; Brown et al., 2020) and PaLM (Chowd-
hery et al., 2022) can be hindered by cost, latency,
and data privacy concerns.

To address these challenges, we introduced an
argument classification approach that combines the
inherent linguistic characteristics of argumentation
with advanced machine learning techniques. We
showed the efficacy of exploiting the natural lan-
guage inference (NLI) relationship between argu-
ment components to prime a pre-trained language
model for the argument detection task. By merging
this with a well-suited prompt-tuning strategy, we
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established a streamlined architecture that effec-
tively reduces the data and computation require-
ments of training an argument detection model
without compromising the prediction accuracy.

We evaluate the performance and generalizabil-
ity of our approach across two scenarios: one char-
acterized by availability of reliable training data,
and the other representing a resource-constrained
noisy domain more akin to real-world settings. In
both cases, our approach yielded competitive re-
sults, often surpassing the performance of resource-
intensive alternatives in classifying argument com-
ponents. This suggests the practical viability of our
model across a variety of real-world settings. We
believe that our approach has the potential to make
argument classification accessible to a wider range
of researchers and problem domains.

2 Argumentation as Entailment

Automated argument detection systems have the
potential to help teachers and students by offering
a consistent and objective means of evaluating stu-
dents’ work, providing them with timely feedback
to enhance their critical thinking and argumentative
skills. By automating the process of identifying
argument components like claims and premises,
educators can redirect their efforts toward other
crucial aspects of teaching and providing person-
alized support to students. However, developing a
reliable and accurate automatic system poses cer-
tain challenges. Natural language processing al-
gorithms must be sophisticated enough to compre-
hend the nuances of human language, including var-
ious writing styles and levels of proficiency. The
system must also recognize context and cultural
differences to avoid misinterpretations.

To address these challenges, we propose lever-
aging semantic relationships between argument el-
ements by framing the argument detection task as
natural language inference (NLI). NLI involves
discerning the semantic connection between two
sentences, where one sentence logically follows
(entails) from the other (van Benthem, 2008; Mac-
Cartney and Manning, 2009). This notion of entail-
ment and contradiction serves as a foundation for
enhancing the semantic representation of various
natural language understanding (NLU) problems,
including parsing, coreference resolution, and rea-
soning tasks (Bowman et al., 2015). Similarly, we
argue that the NLI framework can be effectively
extended to capture the semantic relationships be-

tween different components within argumentation.
For instance, a counter-claim may contradict the
main claim of an argument, or a supportive premise
might entail the corresponding claim (Cabrio and
Villata, 2013).

We believe that this formulation allows NLP
models to leverage their inherent understanding of
semantic relationships between logical elements to
recognize whether a sentence provides the neces-
sary support or context for a given argument com-
ponent, and facilitate the development of argument
component classification systems, even with a lim-
ited volume of training examples. However, em-
ploying the entailment paradigm for argument clas-
sification requires (a small set of) reliable labeled
training data and careful consideration of complex
structure of argumentation to ensure accurate and
robust results.

3 Proposed Approach

Given that a primary emphasis of this research lies
in addressing the challenges posed by resource-
limited and noisy conditions in student essay
argument detection, we naturally lean towards
the utilization of zero-shot/few-shot classification
methodologies. In Section 3.1, we discuss how to
leverage the inherent structure of zero-shot classi-
fication to improve the performance of argument-
detection models, and in Section 3.2, we discuss an
approach based on efficiently tuning prompts for
argument component classification using a small
set of training examples.

3.1 Entailment Tuning (ARG-NLI)

Zero-shot classification is a machine learning ap-
proach that allows a model to classify instances be-
longing to classes it has never seen during training.
Zero-shot classification in NLP is often approached
as an NLI problem, where the goal is to determine
the relationship between two sentences: a premise
(not to be confused with the premise in argumenta-
tion) and a hypothesis, categorized as “entailment,”
“contradiction,” or “neutral”. This framework can
be extended to zero-shot classification by casting
the classification task as an entailment problem,
where the input serves as the premise, and the hy-
pothesis corresponds to a descriptive representation
of the target class (Yin et al., 2019).

As we mentioned in Section 2, the relation be-
tween argument components can be represented as
entailment relations:
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• a premise “entails” the corresponding claim
(premise → claim)

• a claim “entails” the stance of the essay
(claim → stance)

• a counter-claim “contradicts” the
stance and claims of the essay (counter-
claim ⊥ stance)

• unrelated argument components are “neutral”
to each other

We believe further fine-tuning a zero-shot classi-
fier (i.e., a pre-trained transformer-based model
trained for NLI task (Bowman et al., 2015;
Williams et al., 2018)) on a small set of argu-
mentative training data orchestrated as the entail-
ment task (we refer to this as ARG-NLI) would
help the model better understand the semantic
relationship between different argument compo-
nents (i.e., between premise and claim, between
claim and stance, and between counter-claim and
claims/stances). By fine-tuning zero-shot models
through ARG-NLI, we anticipate improvements in
performance of such models on the task of argu-
ment component classification.

3.2 Prompt-Based Tuning (Bart-PEPT)

Large pre-trained language models like GPT (Rad-
ford Alec et al., 2018) and BERT (Devlin et al.,
2019) have achieved impressive results in NLP
benchmarks. However, fine-tuning these models
on downstream tasks requires a large dataset of la-
beled data, which may be a barrier for many NLP
tasks. In-context learning is an alternative approach
that allows large language models (LLMs) to learn
new tasks from a few examples, where a single
pre-trained model with fixed parameters is shared
across all downstream tasks (Radford et al., 2019).
This approach works by providing the model with
a prompt design for a given task. A prompt is a
hand-crafted piece of text that describes or provides
examples of the task, usually in natural language.
For example, to condition a model for sentiment
analysis, one could attach the prompt, “Is the fol-
lowing sentence positive or negative” before the
input sequence, “No reason to watch.”

Le Scao and Rush (2021) show that a prompt
may be worth 100 conventional data points, sug-
gesting that prompts can bring a giant leap in
sample efficiency; sharing the same frozen model

across tasks also greatly simplifies serving and al-
lows for efficient mixed-task inference. However,
task performance can be highly dependent on the
prompt design; seemingly trivial changes to the
prompt may affect the results. Prompt tuning is
an emerging research area that aims to address the
limitations posed by manually crafted prompts. In-
stead of relying on fixed prompts, this approach
leverages tunable prompts that are dynamically
generated from a small set of training examples.
Prompt tuning can improve sample efficiency and
enable the seamless integration of mixed tasks, fa-
cilitating more effective and versatile inference pro-
cesses (Schick and Schütze, 2020; Gao et al., 2020;
Qin and Eisner, 2021; Zhong et al., 2021; Li and
Liang, 2021; Liu et al., 2021; Zhao et al., 2021).

In addition to natural language prompts, LLMs
can also be primed by soft prompts. These soft
prompts are learnable vectors rather than pre-
existing vocabulary items (Qin and Eisner, 2021;
Zhong et al., 2021; Han et al., 2022). This mech-
anism allows for end-to-end optimization over a
training dataset, and for the prompt to serve as a
mechanism for condensing information from large
datasets (Lester et al., 2021).

Parameter efficient prompt tuning (PEPT)
(Lester et al., 2021) is a (soft) prompt tuning ap-
proach that focuses on optimizing only a small
subset of the model’s parameters, specifically the
prompt, while keeping the rest of the parameters
fixed. PEPT was initially introduced in the context
of the T5 model (Raffel et al., 2019) for text-to-text
problems. Lester et al. (2021) show that by just
tuning the prompt rather than fine-tuning the entire
model, T5 can achieve comparable performance on
generation and NLU tasks.

Inspired by this, we adapted a version of PEPT
to utilize Bart (Lewis et al., 2019) as the core trans-
former model and made slight modification by in-
corporating a linear classification head. This model
serves as our approach for few-shot classification
using smaller language models (SLMs). The over-
arching architecture of PEPT is illustrated in Fig-
ure 1. PEPT operates by attaching a tunable vector
of numbers to the beginning of the (encoded) in-
put, which functions as the prompt. During the
training process, the model parameters are frozen,
and gradient updates are only applied to this (soft)
prompt vector. Subsequently, the trained prompt is
concatenated to the beginning of each input during
inference to generate predictions.

66



Figure 1: PEPT Model Structure (Lester et al., 2021)

4 Evaluation Methodology

In order to examine the practical viability of our
proposed low-resource argument classification ap-
proach in a variety of real-world settings, we eval-
uate the performance and generalizability of our
methods in two different scenarios: (i) a problem
domain characterized by an abundance of reliable
training data (Section 5.1), wherein the availabil-
ity of the data allows for training traditional su-
pervised models, and (ii) a resource-constrained
noisy domain more akin to real-world conditions
(Section 5.2), wherein LLMs as an effective low-
resource alternative to supervised training, may
seem a more suitable option to approach the prob-
lem. While we were able to carry out a small anno-
tation project to collect data for the middle school
domain, such annotations may not be feasible, es-
pecially if we wish to adapt the system to multiple
new domains.

Further information about these problem do-
mains can be found in Section 4.1. The detailed
overview of the baseline models we established
for both the supervised and zero-shot/few-shot
LLM training approaches, as well as the details
of our proposed low-resource argument classifica-
tion methods, are discussed in Section 4.2.

4.1 Problem Domains
4.1.1 Abundance of Reliable Data
In our first set of experiments we use the dataset
from Stab and Gurevych (2017), which we refer to
as SG17 in this work. This is a well-known, reli-
able dataset of argumentation annotations contain-
ing essays from “essayforum.com”, a site where
users submit their academic essays for feedback.

By leveraging this dataset, we can train tradi-
tional supervised models as benchmarks for top-
line performance for the argument classification
problem and allows us to assess the comparative ef-

SG17 ARG
train test train test

Claim 1,800 457 64 202
Premise 3,023 809 64 799

Table 1: Total number of samples in each class for
sentence-level datasets for Experiment 1 (SG17) and
Experiment 2 (ARG).

fectiveness of our proposed approach against these
traditional methods in an ideal scenario where reli-
able training data is available.

The statistics of class distribution of examples in
SG17 dataset is shown in Table 1. For simplicity,
we project the label of the clauses onto sentences
and use the dataset at sentence level in all of our
experiments. It’s important to highlight that there
are sentences that contain multiple clauses with
different labels (e.g., “CLAIM because PREMISE”).
However, these cases are comprising only about
2% of the dataset, wherein we assign the label of
the minority class to theses sentences to enhance
the diversity of the class distribution within our
sentence-level dataset.

4.1.2 Limited Noisy Data
A second set of experiments was conducted on
an in-house dataset of students’ essays, which we
refer to as ARG. We consider this our low-resource
and noisy domain and use these experiments to
demonstrate that our approach is suitable for such
real-world settings.

This dataset comprises of essays written by stu-
dents in grades 5 through 9 who reside in the United
States. These essays, along with the prompt, were
presented to eight annotators as part of the an-
notation project. Annotators were asked to pro-
vide a score along four different persuasive dimen-
sions (claim, counter-claim, premise, and persua-
sive strategy), and to select a text span as the ra-
tionale for that score. We consider these ratio-
nales as our argument components, and used a
remapping heuristic to project them to the binary
{Claim, Premise} classes (see Appendix A for
more details).

4.2 Argument Classification Models

In this section, we present the technical details
of our proposed low-resource argument classifi-
cation approaches. Furthermore, we outline the
supervised, SLM, and LLM-based baselines that
we have established as alternative methods.
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4.2.1 Supervised Models
We establish two supervised argument classifier
baselines as follows:

Bert-Sequence We use the HuggingFace (Wolf
et al., 2019) bert-base-uncased (Devlin et al.,
2018) model with a classification head to predict
whether a sentence is either a Claim, or a Premise.

Bert-BIO We adopt the model architecture in-
troduced by Alhindi and Ghosh (2021), which
employs a BIO classification scheme to iden-
tify and classify argument components. We
use bert-base-uncased as the base transformer
model and train a token-level classifier head on
top. This baseline aims to label each token as
B-claim, I-claim, B-premise, I-premise, or O.
For consistency in our evaluation, we incorporate a
label projection heuristic to map BIO prediction to
sentence-level labels, as discussed in Appendix B.

4.2.2 Large Language Models
To establish our LLM-based baselines, we utilize
the OpenAI GPT-3 models in zero-shot and few-
shot settings. In the zero-shot configuration, the
model relies solely on its pretrained knowledge
without any task-specific fine-tuning. In the latter
setup, we provide the model with a limited amount
of task-specific examples to adapt it to our argu-
ment detection task. It’s also important to note that
at the time of conducting this study, the newer GPT-
4 model was not publicly accessible, restricting our
experiments to the utilization of the GPT-3 version.

GPT3:Zero-shot We use text-davinci-001
via the OpenAI Completion endpoint1 with the
following prompt:

Classify the text as
{claim_label} or {premise_label}.
Text: {sentence}
Label:

For each sentence in the test set, we re-
place the placeholder in the prompt with that
sentence and feed it to the completion end-
point. We experiment with a couple differ-
ent values for claim_label ({Claim|Idea}) and
premise_label ({Premise|Support}) due to a
trait of generative models that “causes probability
to be rationed between different valid strings, even
ones that differ trivially” (Holtzman et al., 2021).

1https://openai.com/blog/openai-api

We then pick and report the result of the combina-
tion that performs best within each experiment and
problem domain.

GPT3:Fine-tuned The extensive pretrained
knowledge of LLMS enables them to adapt effi-
ciently to specific tasks or domains, even with a
relatively small number of training examples, mak-
ing them a potentially suitable low-resource base-
line for argument detection tasks. Accordingly, we
fine-tuned a GPT3-DaVinci model via the OpenAI
endpoint using 64 randomly sampled sentences
from each class and obtained predictions from the
completions endpoint.

4.2.3 Smaller Language Models
Bart-MNLI:Zero-shot We use the HuggingFace
port of facebook/bart-large-mnli out of the
box as our zero-shot baseline. This is a checkpoint
for the Bart-large model (Lewis et al., 2019) after
training on the MultiNLI (MNLI) dataset (Williams
et al., 2018). Similar to the GPT3:Zero-shot base-
line, we used a simple prompt template of:

This sentence is {label}

Again, we experiment with a couple differ-
ent values for claim_label ({Claim|Idea}) and
premise_label ({Premise|Support}). Our ex-
periments revealed that employing the labels
{Idea|Support} yielded the the most promising
and robust results, so we present and discuss the
results of this label configuration in this study.

Adjustment for Bias. The language models, in-
cluding our Bart-MNLI:Zero-shot baseline, may
exhibit biases towards certain values within the
answer space. For example, there could be an im-
balance in the training data, resulting in a higher
likelihood of predicting certain answers, such as
“positive”, over others like “negative”.

To address this issue of prompting bias, we im-
plemented a threshold adjustment strategy as sug-
gested by Sun et al. (2022). We initiated this pro-
cess by determining the probability of an empty
input (x = “”) being classified as “claim” by query-
ing the model with the prompt:

[x] is an idea

This probability value serves as the basis for es-
tablishing the threshold used to categorize inputs
as claims. For instance, if the probability of being
claim for the empty input be 0.63, any input with
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a probability of lower than 0.63 would no longer
be classified as a claim, whereas any value above
0.5 would have been categorized as such prior to
the bias adjustment. This strategy has the potential
to enhance the fairness, accuracy, and reliability of
our zero-shot baselines, making them more equi-
table and dependable classifiers.

4.2.4 Our Proposed Models
ARG-NLI In order to investigate the effective-
ness of using the entailment formulation of argu-
ment classification problem as we proposed in Sec-
tion 3.1, we randomly picked a few essays from the
training datasets and created the entailment pairs
for the premises and related claims, and claims and
major claims. The SG17 dataset (Section 4.1.1)
contains relation annotations in the form of (source,
target) tuples, where the source claim/premise ei-
ther supports or attacks the target claim/premise.
An attacking claim is also known as a counter-
claim. In addition to claims and premises, major
claims that express the writer’s stance towards the
prompt are also annotated. We used this informa-
tion to create the NLI representation of argumenta-
tive annotation of claim and premises in SG17, as
follows:

• claims entail major claims in the same essay

• premises entail their related claim

• counter-claims contradict their related major
claim

• premises of an essay are neutral towards the
claims of other essays

Our in-house ARG dataset (Section 4.1.2) does
not have the relation annotations so we used a sim-
ple heuristic to relate the argument components:

• claims within an essay entail one another

• premises entail claims within the same para-
graph

• counter-claims contradict all the claims in
the same essay

• premises of an essay are neutral towards the
claims of other essays

After creating the NLI representation of ar-
gumentation datasets (pair of sentences with ap-
propriate entailment label), we use them to fine-
tune the same Bart:MNLI:Zero-shot we used

in Section 4.2.3. We then used the fine-tuned
model in zero-shot classification fashion– feed in
a single sentence and prompt the model to deter-
mine whether the input sentence is a claim, or a
premise?

Bart-PEPT As mentioned in Section 3.2, we
developed a modified version of the model in-
troduced by Lester et al. (2021) to operate on
facebook/bart-large-mnli of HuggingFace for
“classification” tasks as our approach for few-shot
classification using SLMs.

ARG-NLI + Bart-PEPT This variation of Bart-
PEPT uses the argument-NLI finetuned version of
the Bart we developed (a.k.a, ARG-NLI) as the core
transformer model; a prompt is then tuned on top
of this base model.

5 Experiments

5.1 Exp. 1: Large Reliable Training Data

In this experiment, we use the SG17 dataset de-
scribed in Section 4.1.1 to evaluate our model in a
scenario where a large corpus of reliable training
data with argument annotation is available.

The anticipation is that supervised models
will excel in the task of distinguishing between

“claim” and “premise” sentences within this con-
text. Therefore, our main objective of this is to ex-
plore the comparative capabilities of our proposed
low-resource alternative models in relation to the
well-established supervised training paradigm.

We trained all argument classifier models on
the SG17 train set described in Table 1. The
Bert-Sequence, and Bert-BIO baselines are
trained on the entire training set of the SG17,
which consists of 4.8K sentences with 115K to-
kens. The zero-shot baselines (GPT3:Zero-shot
and Bart-MNLI:Zero-shot) are not exposed to
any training examples. The GPT3:Finetuned and
Bart-PEPT models are trained with 64 claim ex-
amples and 64 premise examples from the training
set. For entailment tuning for ARG-NLI model, we
randomly picked 20 essays from the train set and
created the argument component pairs of “entail-
ment” and “contradiction” examples.

Overall, we fine-tune the Bart-MNLI model with
700 argumentative entailment examples and eval-
uated that as a zero-shot classifier on the test set
of SG17. For more details on our argumentative
entailment dataset please refer to Appendix D.
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Model SG17 ARG
Supervised

Bert-Sequence 72% 66%
Bert-BIO 69% 62%

L(arge)LM
GPT3:Zero-shot 61% 56%
GPT3:Finetuned 66% 62%

S(mall)LM
Bart-MNLI:Zero-shot 52% 51%

Our approach
ARG-NLI 61% 59%
Bart-PEPT 70% 72%
ARG-NLI + Bart-PEPT 73% 77%

Table 2: Macro-F1 scores for argument classification
across various models and training paradigms for Ex-
periment 1 (SG17) and Experiment 2 (ARG). The bold-
faced numbers indicate the best performing models.

5.1.1 Results

Table 2 shows the macro-F1 score of our models
in classifying 1.3K argument-related sentences of
the SG17 test set as either “claim”, or “premise”.
As expected, both supervised baselines are capa-
ble of reliably predicting the correct label for the
argument components within this dataset, with the
sequence classifier baseline (F1 = 72%) performs
better than the token classifier baseline (F1 = 69%).

Both zero-shot baselines yield sub-par perfor-
mance compared to their counterparts. Also in line
with our expectations, the LLM-based baseline out-
performed the SLM-based baseline (61% versus
52%). These results highlight the challenging na-
ture of argument classification, indicating that dis-
tinguishing between claims and premises involves
subtleties beyond what can be achieved through
simply prompting pre-trained transformers. In-
corporating argument entailment tuning (ARG-NLI)
leads to a substantive 9% enhancement over the
SLM zero-shot baseline (61% vs. 52%), indicating
that priming models with the entailment relation-
ship between argument components can make them
better zero-shot learners for the task.

Fine-tuning LLM on the task with 128 training
examples led to a 6% performance increase com-
pared to the baseline achieved by the zero-shot
LLM. However, with the same number of train-
ing examples, our Bart-PEPT approach achieved
a remarkable F1 performance of 70%, trails the
best-performing supervised alternative by only 2%,
even though the latter is trained on a corpus over

35 times larger. Furthermore, once we combined
our argument NLI fine-tuned model with PEPT
(ARG-NLI + Bart-PEPT), we achieve a substantial
21% improvement over the SLM zero-shot baseline
and 3% over our Bart-PEPT model. This model
surpasses the top-performing supervised model in
terms of F1 performance, despite using only a frac-
tion of the training data.

5.2 Exp. 2: Limited Noisy Training Data

In this experiment, we evaluate our model on the
ARG dataset (described in Section 4.1.2), a sce-
nario more akin to real-world conditions, wherein
a large corpus of reliable training data is not avail-
able. In this setting, we annotate about 1.2K argu-
mentative sentences of student’s essays. We used
128 of these examples for training the models and
held-out the remainders for testing.

Since there is not enough data to train a robust
supervised model, we anticipate that traditional su-
pervised models will fail to accurately distinguish
between “claim” and “premise” sentences in this
experiment. Therefore, this experiment would help
us to assess the applicability of our proposed low-
resource argument classifier approaches as an al-
ternative to data and resource intensive supervised
and LLM baselines.

We trained the Bert-Sequence,
GPT3:Finetuned and Bart-PEPT models on
the 64 claim examples and 64 premise examples of
our in-house argumentative student writing dataset
ARG. The Bert-BIO baseline a variation of ARG
dataset with token-level annotation, containing
68 claim and 96 premise entities. Appendix C
presents the BIO statistics of ARG dataset.
The zero-shot baselines (GPT3:Zero-shot and
Bart-MNLI:Zero-shot) are not exposed to any
training examples. In addition, we used the ARG
training essays to create 700 argument component
pairs with entailment labels. We then leverage this
dataset to finetune our proposed ARG-NLI model.

5.2.1 Results
The numbers under the ARG column of Table 2 are
showing the macro-F1 score of different models in
classifying 1K argument-related sentences of our
ARG test set as either “claim” or “premise”.

Although both the sequence and BIO supervised
classifier baselines are still performing in a rea-
sonable range (62% and 66%, respectively), we
observe a noticeable drop (5% on average) in per-
formance compared to the previous experiment,
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which was conducted on a larger training dataset.
These outcomes corroborate that supervised ap-
proaches rely heavily on access to high-quality
training data, a requirement that does not consis-
tently align with resources available for various
real-world NLP problems.

Consistent with previous experiments, zero-shot
baselines continue to show relatively poor perfor-
mance on this dataset (51% and 56% for SLM and
LLM zero-shot baselines respectively). This out-
come, however, is inline with expectations, as these
baselines are not trained with examples from the
target domain. Our proposed argumentative entail-
ment fine-tuning approach (ARG-NLI) exhibits an
8% improvement over the SLM zero-shot baseline
(59% vs. 51%). These consistent observations
from both of our experiments demonstrates the ef-
fectiveness of pre-training (smaller) foundational
models with the inherent entailment structure of
argument elements. This approach helps models
comprehend the semantic structure of argumenta-
tion more thoroughly, leading to improved perfor-
mance as zero-shot learners for the task.

Fine-tuning LLMs with domain-specific train-
ing data shows certain performance enhancements
compared to their zero-shot counterparts (62% vs.
56%). However, similar to the previous experiment,
these improvements remain limited. Despite the
relatively high costs associated with using LLMs,
their performance as a low-resource solution still
falls short of being viable for production deploy-
ment in the argument classification task.

As shown in Table 2, our prompt-based tuning
approach Bart-PEPT outperformed all other meth-
ods in this low-resource setting (F1=72%). More-
over, once it uses our ARG-NLI model as the core
foundation models, we observe an additional 5%
performance boost. These outcomes underscore the
suitability of our proposed approach as a reliable
and accurate method for argument classification
in low-resource domains. Our approach achieves
results on par with data and resource-intensive su-
pervised and LLM alternatives within resource-
abundant contexts, while outperforming them in
problem domains lacking such extensive training
corpora. This positions our approach as a versatile
choice for a broader range of problems.

5.3 Latency Analysis

While LLMs can yield reasonable results with a
small number of training examples, fine-tuning

Models Latency (ms)
Bert-Sequence 0.66
Bert-BIO 22.46
GPT3:Finetuned 19.74
Bart-PEPT 7.6

Table 3: Average inference time of selected argument
classifier models.

them demands extensive parameter updates, con-
suming substantial time and computation. For
instance, the fine-tuning of the GPT-3 “davinci”
model entails updating over 170B parameters,
whereas our Bart-PEPT model requires modify-
ing only 40K parameters within the prompt (the
model parameters frozen). This raises practical
concerns regarding the latency when working with
these models. Therefore, we conducted a com-
parison of inference latency among the methods
discussed in this study, as shown in Table 3.

Latency measurements were conducted on the
ARG test set, comprising 1K sentences with an
average of 17 tokens per sentence. For transformer-
based models, we use a single Tesla K20Xm GPU
with 22.5 GiB of RAM and a batch size of 32. For
GPT-3 we batched up to 20 requests, the current
maximum allowed by the completion endpoint.

6 Conclusion

In this work, we introduced an argument classifi-
cation strategy that effectively leverages the logi-
cal entailment relationship within argument com-
ponents, along with a parameter efficient prompt-
tuning technique. Our approach demonstrates re-
markable efficiency in reducing data and computa-
tional requirements for training while maintaining
high prediction accuracy. Its robust performance
across diverse scenarios highlights its practical ap-
plicability in real-world settings, making argument
classification more accessible to researchers across
various domains. Notably, the model’s ability to
achieve competence with a minimal number of ex-
amples per class sets it apart from traditional data-
intensive supervised alternatives.

Additionally, unlike expensive and time-
intensive LLM-based solutions, our proposed ap-
proach can reliably operate on smaller foundation
models such as Bart, offering expedited training
and inference, making it a cost-effective and effi-
cient solution suitable for in-house deployment and
enjoying the added benefits of data privacy.
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Limitation

The focus of this study lies in argument com-
ponent classification. A more practical applica-
tion would entail a pipeline system that initially
distinguishes argumentative sentences from non-
arguments—potentially through a separate predic-
tive model. Then, our approach in this study could
offer fine-grained insights into the usage and devel-
opmental stages of argumentation within student
writing at the claim and premise levels. It is also
important to note that while our method stream-
lines requirements, it still requires a small amount
of data for model tuning.

As future work, we intend to expand our ef-
forts towards multi-class prediction, incorporating
the “none-argument” category as a potential label.
This expansion necessitates re-annotating our in-
house dataset using an argumentative annotation
scheme, as we suspect that rationale-based anno-
tation schemes tend to classify argumentative el-
ements as non-arguments, inviting the need for a
more specific annotation guideline.

Furthermore, our company’s data privacy policy
prohibits us from publicly releasing student-written
essays. Unfortunately, we are unable to make our
in-house argument dataset (ARG) mentioned in this
work available to the public.

Ethics Statement

While we strive to contribute positively to the field
of argument detection, we are fully aware of the
ethical dimensions and potential challenges associ-
ated with deployment of AI models, particularly in
education domain. We recognize the potential for
representational harm (Suresh and Guttag, 2021),
which is complex and often challenging to quan-
tify. Biases can emerge from multiple sources, in-
cluding annotators, system designers, and the data
itself, and it can shape how claims, premises, and
arguments are defined and interpreted (Gaskins,
2023). Despite our efforts to source a diverse range
of student essays and annotators, biases within
the data are possible. We are also aware of well-
documented biases in language models like Bert
and GPT (Monarch and Morrison, 2020). These
biases could inadvertently manifest in our system’s
output, potentially perpetuating and amplifying in-
equalities.

To mitigate these risks, we have taken several
steps. Our primary intention is to assist students
in becoming better writers and reduce the burden

on teachers, fostering formative assessment. We
require teacher approval before presenting feed-
back to students, thereby minimizing representa-
tional harm by ensuring that feedback aligns with
educational objectives. Additionally, we commit
to avoiding the use of our system in high-stakes
testing or consequential decisions, thereby reduc-
ing allocational harm. We remain committed to
continuous evaluation, refinement, and transparent
communication of the ethical considerations in our
work, with the ultimate goal of fostering responsi-
ble and equitable AI adoption in education.
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A ARG Annotation

We conducted the annotation study on the Inception
platform (Klie et al., 2018). In total, eight annota-
tors double-annotated 300 essays after completing
a calibration exercise that involved annotating 30
essays. Annotators gave each essay a score along
four persuasive dimensions (claim, counter-claim,
premise, and persuasive strategy). For each dimen-
sion, the annotators selected text spans that served
as the rationale or explanation for their score, and
we take these spans to be our argument compo-
nents. A span was counted if it was selected by any
annotator, and spans were combined when more
than 10% tokens overlap.

After the annotation was completed, one of
the authors examined ten essays and created
rules to map rationale labels to the binary
{Claim, Premise} classes. In addition, based
on our review of the data, we decided to only count
double-annotated premise spans and remove any
essays that contain no claims. The rules for remap-
ping are as follows:

• claim → claim

• counter-claim → premise

• claim, premise → claim

• persuasive strategy → discard

B BIO Label Projection

In the Bert-Sequence baseline every sentence re-
ceives only one label (either claim or premise),
while the BIO baseline can predict different seg-
ments of the sentence as different argument com-
ponents. To ensure a uniform sentence-level pre-
diction scheme across baselines, we incorporate a
label projection policy as follows:

• when all predicted argument components
within a sentence are classified as the same
class, we project that prediction to the entire
sentence
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• if a sentence contains argument components
with different classes, we label the sentence
with the label of the minority class (in our
experiments, the “claim” class)

C Token-Level Annotation

Table 4 shows the token-level class distribution of
the SG17 and ARG examples, used to train the
supervised token classifier baseline.

To make the token-level dataset for our low-
resource ARG examples comparable to the
sentence-level dataset described in Table 1, we in-
cluded a similar amount of claims and premises.
The sentence-level dataset contains 64 claims and
64 premises, while the BIO dataset contains 68
claim and 96 premises entities. For both SG17
and ARG, we excluded O spans from the test set,
as only claims and premises are included in the
sentence-level experiments.

Label SG17 ARG
train test train test

B-claim 1.8k 573 62 527
I-claim 25k 6.2k 1.1k 3.8k
B-premise 3k 833 87 585
I-premise 50k 10.6k 1.8k 7.5k
O 35k - 1.4k -

Table 4: Total number of samples in each class for BIO
datasets for Experiment 1 (SG17) and Experiment 2
(ARG).

D Entailment Argument Dataset

Table 5 shows the class distribution of the 700 NLI
examples we created from SG17 and ARG datasets,
used to train our ARG-NLI fine-tuned zero-shot
model.

Label SG17 ARG
train dev train dev

Entails 263 56 225 56
Contradicts 17 4 27 7
Neutral 280 60 308 77

Total
560 140 560 140

700 700

Table 5: Total number of argument entailment samples
in each class for Experiment 1 (SG17) and Experiment
2 (ARG).

E Hyperparameters

We used the default settings of HuggingFace trans-
formers and OpenAI for most of the parameters
except the following:

• Bert-Sequence

– eps=1e-8
– lr = 2e-5
– max_length = 256

• Bert-BIO

– lr = 5e-5
– max_seq_length = 512

• LLM zero-shot

– temperature = 0
– top_p = 1
– max_tokens = 16

• LLM fine-tuned

– temperature = 0
– top_p = 1
– max_tokens = 2

• Our approach (Bart-PEPT)

– model_max_length = 1024
– prompt length = 20 tokens
– lr = 2e-5 (significantly different from the

value Lester et al. (2021) used)
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Abstract

We define an argumentation strategy as the
set of rhetorical and stylistic means that au-
thors employ to produce an effective, and of-
ten persuasive, text. First computational ac-
counts of such strategies have been relatively
coarse-grained, while in our work we aim to
move to a more detailed analysis. We extend
the annotations of the Argument Annotated Es-
says corpus (Stab and Gurevych, 2017) with
specific types of claims and premises, propose
a model for their automatic identification and
show first results, and then we discuss usage
patterns that emerge with respect to the essay
structure, the "flows" of argument component
types, the claim-premise constellations, the role
of the essay prompt type, and that of the indi-
vidual author.

1 Introduction

The field of Argument Mining (AM), which has
grown into a productive area of research during the
last decade (Stede and Schneider, 2018; Lawrence
and Reed, 2020), focuses on the tasks of automatic
identification and extraction of argumentation in
natural language. This includes the detection of
argument components, like claims (Daxenberger
et al., 2017; Schaefer et al., 2022) and premises
(Rinott et al., 2015), and the relations between them
(Carstens and Toni, 2015). Research has been con-
ducted on different text domains ranging from more
edited texts, e.g. editorials (Al-Khatib et al., 2016)
or Wikipedia texts (Rinott et al., 2015), to social
media, e.g. Change My View (Hidey et al., 2017)
or Twitter (Schaefer and Stede, 2022).

A so far relatively understudied area of interest
is the identification of argumentation strategies, i.e.,
the decisions that authors make on linearizing their
argumentation and on marking it with linguistic
expressions for persuasive effect (Al-Khatib et al.,
2017; El Baff et al., 2019). Effectiveness, which
can be described as one dimension of argumenta-

tion quality (Wachsmuth et al., 2017), depends (in-
ter alia) on using the "right" arguments for the audi-
ence, their arrangement, and their linguistic formu-
lation. This is also the case for persuasive essays,
which already have been extensively used in AM
research (Stab and Gurevych, 2014b; Wachsmuth
et al., 2016), but to the best of our knowledge not
much for modeling underlying strategies. To con-
tribute to filling this gap we utilize our own claim
and premise type annotations to extract semantic
"flow patterns" from the Argument Annotated Es-
says (AAE) corpus (Stab and Gurevych, 2017). We
argue that these types and flow patterns are fine-
grained and informative to shed more light on the
strategies authors of persuasive essays apply to
structure their texts.

The contributions of this paper are: 1) We pro-
vide a dataset with claim and premise type anno-
tations for the full AAE corpus (Sct. 3) by re-
vising and extending the prior work of Carlile
et al. (2018); 2) we trained classification models
on our annotations and present first promising re-
sults (Sct. 4); 3) we contribute to argumentation
strategy modeling by (i) extracting flow patterns of
the argument component types, also in relation to
the essay structure (roles of different paragraphs),
(ii) examining the patterns of claim and supporting
premise w.r.t. their types, and (iii) looking into the
influences of essay prompt as well as the individual
author of the text (Sct. 5).

2 Related Work

Argument Mining in Essays. Stab and
Gurevych (2014a) presented the first edition of
the AAE corpus, which consisted of 90 persuasive
essays annotated for argument components and
relations. Later, it was extended to 402 essays
(Stab and Gurevych, 2017). This corpus has
been repeatedly used for component detection
(Stab and Gurevych, 2014b; Schaefer et al.,
2022) and as a starting point for component type

76



Argument Components

Living and studying overseas
It is every student's desire to study at a good university and experience
a new environment. While some students study and live overseas to
achieve this, some prefer to study home because of the difficulties of
living and studying overseas. In my opinion, one who studies overseas
will gain many skills throughout this experience for several reasons.
First, studying at an overseas university gives individuals the
opportunity to improve social skills by interacting and communicating
with students from different origins and cultures. Compared to the
peers studying in the home country, it will be more likely for the one
who is living overseas to be successful in adapting himself/herself into
new environments and situations in life.
Second, living and studying overseas is an irreplaceable experience
when it comes to learn standing on your own feet. One who is living
overseas will of course struggle with loneliness, living away from
family and friends but those difficulties will turn into valuable
experiences in the following steps of life. Moreover, the one will learn
living without depending on anyone else.
Also, employers are mostly looking for people who have international
and language skills. Becoming successful in this study will give the
student an edge in job market. Therefore, one who has studied and
lived overseas will become more eligible for the job than his/her peers.
In conclusion, there are many difficulties a student might face when
studying and living overseas. However, living and studying overseas
gives the individual a new perspective on the subject that is studied or
in general life.
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Figure 1: Overview: Essay #5 (Stab and Gurevych, 2017) with argument component types: major claim (blue),
claim (red), and premise (green). Based on our semantic types, different variants of semantic flows are demonstrated.

annotations (Carlile et al., 2018).
Considerable work has been dedicated to auto-

mated essay quality scoring (Ke and Ng, 2019).
While essays often were assigned only holistic
scores, more recently research has shifted towards
the investigation of individual dimensions of essay
quality, e.g., coherence or persuasiveness (Nguyen
and Litman, 2018). While argument patterns and
strategies are related to essay quality, in this paper
we do not specifically investigate the implications
for quality but leave that to future work.

Argument Component Types. Type tagsets
have been proposed for different argument com-
ponents and data domains. In more formal texts
like Wikipedia articles (Rinott et al., 2015), news
editorials (Al-Khatib et al., 2016) or argumenta-
tive essays (Carlile et al., 2018) premises are cate-
gorized as study/statistics, expert/testimony, anec-
dote and/or common knowledge/common ground,
among others. Hua and Wang (2017) annotated the
types study, factual, opinion, and reasoning in ide-
bate.org texts. With respect to claims, Carlile et al.
(2018) assigned the types fact, value, and policy,
as well as Aristotle’s modes of persuasion logos,
pathos, and ethos (Higgins and Walker, 2012). Re-
cently, Chen et al. (2022) annotated argumentative
units in Amazon reviews with the types fact, testi-
mony, policy, and value in order to enable review
helpfulness prediction.1

For Twitter, Addawood and Bashir (2016) ap-
plied a set of premise types to news media accounts,
blog posts, or pictures. Dusmanu et al. (2017) an-
notated argumentative tweets according to them be-

1While their vocabulary overlaps with Carlile et al. (2018),
their definitions (except for policy) are notably different.

ing factual or opinionated. More recently, Schaefer
and Stede (2022) used the premise types reason and
external/internal evidence and annotated claims for
their un/verifiability (Park and Cardie, 2014). Other
relevant social media platforms include the subred-
dit Change My View. Hidey et al. (2017) assign
a rather unique set of types to claims, consisting
of interpretation, evaluation-rational, evaluation-
emotional, and agreement/disagreement, while an-
notating premises with logos, pathos, and ethos.

In our work, we use a modified set of claim
and premise types for annotation, which has been
derived from the annotation guidelines applied by
Al-Khatib et al. (2016) and Carlile et al. (2018).

Argument Patterns. Wachsmuth et al. (2016) ex-
periment with argumentative discourse unit (ADU)
flows. They train models on argumentative essays
in AAE (Stab and Gurevych, 2014a) to automati-
cally identify argument components in the larger
ICLE corpus (Granger et al., 2020). In contrast
to their work, we use more fine-grained semantic
classes instead of the argument component types
themselves. We expect more informative patterns
for describing the writing strategies in student es-
says. Al-Khatib et al. (2017) adapt previous work,
extract evidence types (statistics, testimony, anec-
dote) in argumentative newspaper editorials, and
show differences across automatically classified
topics.

3 Corpus & Annotation

In this section, we briefly describe the corpus we
use, i.e. the AAE corpus (Stab and Gurevych,
2017). In addition, we present our annotation
scheme, the procedure, and results.
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Examples Type

1) [...] we should attach more importance to cooperation during primary education. P
2) [...] keeping the cultural traditions in the destination countries is tremendous important. V
3) [...] teachers teach us knowledge but also the skills to tell right from wrong. F

4) Frank Zappa once said, "Mind is like a parachute, it doesn’t work if its not open" T

5)
The waste products and harmful gases produced by these factories

S
cause a significant amount of air pollution.

6)
[...] if there are no animals in the world, the balance of nature will broke down,

HI
and we, human, will die out as well.

7) [...] tourism makes up one-third of the Czech Republic’s economy. RE
8) Nowadays, time is the most valuable thing in life with increased pace. CG

Table 1: Examples of semantic type annotations. Abbreviations: P (policy), V (value), F (fact), T (testimony), S
(statistics), HI (hypothetical-instance), RE (real-example), CG (common-ground). Linguistic errors in the original
text have not been corrected.

3.1 The Argument Annotated Essays Corpus

The AAE corpus (Stab and Gurevych, 2017) con-
sists of 402 persuasive student essays, which were
written in response to a prompt (e.g. International
tourism is now more common than ever before.
Some feel that this is a positive trend, [...]. What
are your opinions on this?). The essays have been
annotated for the core components of argumenta-
tion, i.e., (major) claim and premise. Persuasive
essays tend to exhibit a rather rigid structure, which
is reflected in the actual usage of the components.

An essay starts with an introduction, which usu-
ally contains the major claim. The major claim is
the author’s main stance regarding the essay’s topic,
i.e., the prompt. The introduction is followed by
several paragraphs in which the actual argumenta-
tion unfolds. Each paragraph contains one or more
arguments, consisting of a claim and at least one
premise, the latter of which supports or attacks the
former. The claim bears a stance toward the major
claim. Thus, a unit’s argument role depends on
its position in the argumentative tree; e.g., a unit
directly relating to a major claim is a claim.

In this work, we add another annotation layer to
the corpus, claim types and premise types. While
Carlile et al. (2018) annotated semantic types for
only 102 essays, we applied our modified annota-
tion scheme to the full corpus of 402 essays.

3.2 Annotation Scheme

We derived and modified our annotation scheme
from the schemes created by Carlile et al. (2018)
and Al-Khatib et al. (2016). We annotate three

claim types (policy, value and fact) and five
premise types (testimony, statistics, hypothetical-
instance, real-example and common-ground).2 We
motivate our decision to apply a new annotation
scheme as follows: 1) In our initial experiments, an-
notating the dataset using the guidelines by Carlile
et al. (2018) was challenging and repeatedly led
to low IAA. 2) Some types were rarely annotated
(analogy, definition) or difficult to define (warrant).
These were removed from our set. 3) Some types
were also used in other studies (e.g., testimony and
statistics; Al-Khatib et al. (2016)) and allow for a
potential comparison across corpora. See Table 1
for annotation examples.

Claim Types. We annotated the same claim types
as Carlile et al. (2018) but modified their defini-
tions in order to facilitate the annotation process.
All types are defined with a focus on the author’s
argumentative intention, i.e., what they argue for.
As this is usually left somewhat implicit, the anno-
tator needs to take into account the context of the
essay to understand the author’s reasoning.

A policy claim is used to argue towards some
action to be taken or not to be taken, while a
value claim attaches a certain value to a target, e.g.,
good/bad or important/unimportant. Importantly,
this often is achieved using implicit means, which
complicates the annotation procedure. Finally, a
fact claim is used to argue in favor or against some
target statement being true or false, i.e., it asserts

2Our data and annotation guidelines can be
found here: https://github.com/discourse-lab/
arg-essays-semantic-types.
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something to (not) hold in the world. Crucially, a
fact claim does not need to state an actual truth in
the world (fact checking is a separate issue) but
is used to convince the audience of the target’s as-
sumed truthfulness or falseness. As these classes
semantically overlap to a certain degree, we apply
a claim annotation hierarchy: policy > value > fact.

Premise Types. The premise types were initially
derived from those of Carlile et al. (2018). How-
ever, as testing the guidelines in early annotation
sessions did not yield promising results, we refined
our guidelines using the evidence type definitions
of Al-Khatib et al. (2016).

A testimony unit gives evidence by stating or
quoting that a proposition was made by an expert,
authority, group, or similar. The expert can be ex-
plicitly named, but a more general usage is also
accepted, such as "Scientists suggest that...". Statis-
tics states the results of quantitative research or
studies, and also includes more general phrasings
that refer to quantitative analyses and dependencies.
The latter focuses on proportions, aggregations like
the mean, correlations, or similar dimensions.

We apply two example categories, viz. real-
example and hypothetical-instance. A real-
example describes either a real (historical) event,
that can be located in space and/or time, or a spe-
cific statement about the world. The event or state-
ment can be "proven" by an external source, which
does not need to be given. While the author’s per-
sonal experiences are treated as real-example, usu-
ally described using 1st person pronouns, state-
ments adopting any 3rd person perspective are
treated as testimony. A hypothetical-instance is
similar to a real-example, but as it is hypothetical
it was conceived merely by the author and thus
cannot be verified by an external source.

A common-ground unit includes statements be-
ing depicted as common knowledge or self-evident
fact. In other words, the author presents them as
being accepted without evidence by most readers.
In contrast with the example categories, common-
ground refers to general issues, not to specific
events or statements. Finally, we use an other
class to allow for the annotation of units that the
annotator is uncertain about. We apply the fol-
lowing premise annotation hierarchy: testimony >
statistics > hypothetical-instance > real-example >
common-ground > other.

Annotation Class Krippendorff’s α

Policy 0.78
Value 0.52
Fact 0.34

Claim Type 0.52

Testimony -
Statistics 0.16

Hypothetical-Instance 0.70
Real-Example 0.58

Common-Ground 0.42
Other -

Premise Type 0.53

Table 2: Inter-annotator agreement.

3.3 Annotation Procedure

Three annotators, one of whom is a co-author of
this paper, were trained to annotate the data. On a
paragraph-by-paragraph basis the annotation task
consists of 1) annotating the types of all claims and
2) annotating the types of all premises.

Annotators were trained in an iterative manner.
A first draft of the guidelines was tested by two
annotators in an initial round of 20 essays. Af-
terward, IAA was calculated, and feedback was
given by the annotators leading to revised guide-
lines. These steps were repeated until acceptable
IAA scores were obtained. Then, the third annota-
tor was trained using the final annotation guidelines
and another set of 20 essays. Once all annotators
were able to complete the task, they labeled the
same set of 40 essays, i.e., 10% of the corpus, in
order to calculate the final IAA scores. Finally,
two annotators continued labeling until the whole
corpus was annotated (with one single judgement).

3.4 Annotation Results

We evaluate our annotation guidelines in terms
of Krippendorff’s α (Artstein and Poesio, 2008).
In addition to the IAA by component (claim and
premise) we calculate alpha for individual seman-
tic types by using a binary "class vs. not class"
distinction. See Table 2 for the IAA.

With respect to claim types, annotators obtained
the best results for the policy class (0.78). Value
yielded a score of 0.52, while the fact class obtained
a score of 0.34. Calculating IAA on the set of all
claim type annotations received a score of 0.52.

Considering premise type annotation, the best re-
sults were obtained for hypothetical-instance (0.70)
and real-example (0.58), which are both example
classes. Common-Ground achieved a score of 0.42.
The statistics class posed a challenge for annota-
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Annotation Class Counts Proportion

Policy 344 0.15
Value 1,502 0.67
Fact 411 0.18

Testimony 22 0.01
Statistics 400 0.10

Hypothetical-Instance 917 0.24
Real-Example 717 0.19

Common-Ground 1774 0.46
Other 2 0.00

Table 3: Annotation statistics: counts and proportions.

tors (0.16). As our set of 40 essays did not pro-
vide enough testimony to calculate IAA, we cannot
present results for this class. Altogether, annotators
achieved a score of 0.53 for the set of all premise
types.

3.5 Corpus Statistics

In this work, we provide another annotation layer
for the AAE corpus. Hence, all basic corpus statis-
tics were obtained from the originally published
dataset.3 The corpus consists of 402 essays with
a mean token count of 357 (min: 207; max: 550)
and a mean sentence count of 17 (min: 8; max: 33).
On average the essays consist of five paragraphs
(min: 3; max: 7), including the introduction and
the final paragraph. The paragraphs have a mean
ADU count of 3 (min: 1; max: 12).

Our annotations show a notable class imbalance
(see Table 3). Value is the dominant claim type
with a proportion of 0.67, followed by fact (0.18)
and policy (0.15). With respect to premise types,
common-ground was annotated most frequently
(0.46). The example categories hypothetical-
instance and real-example show a comparable pro-
portion (0.24 vs 0.19), while statistics has been
identified more rarely (0.10). Testimony shows a
small proportion of 0.01. Other only has been an-
notated twice and will be ignored in the following
sections.

4 Classification of Semantic ADU Types

We fine-tune a pre-trained language model, the
roberta-base architecture (Liu et al., 2019), to pre-
dict semantic types. As input we use solely the
argument component span, without further context.
See Appendix A for details on hyper-parameters.
Our complete classification results are also pro-

3We use the Trankit Toolkit (Nguyen et al., 2021) for data
preprocessing.

vided there; in the following, we mention the main
points.

We train the semantic type classifiers sepa-
rately for the different ADU types (major claim,
claim, premise), and in addition with the variant
of combining the two claim types (major claim
and claim). Per run, the data is randomly divided
into train/dev/test with proportions 80/10/10. The
results that we report are averaged over 10 runs.

Previous State of the Art. To allow for compar-
ison with previous research by Ke et al. (2018),
we first train our neural model on their originally
annotated 102 essays (henceforth referred to as
PREVIOUS). While they provide only accuracy
(micro-average) results, we will below, in contrast,
present a more detailed report with a per-class eval-
uation. Our accuracy for claim type predictions is
better, with 76.9% compared to 69.5% reported by
Ke et al. (2018). For premise types, we achieved
70.1% accuracy, compared to 31.2%.

The main contribution to our increase in per-
formance is probably due to the pre-trained lan-
guage model. A closer look at the premises’ macro
F1 scores reveals that the only class that is well-
predicted is common-ground (81.5 F1), followed
by real-example (65.6 F1) and statistics (30.3 F1).
Three out of eight classes (analogy, testimony, and
definition) have no predictions at all, due to the
imbalanced class distribution.

Baseline. As a baseline for the experiments with
our own annotations on the full corpus (402 texts),
we take the simple prediction of the most frequent
(majority) semantic type observed in the training
data per ADU type. This yields macro scores for
major claims and claims of 26.2 F1 and 26.9 F1,
respectively, while for premises it amounts to only
13.5 F1, in part due to the higher number of classes.

Results. Trained on our annotation, the neural
model clearly outperforms the baselines. For
both major claim types (75.9 F1) and claim types
(77.2 F1), we achieved very good results. In com-
parison to PREVIOUS, our claim predictions in-
creased by 12.4 F1. While we perform better
on value and policy classification, PREVIOUS has
higher scores on fact, which is probably due to dif-
ferent label distributions: Two-thirds of the claim
labels in the data of Carlile et al. (2018) are facts.
Unexpectedly, training with a fused class of the two
claim types has not led to an improved performance.
While the F1 score for fact is marginally better, the
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Figure 2: Learning curve with respect to sample size.

performance of the other two classes (value and
policy) does not improve. Here, the results are just
in between the separately trained models.

For the premise predictions, we achieve simi-
lar performance (70.2%) as PREVIOUS in terms
of accuracy. However, the higher macro-average
of our model (56.6 F1) compared to PREVIOUS

(25.0 F1) indicates a better balance of our per-class
predictions. The complete results are shown in
Appendix A.

Data Size Learning Curve. We study how our
additionally annotated data affects the performance
of our neural model. We run the same experiments,
but after splitting the test set we use only a sub-
sample for training and development.4

Figure 2 shows the varying performance of our
models with different portions (20% to 100%) of
training data. While the increase for semantic types
of premises is not particularly high, a larger in-
crease in performance is evident for the two other
ADU classes, claim and major claim. This shows
that the effort of additional annotation is justified.

5 Pattern Extraction and Analysis

Argumentative essays have a very specific struc-
ture, as described in Section 3. Following previous
works on argument component types (Wachsmuth
et al., 2016) and argumentation strategies (Al-
Khatib et al., 2017), we hypothesize finding similar
patterns of semantic argument types in the essays.

First, we linearize the semantic types and or-
der them by their textual positions. In Figure 1,
for example, the essay starts with a value-based
major claim in the first paragraph, followed by
a value claim and a premise with semantic type
hypothetical-instance. The full sequence of seman-

4We make sure that the different component models use
the same test split across varying sample ratios.

tic types is referred to as the semantic flow of the
essay. We further abstract over semantic repeti-
tions, thus resulting in so-called semantic change
flows. For example, in the previous flow, multiple
consecutive hypothetical-instances are reduced to
a single occurrence. This abstraction leads to more
reliable/general patterns (Al-Khatib et al., 2017).
Similar to Wachsmuth et al. (2016), we use the
natural structure of argumentative essays and split
them into paragraphs, as individual arguments are
fully contained in single paragraphs. This reduces
the length of extracted patterns and their variance.

Additionally, we also study differences in the
semantic change flows of component types. For
claim change flows, besides paragraphs we study
their change flow on full documents, too. As claims
should only relate to the major claim, we assume
document-level change flows should summarize
the global structure of an essay quite well. For
premises, we restrict our study to the paragraph
level, as premises should not be connected to the
premises of other paragraphs.

Argument components show different distribu-
tions across paragraphs, with major claims only
appearing in the first and last, and premises pre-
dominantly being used in the middle paragraphs.
This has an effect on the semantic flows. See Table
4 for our semantic change flow results.

Regarding the change flows of claim types (see
Table 4 (a)), the first paragraph often only contains
flows consisting of a single unit, usually a major
claim (value: 0.35; policy: 0.18; fact: 0.07). If a
flow of two units can be found, a major claim usu-
ally precedes a claim. This pattern deviates from
the last paragraph, where the major claim is refor-
mulated. It is common for a change flow to start or
end with a major claim. The middle paragraphs are
dominated by individual claim types (value: 0.65;
fact: 0.23; policy: 0.09), while changes from one
type to another occur more rarely. With respect
to claim change flows over full essays, changes
between types most prominently occur 2-4 times.
Usually two major claim types are combined with
1-3 claim types. The value type is most commonly
applied, which is reflected by the distribution of
type annotations. Individual combinations of value
and fact types are a more common pattern than
other claim type combinations.

Considering the change flows of premise types
(see Table 4 (b)) common-ground is the most com-
mon type, It is used either as an individual flow or
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Level # Change Flow Freq

par-first 1 (M:Value) 0.35
2 (M:Policy) 0.18
3 (C:Value) 0.11
4 (M:Fact) 0.07
5 (M:Value, C:Value) 0.06
6 (C:Value, M:Value) 0.04
7 (C:Fact) 0.03
8 (M:Policy, C:Value) 0.03
9 (C:Policy) 0.02

10 (M:Value, C:Fact) 0.02

par-mid 1 (C:Value) 0.65
2 (C:Fact) 0.23
3 (C:Policy) 0.09
4 (C:Fact, C:Value) 0.01
5 (C:Value, C:Fact) 0.01

par-last 1 (M:Value) 0.23
2 (M:Value, C:Value) 0.14
3 (C:Value, M:Value) 0.14
4 (M:Policy) 0.08
5 (M:Policy, C:Value) 0.08
6 (C:Value, M:Policy) 0.04
7 (C:Fact, M:Value) 0.03
8 (M:Fact) 0.03
9 (M:Value, C:Fact) 0.03

10 (M:Value, C:Policy) 0.02

full 1 (M:Value, C:Value, M:Value) 0.09
2 (M:Value, C:Value, M:Value, C:Value) 0.05
3 (M:Value, C:Value, C:Fact, M:Value) 0.04
4 (C:Value, M:Value) 0.03
5 (M:Value, C:Fact, C:Value, M:Value) 0.03
6 (M:Value, C:Value, C:Fact, C:Value, M:Value) 0.02
7 (M:Value, C:Fact, C:Value, M:Value, C:Value) 0.01
8 (M:Policy, C:Value, M:Policy, C:Value) 0.01
9 (C:Value, C:Fact, M:Value) 0.01

10 (C:Value, M:Value, C:Value) 0.01

(a) Claim change flows.

Level # Change Flow Freq

par-mid 1 (CG) 0.20
2 (CG, HI) 0.11
3 (HI) 0.07
4 (CG, RE) 0.06
5 (CG, HI, CG) 0.04
6 (S, CG) 0.04
7 (RE) 0.03
8 (HI, CG) 0.03
9 (S) 0.03

10 (CG, S) 0.02

(b) Premise change flows.

Level # Change Flow Freq

par-mid 1 (C:Value, CG) 0.08
2 (C:Value, HI) 0.04
3 (C:Value, CG, HI) 0.03
4 (CG, C:Value) 0.03
5 (C:Fact, CG) 0.03
6 (C:Value, RE) 0.02
7 (C:Value, S, CG) 0.02
8 (CG, HI, C:Value) 0.02
9 (C:Value, CG, RE) 0.02

10 (C:Value, CG, HI, CG) 0.02
11 (C:Value, HI, CG) 0.01
12 (C:Policy, CG) 0.01
13 (CG, C:Value, CG) 0.01
14 (C:Fact, CG, HI) 0.01
15 (C:Value, S) 0.01
16 (CG, C:Fact) 0.01
17 (CG, RE, C:Value) 0.01
18 (C:Value, HI, RE) 0.01
19 (C:Value, CG, HI, CG, HI) 0.01
20 (C:Value, RE, CG) 0.01

(c) Claim and premise change flows.

Table 4: Most common change flows of semantic types for different argument components. The letters M and C
followed by a colon refer to major claim and claim, respectively. For premise types, we use the abbreviations: CG
(common-ground), HI (hypothetical-instance), RE (real-example), and S (statistics).

in combination with other types, the latter of which
most often starts with common-ground. The most
prominent change flow consisting of three types is
(CG, HI, CG). A combination of the two example
types hypothetical-instance and real-example is not
among the most frequent change flows. Statistics
most often co-occurs with common-ground.

Finally, the claim and premise change flows by
paragraph (see Table 4 (c)) reveal that a middle
paragraph most often begins with a value claim
followed by at least one premise of a certain
type. More complex change flows contain common-
ground and hypothetical-instance (e.g. (C:Value,
CG, HI); (C:Value, CG, HI, CG)). Flows including
fact claims are slightly more frequent than flows
including policy claims.

Patterns of Claim-Premise Pairs. In addition to
the extraction of semantic type flows we are inter-
ested in analyzing the patterns of claims with their
direct premise dependents (see Table 5). While
the former is focusing on linear order, the latter is

hierarchical in nature.
All claim types exhibit the same order of

types among their direct premise dependents,
i.e., common-ground is the most dominant type,
followed by hypothetical-instance, real-example,
statistics, and testimony. This order is reflected
by annotation proportions. However, differences
between claim types can be observed with respect
to the distribution of premise types. Policy claims
are associated with a notably larger proportion of
common-ground (0.59 vs. 0.47/0.43) and a smaller
proportion of real-example (0.11 vs. 0.19/0.17),
while also showing the largest difference between
common-ground and the following premise type
hypothetical-instance. Fact claims are supported
by the largest proportion of statistics (0.15 vs.
0.09/0.10). Hypothetical-instance is rather equally
distributed with a small drop for policy claims.

Effects of Prompt Type and Author. As the
argumentative essays were written in response to
prompts, we are interested in identifying their po-
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Claim Type Premise Type Proportion

Policy Common-Ground 0.59
Hypothetical-Instance 0.20

Real-Example 0.11
Statistics 0.09

Testimony 0.01

Value Common-Ground 0.47
Hypothetical-Instance 0.24

Real-Example 0.19
Statistics 0.10

Testimony <0.01

Fact Common-Ground 0.43
Hypothetical-Instance 0.25

Real-Example 0.17
Statistics 0.15

Testimony <0.01
other <0.01

Table 5: Claim heads and their direct premise depen-
dents. Only support relations are considered.

tential effect on the claim type distribution. To
achieve this we annotated each prompt with a type
from our set of claim types. As the whole prompt
can consist of multiple propositions, we only con-
sider its central message in combination with the
actual prompting sentence, which is often phrased
as a question. Consider the prompt example shown
in Section 3.1: International tourism is now more
common than ever before. Some feel that this is
a positive trend, [...]. What are your opinions on
this?. While this prompt bears some complexity,
it primarily asks the author to present their opin-
ion on whether the growth of international tourism
represents a positive or negative trend. Thus, this
prompt is labeled with type value.

After the prompt annotation, we calculated the
claim type class distribution by prompt type.5 Due
to duplicates among the prompts we only consider
370 individual prompts in our analysis (see Figure
3). While value claims are dominant across all
prompts, it is notable that the prompt type has an
effect. Policy prompts elicit essays with a rather
high policy claim proportion (0.33) while essays
in response to value and fact prompts rarely show
policy. Furthermore, essays written in response to
fact prompts show the highest proportion of fact
claims (0.28 vs. 0.15/0.16) while value prompts
elicit essays with the highest proportion of value
claims (0.77 vs. 0.52/0.68).

Another potential factor of interest is the author,
i.e., the usage of argument types may depend on the

5Prompt types are distributed as follows: policy: 0.37;
value: 0.48; fact: 0.15.
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Figure 3: Claim type proportions by prompt type.

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
0

2

4

6

De
ns

ity

Deviation Policy Claim (full)
Deviation Value Claim (full)
Deviation Fact Claim (full)

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
0

2

4

6

De
ns

ity
Deviation Policy Claim (subset)
Deviation Policy Claim (full)

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
0

2

4

6

De
ns

ity

Deviation Value Claim (subset)
Deviation Value Claim (full)

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
0

2

4

6

De
ns

ity

Deviation Fact Claim (subset)
Deviation Fact Claim (full)

Figure 4: Density plots of absolute deviation from pro-
portion median by claim type for full dataset (plot 1)
and by prompt type subset (policy: plot 2; value: plot 3;
fact: plot 4).

person writing the essay. In order to investigate this
question we calculated each essay’s absolute de-
viation from the median proportion by claim type.
The median was calculated using the 370 essays
elicited by individual prompts. We use density
plots to show the distribution of absolute devia-
tion (see Figure 4, plot 1). The analysis reveals a
substantial difference in distribution by claim type.
While the deviation from the median of the pol-
icy proportion is positively skewed, the deviation
of the value annotations shows a bimodal distribu-
tion. The fact annotations’ deviation also show a
bimodal distribution, albeit with a stark difference
in density between major and minor modes. While
being differently distributed, all claim types show
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a notable deviation from the respective proportion
median.

While both prompt and author may have an in-
dependent effect, they may interact with each other
(see Figure 4, plots 2-4; see Appendix B for a
full analysis). We show the effect of prompt type
by splitting the dataset accordingly and individ-
ually comparing the distribution of deviation per
claim type with the respective distribution of the
full dataset. Plot 2 reveals that the deviation of pol-
icy claim annotations in the policy prompt subset
is more broadly spread than in the full dataset. In
the fact prompt subset, the deviation distribution
of fact claim annotations resembles a normal distri-
bution, while it is bimodal in the full dataset (plot
4). However, the distributions of deviation of value
claim annotations appear to be similar in both the
value prompt subset and the full dataset (plot 3).

6 Discussion

Our change flow analysis reveals several frequently
occurring patterns. To begin with, an essay usually
starts with a major claim (most frequently of type
value or policy) which is sometimes followed by a
claim. The final paragraph, however, shows more
flexibility regarding the ordering of both claim vari-
ants, which shows that some authors choose to end
with a major claim, i.e., the essay’s central claim.
Moreover, middle paragraphs either contain a sin-
gle claim (a single argument) or several claims of
the same type, which may show an author’s ten-
dency to not switch between claim types within
a paragraph. Then, while both major claims and
claims are most frequently of type value, we found
a notable difference in the usage of policy and fact
types. While policy more often occurs in major
claim flows, i.e., in the first and last paragraphs,
fact is more prominently applied as a claim type
in the middle paragraphs. Thus, an essay’s central
claim is more often arguing towards some action
being taken, while the argumentation unfolding in
the essay’s body more often focuses on the question
if a target is true or not.

Regarding the usage of premise types we ob-
serve the frequent pattern of flows starting with
common-ground and ending with a different type,
or, alternatively, of common-ground framing an-
other type. Hence, authors tend to begin their flow
of premises with a general statement, followed,
e.g., by an example. Less often, common-ground
is applied to end a flow, while being rarely used in-

between types. This may be indicative of a strategy
to begin (and end) with a general observation while
more concrete statements are placed in-between.

In this work, we explore the effect of two po-
tential factors on the constellation of claim types,
prompt type and author, and their potential interac-
tion. Our prompt type analysis provides evidence
that the prompt’s phrasing has indeed an effect on
the usage of claim types, as all prompt types elicit
essays with a higher proportion of the respective
claim type. Thus, authors adapt their argumenta-
tion strategy to the task at hand. We also show
that authors exhibit a substantial variance in their
usage of claim types, which is further dependent
on the essay’s prompt type. We argue that this is
indicative of the task’s role in choosing the most
efficient argumentation strategy.

7 Conclusion

In this work, we analyzed patterns of claim and
premise types in persuasive essays to shed light on
underlying argumentation strategies. We extended
the annotations of the AAE corpus with a layer of
semantic types, which we used for automatic type
classification, pattern extraction both on the level of
change flows and argument relations, and the anal-
ysis of prompt and author effects on argumentation
strategies.

We show that semantic types of argument compo-
nents are an appropriately fine-grained level of anal-
ysis to investigate argumentation strategies. Several
common patterns of semantic type flows could be
identified. Furthermore, we provide evidence for
the effect of author and, especially, prompt type on
the adoption of argumentation strategies.

In the future, we would like to extend our scope
of analysis. Further research can include the rela-
tion between prompt type and semantic flows and
the effect of prompt type on the usage of premise
types. We are also interested in investigating the ef-
fect of semantic flows on essay quality. Finally, we
want to apply our analysis to other corpora, both
in-domain (the ICLE dataset (Granger et al., 2020))
and out-of-domain (e.g., the subreddit Change My
View).

Limitations

In this work, we use a corpus that consists of learner
essays that exhibit a rather wide range of language
levels. This may influence the distribution of pat-
terns, as presumably the argumentation will be of
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different complexity.
Furthermore, while being a standard corpus in

AM research, the AAE corpus offers only a limited
amount of data. This is reflected in some classes
being rarely represented (e.g., testimony) and af-
fects the success of the semantic type classification.
Thus, applying the framework to different data such
as the ICLE dataset becomes important for getting
a better impression of used patterns in persuasive
essays.

Further limitations concern our analyses. So
far we have not investigated the relation between
prompts and semantic flows, which could yield im-
portant insights on differences in argument patterns
with respect to the task. We also concentrated on
the effect of prompt type and author on the usage
of claim types, while ignoring their effect on the
premise type distribution.
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A Hyper-Parameters & Experimental Results

For argument component classification, we use RoBERTa (Liu et al., 2019) for sequence classification. In
particular, we choose the roberta-base architecture implemented by HuggingFace.6 We freeze the first
half of the model and only fine-tune the second half in order to reduce the computational effort.

For optimization, we use AdamW (Loshchilov and Hutter, 2019) with 5e−5 learning rate. The batch
size is set to 16 throughout our experiments. We train for 10 epochs and linearly reduce the learning rate
over the number of training steps.

The best model is chosen based on the best average loss during validation. Each component type’s
samples are randomly divided into three parts, train/dev/test with portions 80/10/10, respectively. All
experiments are repeated 10 times and the reported results cover mean and standard deviation.

ADU Semantic-Type Precision Recall F1

MAJORCLAIM fact 0.4570.218 0.4750.149 0.4480.159
value 0.9100.034 0.9180.040 0.9140.031
policy 0.9370.056 0.8980.074 0.9150.049

micro avg 0.8810.043

macro avg 0.7680.079 0.7630.065 0.7590.049

CLAIM fact 0.5920.069 0.5810.089 0.5830.067
value 0.8570.037 0.8620.032 0.8590.023
policy 0.8710.071 0.8820.059 0.8740.047

micro avg 0.8000.030

macro avg 0.7730.032 0.7750.031 0.7720.020

(MAJOR-)CLAIM fact 0.6260.069 0.5560.095 0.5870.081
value 0.8710.021 0.9010.021 0.8850.015
policy 0.8930.030 0.8740.052 0.8820.030

micro avg 0.8360.016

macro avg 0.7960.025 0.7770.026 0.7860.020

PREMISE hypothetical-instance 0.6940.065 0.6990.052 0.6950.049
common-ground 0.7390.025 0.7590.034 0.7490.024

real-example 0.7850.066 0.7310.051 0.7560.048
statistics 0.4350.050 0.4330.063 0.4310.042
testimony 0.2080.315 0.2330.335 0.1930.264
micro avg 0.7020.030

macro avg 0.5720.054 0.5710.060 0.5660.048

Table 6: Class specific results (Ours) across argument components and the combination of claims and major claims.

ADU Semantic-Type Precision Recall F1

CLAIM fact 0.8480.069 0.8720.053 0.8570.042
value 0.5840.189 0.5560.158 0.5380.115
policy 0.5790.293 0.6450.380 0.5490.288

micro avg 0.7690.061

macro avg 0.6700.104 0.6910.106 0.6480.098

PREMISE common-knowledge 0.7440.070 0.9110.063 0.8150.044
warrant 0.0580.118 0.0580.118 0.0580.118

invented-instance 0.2500.344 0.1540.238 0.1640.221
real-example 0.7710.089 0.5960.177 0.6560.120

analogy 0.0000.000 0.0000.000 0.0000.000
testimony 0.0000.000 0.0000.000 0.0000.000
statistics 0.4670.476 0.2420.270 0.3030.319
definition 0.0000.000 0.0000.000 0.0000.000
micro avg 0.7010.055

macro avg 0.2860.087 0.2450.066 0.2500.065

Table 7: Class specific results (PREVIOUS) of our model on the 102 essays annotated by Carlile et al. (2018).

6www.huggingface.com
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B Density Plots: Effects of Prompt Type and Author
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Figure 5: Comparison of density plots of absolute deviation from proportion median by claim type between full
dataset and prompt type subsets. The rows are split by claim type. The columns are split by prompt type.
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Abstract

Recent approaches to argument mining have fo-
cused on training machine learning algorithms
from annotated text corpora, utilizing as in-
put high-dimensional linguistic feature vectors.
Differently to previous work, in this paper, we
preliminarily investigate the potential benefits
of reducing the dimensionality of the input data.
Through an empirical study, testing SVD, PCA
and LDA techniques on a new argumentative
corpus in Spanish for an underexplored domain
(e-participation), and using a novel, rich argu-
ment model, we show positive results in terms
of both computation efficiency and argumen-
tative information extraction effectiveness, for
the three major argument mining tasks: argu-
mentative fragment detection, argument compo-
nent classification, and argumentative relation
recognition. On a space with dimension around
3-4% of the number of input features, the argu-
ment mining methods are able to reach 95-97%
of the performance achieved by using the entire
corpus, and even surpass it in some cases.

1 Introduction

Since its origins in the late 2000s, the argument
mining (AM) field has witnessed significant ad-
vances on the problem of automatically extracting
structured argumentative information from text cor-
pora (Lytos et al., 2019; Lawrence and Reed, 2020),
which commonly entails three tasks: the identifi-
cation of argumentative fragments in an input text,
the split or classification of such fragments into
argument components (e.g., claims and premises),
and the recognition of relations (e.g., support and
attack) between pairs of argument components.

In particular, previous research has led to the
development of effective approaches based on ma-
chine learning (ML) (Lippi and Torroni, 2015,
2016) with results almost equal to those obtained
with more complex approaches, such as those
based on deep learning. Hence, argumentative frag-
ment detection (Mochales Palau and Moens, 2009a,

2011; Poudyal et al., 2016), argument component
classification (Habernal and Gurevych, 2017; Du
et al., 2017), and argument relation recognition (Du
et al., 2017) have been modeled as sequence label-
ing problems, where, in general, each sentence1 is
represented as a vector of real-valued linguistic fea-
tures and has associated certain label or class, e.g.,
argumentative vs. non-argumentative, and claim
vs. premise. ML algorithms are thus trained with
sets of labeled sentence vectors in order to predict
the class of new sentences.

In this context, a variety of features have been
considered –ranging from lexical and morpholog-
ical, to structural and syntactic, and semantic and
discourse features (Stab and Gurevych, 2014; Aker
et al., 2017; Habernal and Gurevych, 2017)– and, in
general, approaches have dealt with feature vectors
of high dimensionality.

To the best of our knowledge, only a few re-
search attempts have been made to use a subset
of features (Poudyal et al., 2016; Du et al., 2017).
Motivated by this fact and the increasing need for
more efficient (i.e., less resource-consuming) AM
model building, in this paper, instead of exploring
new argument-related classification algorithms, we
investigate the potential benefits of reducing the
dimensionality of the input data space.

As an innovative research in the AM field,
we report experiments conducted with the well
known SVD (Beltrami, 1973; Stewart, 1993),
PCA (Hotelling, 1933) and LDA (Fisher, 1936)
dimensionality reduction techniques on a novel
corpus in Spanish with electronic (online) citizen
participation discussions, which represent an un-
derexplored domain in the field.

Considering a rich argument model with several
argument relations, and addressing the argumenta-

1The majority of feature-based AM approaches consider
the sentence as the argumentative unit. However, there are
models that also exploit other text fragments, such as the
previous and next sentences to the current sentence (Habernal
and Gurevych, 2017).
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tive fragment detection, argument component clas-
sification, and argument relation recognition tasks,
we evaluate a number of ML algorithms trained
with labeled data without and with dimensional-
ity reduction, achieving favorable results in terms
of both computation efficiency and argumentative
information extraction effectiveness. With around
3-4% of the number of input features, the argument
mining methods are able to reach 95-97% of the
performance achieved by using the entire corpus,
and even surpass it in some cases.

We thus claim the following contributions of our
ongoing work:

• Building a new argumentative corpus in Span-
ish, on an underexplored, but highly relevant
domain: e-participation, and more specifically,
e-participatory budgeting.

• Proposing a new argument model, which in-
cludes a variety of fine-grained types of argu-
mentative relations.

• Developing and evaluating machine learning-
based methods for the main tasks of the argu-
ment mining pipeline.

• Testing the effects of dimensionality reduc-
tion on the efficiency and effectiveness of the
argument mining methods.

Moreover, we make the generated argument
model, corpus, annotation tool, software code, and
empirical results publicly available2.

Before presenting our experiments (Section 5)
and conclusions (Sections 6 and 7), we next survey
related work on feature-based machine learning
AM (Section 2), and describe the addressed case
study and created corpus (Section 3) and the used
dimensionality reduction techniques (Section 4).

2 Related work

In this section, we survey previous work on apply-
ing feature-based machine learning for AM. We
discard deep learning approaches, since they are
appropriate to very large amounts of input data3.

Feature-based ML methods model AM tasks as
sequence labeling problems. They have been pro-

2Data and code are available at https://github.
com/argrecsys/arg-classifier

3Experimenting with some deep neural network architec-
tures, we did not achieve better performance results than those
reported in this paper with traditional machine learning algo-
rithms.

posed to separately address the argumentative frag-
ment detection (Mochales Palau and Moens, 2009a,
2011; Poudyal et al., 2016; Kunaefi and Aritsugi,
2020; Alhamzeh et al., 2021), argument component
classification (Mochales Palau and Moens, 2009a,
2011; Habernal and Gurevych, 2017; Burhan ud
Din Tahir, 2017), and argument relation recogni-
tion (Du et al., 2017) tasks.

The surveyed methods consider the sentence as
the argument unit, and exploit its linguistic features
to classify it. Only Habernal and Gurevych (2017)
also exploited feature information from the previ-
ous and next sentences to the target sentence. In all
cases, however, the used features are manifold, as
we will detail in Section 4.1.

From our survey, only Du et al. (2017) addressed
the argument relation recognition task. This is
not the case in recent word embedding-based deep
learning methods, which deal with the three tasks
as sequence tagging problems, by commonly fol-
lowing the BIO tagging format, e.g., (Deguchi and
Yamaguchi, 2019; Mayer et al., 2020).

With respect to the used ML algorithms, pub-
lished work has focused on logistic regression (Du
et al., 2017; Kunaefi and Aritsugi, 2020), naive
Bayes (Mochales Palau and Moens, 2009a, 2011;
Burhan ud Din Tahir, 2017), maximum en-
tropy (Mochales Palau and Moens, 2009a, 2011),
decision trees (Burhan ud Din Tahir, 2017; Du
et al., 2017), random forests (Poudyal et al., 2016;
Burhan ud Din Tahir, 2017; Du et al., 2017; Ku-
naefi and Aritsugi, 2020), and support vector ma-
chines (Mochales Palau and Moens, 2009a, 2011;
Poudyal et al., 2016; Burhan ud Din Tahir, 2017;
Du et al., 2017; Kunaefi and Aritsugi, 2020; Al-
hamzeh et al., 2021).

Additionally, as done in deep learning works,
the surveyed papers have focused on the traditional
domains and corpora of the AM field, such as
the Persuasive Student Essays corpus (Burhan ud
Din Tahir, 2017; Du et al., 2017; Alhamzeh et al.,
2021), the legal texts ECHR (Mochales Palau and
Moens, 2009a, 2011; Poudyal et al., 2016) and
AraucariaDB (Mochales Palau and Moens, 2009a,
2011) corpora, and the Web Discourse corpus (Al-
hamzeh et al., 2021), which are mostly in English.

To the best of our knowledge, in the AM re-
search literature, only Poudyal et al. (2016) and Du
et al. (2017) have explored feature selection using
information gain, reducing the input feature vector
space. In this context, a traditional pre-learning di-
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mensionality reduction approach, such as the ones
we evaluate here, has not been explored yet.

Differently from (Poudyal et al., 2016; Kunaefi
and Aritsugi, 2020; Alhamzeh et al., 2021), we do
not only focus on classifying a sentence as argu-
mentative or non-argumentative, but also aim to
classify the type of argumentative component of a
text span, i.e., a premise or a claim, and to recog-
nize the existence of a relation between a pair of
components and its type.

Finally, motivated by the need for addressing
other domains and dealing with corpora in lan-
guages distinct to English, in our work we explore
a novel domain in AM and provide a new corpus
in Spanish, which are described next.

3 Case study

In this section, we introduce the case study for
which we have built our argumentative corpus
and have implemented and evaluated the machine
learning-based argument mining methods with and
without dimensionality reduction techniques.

Citizen participation refers to the active involve-
ment of citizens in influencing on public opinion
and being part of democratic decision and policy
making processes. It represents one of the most
widespread forms of open government, and his-
torically has been conducted through physical in-
teractions like assemblies, meetings and working
groups (Gramberger, 2001).

Nowadays, under the umbrella of e-
participation (Boudjelida et al., 2016), it
often occurs on the internet, via online digital tools,
in which citizens’ opinions and contributions are
easily shared, thus generating new opportunities
for communication, consultation and collaboration
at a large scale (Held, 2006).

The majority of current e-participation platforms
are based on web forums where citizens upload
comments, forming large conversation threads.
This makes the processing of the underlying de-
bates challenging and sometimes overwhelming.
Without functionalities to support critical thinking
and argumentation, it is usually very difficult and
time-consuming for users to achieve a well-formed
view of existing problems and proposed solutions.

In our work, we focus our attention on one of
such platforms, Decide Madrid4, which is an online
web portal created by the City Council of Madrid
(Spain) to support its annual participatory budgets

4Decide Madrid, https://decide.madrid.es

since September 2015. Every year, the city resi-
dents use the platform to freely post proposals to
address issues and problems in the city, and com-
ment and vote others’ proposals. Those citizen
proposals that receive a certain number of votes
and are technically and economically feasible are
funded and implemented by the city government.
In 2021-2022, the municipal budget allocated to
such proposals has been 50 million euro.

Figures 1 and 2 show an example of a citizen pro-
posal and its comment threads in Decide Madrid.

Figure 1: Screenshot of a Decide Madrid webpage show-
ing a citizen proposal that suggests having more tree
areas close to M-30, one of the principal motorways in
Madrid.

Figure 2: Screenshot of a Decide Madrid webpage show-
ing the comment threads of a citizen proposal.

Both proposal descriptions and comments are
rich on argumentative information, which may be
very valuable for citizens and government stake-
holders, and which we aim to extract in our work.
For this purpose, we consider the Decide Madrid
dataset used by Cantador et al. (2017, 2020), which
contains information about 21,744 citizen propos-
als ––classified into 30 categories and 325 topics,
geolocated in 21 city districts, and annotated with
controversy scores––, and 62,838 comments.

From this dataset, we selected the 40 most con-
troversial proposals, and collaboratively searched
for and annotated the arguments given by citizens
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in the proposals descriptions and comments, gen-
erating a first version of a corpus that we make
publicly available5. To ease the manual argument
annotation process, and store the identified argu-
ments in a formal, structured format –including
the components and relations of the arguments–,
we used ARGAEL (Segura-Tinoco and Cantador,
2023), an easy-to-use, configurable desktop tool
that we have developed to assist with the argument
annotation and evaluation task, and which can be
freely downloaded6.

Our corpus is composed of 3,254 propositions
annotated with 922 claims and 538 premises inter-
connected, and to the best of our knowledge, ours
is one of the first argumentative corpora in Spanish
in the AM field.

The underlying argument model is configured in
ARGAEL and, going beyond the traditional sup-
port and attack argumentative links, it includes the
following categories of relations between argument
components (claims c and premises p):

• Cause, stating the reason or condition for an
argument, e.g., “[The pollution levels in the
city center are very high]c because [most peo-
ple use the car to get around]p,” “[If the gov-
ernment wants to favor tourism]p, [it must
offer free tourist information]c.”

• Clarification, introducing a conclusion, ex-
emplification, restatement, or summary of an
argument, e.g., “As a conclusion, [we suggest
the government to authorize this initiative]c,”
“In short, [we have to wait for the results
of the elections so that they can start to do
something]c.”

• Consequence, evidencing an explanation,
goal, or result of an argument, e.g., “[The
use of public transport should be facilitated]p
to [avoid pollution in the downtown area]c,”
“[I have not seen garbage trucks for a week]p,
hence [the bins are full, and people have to
throw the garbage in the streets]c.”

• Contrast, conflicting with an argument by giv-
ing alternatives, doing comparisons, making
concessions, or providing oppositions, e.g.,
“On the other hand, [we must think about

5Decide Madrid corpus, https://github.com/
argrecsys/decide-madrid-2019-annotations

6ARGAEL, https://github.com/argrecsys/
argael

the costs that this work will cause due to its
maintenance]c,” “[Restricting the access of
private vehicles to the downtown area helps in
mitigating noise]c, but [it is still insufficient
due to the presence of buses, taxis, etc.]c”

• Elaboration, introducing an argument that pro-
vides details about another one, entailing ad-
dition, precision, or similarity issues, e.g.,
“[The asphalt of the streets is in very bad
conditions]c, moreover, [the sidewalks have
holes]c,” “[The youth unemployment rate has
increased compared to last year]c, specifically,
[it has gone from 23% to 28%]c.”

This taxonomy is a compendium of relations
used in the AM literature (Knott and Dale, 1994;
Mochales Palau and Moens, 2009b; Wei Feng and
Hirst, 2011; Stab and Gurevych, 2014, 2017), and
represent a fine-grained representation of argumen-
tative structures, which entails addressing the argu-
ment relation recognition as a multi-class classifi-
cation problem.

Specifically, in our corpus, we annotated 538
argument relations distributed by category as: 77
relations belonging to the Cause category, 64 to
Clarification, 76 to Consequence, 120 to Contrast,
and 201 to Elaboration. Figure 4 shows additional
details about the number of argument relations by
subcategory in the corpus.

Figure 4: Number of argument relations by subcategory
in our corpus.

4 Dimensionality Reduction

In this section, we introduce the linguistic features
of the vector representations exploited by the evalu-
ated ML models to AM, and the vector dimension-
ality reduction techniques applied before building
such models.
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Figure 3: Screenshot of the ARGAEL tool, whose graphical user interface allows, among other things, marking
argument components and relations in a set of input texts, according to a given argument model.

4.1 Linguistic Features

Researchers have considered different types of fea-
tures for the AM sequence labeling tasks (Stab and
Gurevych, 2014; Aker et al., 2017; Du et al., 2017;
Habernal and Gurevych, 2017).

Almost all the surveyed ML-based works on
argumentative fragment detection, argument com-
ponent classification, and argument relation recog-
nition make use of some well-known structural,
lexical, morphosyntactic and discourse-associated
features. Only Habernal and Gurevych (2017) ex-
plore the use of word embedding features (sum up
the first 300 embeddings of each word, resulting in
a single vector for the entire sentence) with good
results in cross-domain scenarios.

Therefore, in this work we have considered the
following features at sentence level:

• Structural features: sentence length, relative
position in paragraph, average word length,
number of tokens, and punctuation marks.

• Lexical features: bag of words 1-3 grams,
TF-IDF weighted nouns, verbs and adverbs,
modal auxiliaries, and named entities.

• Morphosyntactic features: part-of-speech 1-3
grams, depth and number of subclauses of the
sentence constituency tree.

• Discourse features: keywords representing ar-
gumentative linkers (made publicly available
with the created corpus, see Section 3).

We discard topic and sentiment features because
we aimed to investigate with domain-independent
features. They together with semantic and word
embedding features could be explored in the future.

4.2 Dimensionality Reduction Techniques

In statistics and machine learning, dimensionality
reduction is the process of reducing the number
of random variables (features) under consideration,
obtaining a new set of informative variables, com-
monly referred to as principal components.

Three of the main techniques for dimensional-
ity reduction are Singular Value Decomposition,
SVD (Beltrami, 1973; Stewart, 1993), Principal
Components Analysis, PCA (Hotelling, 1933), and
Linear Discriminant Analysis, LDA (Fisher, 1936).

They search for linear combinations of the fea-
tures that best explain the input data, but they differ
on the fact that LDA is a supervised technique that
also classifies the data, and SVD and PCA are un-
supervised techniques that ignore class labels.

Specifically, SVD obtains a factorization USV t

of the feature matrix A, where the diagonal entries
of the small, inner matrix S are called singular
values, correspond to the root of the positive eigen-
values of AAt, and can be used as a reduced set
of new variables that produce optimal low rank
approximation of A with minimal reconstruction
error. PCA derives new feature variables that are
linear combinations of the original variables and
are uncorrelated, by capturing the direction of max-
imum variation in the dataset, and without paying
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attention to the underlying class structure. Finally,
LDA focuses on finding a feature subspace that
maximizes the separability of classes, i.e., finding
directions (components) of maximum variance.

As shown by Martínez and Kak (2001), although
it is generally believed that algorithms based on
LDA are superior to those based on PCA, this is
not always the case. On the image recognition field,
the authors concluded that if the target dataset is
small, PCA can outperform LDA, being less sen-
sitive to the used training set. In fact, as we shall
show in the experimental section, LDA degraded
the addressed AM tasks since its resultant compo-
nents are determined by the number of classes to
predict: 2 for the argumentative fragment detection
task, 3 for the argument component classification
task, and 6 for the argument relation recognition
task.

5 Experiments

In this section, we describe the methodology used
to evaluate a number of machine learning models
for the three target AM tasks (i.e., argumentative
fragment detection, argument component classi-
fication and argument relation recognition), and
report their performance results with and without
dimensionality reduction of the input data.

5.1 Evaluation Methodology

We approached the argumentative fragment detec-
tion and argument component classification tasks
as binary classification problems –argumentative
vs. non-argumentative), and premise vs. claim,
respectively–, and the argument relation recogni-
tion as a multi-class classification problem, with
a total of six relation types (classes): cause, con-
sequence, contrast, elaboration, clarification, and
none (in absence of relation).

The argument component classification task
(task 2) was tested on those feature vectors that
corresponded to text fragments previously identi-
fied as argumentative (task 1).

The argument relation recognition task (task 3)
was tested on vectors obtained by concatenating
each pair of argumentative text fragment vectors
(from task 1), considering their order. That is, given
two argument components c1 and c2, task 3 was
fed with two vectors u = (c1, c2) and v = (c2, c1).
If the argument components were linked via a re-
lation r, e.g., (c2, r, c1), one of such vectors (v in
the example) was assigned with a class that corre-

spond to the type of r, whereas the other vector
was assigned with the none class.

Considering the surveyed related work of Sec-
tion 2, the ML algorithms we selected for the above
tasks are: naive Bayes (NB), logistic regression
(LR), support vector machine (SVM), and gradient
boosting (GB).

For all tasks, we split the dataset into 80% for
training and 20% for testing. We followed a strat-
ified data split with respect to the label to be pre-
dicted, and used the 10-fold cross-validation tech-
nique on the training data to find the best hyperpa-
rameters for the ML algorithms. Before splitting,
we normalized the input values of each feature to
the [0,1] range.

The optimal values of the hyperparameters of
the classification models and the SVD/PCA/LDA
techniques were obtained by grid search with re-
spect to the micro-F1 score. As future work, we
leave the use of other more efficient model training
optimization methods, such as Optuna, presented
by Akiba et al. (2019). Table 1 shows the hyper-
parameters configurations tested, and their optimal
values obtained for each ML algorithm and AM
task.

In each ML algorithm training configuration, we
tested several numbers of principal components for
the dimensionality reduction techniques, in order
to explore whether horizontal reduction of the input
feature space improved classification performance.
Specifically, for SVD and PCA, we tested 20 dif-
ferent numbers of components, from 25 up to 500
(with increment steps of 25). In the case of LDA,
for each AM task, the number of dimensions was
reduced to the number of target classes minus 1.

For the tested number of principal components,
figures 5, 6 and 7 show the effects of the SVD and
PCA dimensionality reduction techniques on the
performance (in terms of micro-F1 score values)
of the tested ML algorithms in the three AM tasks.
As it can be seen, in general, the ML algorithms
outperformed their counterparts operating on re-
duced feature spaces and, as expected, the F1 tends
to increase with the number of components. We
discuss the maximum performance values for all
approaches in the next subsection. More details are
given in Appendix A.

5.2 Classification Results

Tables 2, 3 and 4 show the best performance re-
sults of the evaluated approaches, for argumen-
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Algorithm Hyperparameter Tested values Task 1 Task 2 Task 3
NB alpha {0.0001, 0.001, 0.01, 0.1, 1} 1 1 1

fit prior {true, false} false false false
solver {newton-cg, lbfgs, liblinear, saga} liblinear saga saga

LR C {0.001, 0.01, 0.1, 1, 10, 100} 0.1 1 1
penalty {none, elasticnet, L1, L2} L2 L2 L1
kernel {linear, rbf} rbf linear rbf

SVM C {100, 10, 1, 0.1, 0.01, 0.001} 10 0.1 10
gamma {1, 0.1, 0.01, 0.001, 0.0001} 0.01 - 0.1
learning rate {0.15, 0.1, 0.05, 0.02, 0.01} 0.1 0.1 0.1
n estimators {150, 175, 200, 225, 250} 200 200 150

GB max depth {2, 3, 4, 5, 6} 3 3 5
min samples leaf {1, 2, 5, 7} 5 5 1
min samples split {2, 3} 2 2 2

Table 1: Tested hyperparameter values and obtained best performing hyperparameters for each ML algorithm and
AM task: argument detection (task 1), argument component classification (task 2), and argument relation recognition
(task 3). The names of the hyperparameters are those used by the Python Scikit-learn library. NB, LR, SVM and
GB stand for Naive Bayes, Logistic Regression, Support Vector Machine, and Gradient Boosting, respectively.

tative fragment detection, argument component
classification and argument relation recognition,
respectively. They report the accuracy (acc), preci-
sion (p), recall (r) and micro-F1 score (F1) values
of the ML algorithms on the original feature spaces
and on the principal component spaces obtained by
SVD and PCA. The results of LDA are not reported
because they were relatively low. This supervised
technique degraded the resultant component space,
whose dimension was determined by the number
of classes in the target AM tasks.

The results show that reducing the dimension-
ality of the corpus feature space –composed of a
total of 12,593 lexical, morphosyntactic, structural
and discourse-associated features extracted from
each sentence–, did not impact drastically on the
classification accuracy of the evaluated ML mod-
els. Applying dimensionality reduction, the best
reached F1 was similar to the best F1 achieved by
using the entire feature space: on average, 97% for
task 1, 95% for task 2, and 107% for task 3. In
some cases (which are underlined in the tables),
the F1 values achieved by the ML algorithm on a
reduced space were greater than the entire space
ones.

In particular, we observe that the first 400-500
components of SVD and PCA provided the best
relative performance on the Logistic Regression
and Support Vector Machine algorithms. This rep-
resents around 3-4% of the number of dimensions
in the entire input feature space. Thus, in terms of
training time, we found remarkable improvements
for the three tasks, reducing on average the time
required to train the ML algorithms by 77.58%,
84.29% and 82.31%, respectively for tasks 1, 2 and

3. This finding, although expected, is significant,
as it would allow testing a larger hyperparameter
set and fast experimenting with new algorithmic
solutions, while reducing the well-known carbon
footprint generated by massive ML model training.

As shown in the tables, when no dimensional-
ity reduction was applied, GB was consistently the
best performing algorithm, achieving decreasing
maximum F1 values for the three consecutive tasks:
0.729, 0.624 and 0.554 (marked in bold in the ta-
bles). These values reflect the increasing difficulty
of the underlying classification problems.

In the argumentative fragment detection (bi-
nary classification) task, GB achieved the best
performance (F1=0.729), closely followed by NB
(F1=0.726). SVM was the worst performing ML al-
gorithm. However, this algorithm took benefit from
the dimensionality reduction techniques, especially
from SVD, with which it was able to increase its
F1 value to 0.725, using its first n=500 components
(4% of the total number of original dimensions).

For the argument component classification (mul-
ticlass) task, GB and SVM again were respectively
the best and worst performing ML algorithms, with
maximum F1 values equal to 0.624 and 0.584. In
this case, LR was the algorithm whose performance
improved the most with the help of the dimension-
ality reduction techniques; specifically, it reached
an F1 value of 0.620 with the first n=400 princi-
pal components of PCA, representing 3% of the
number of original features.

Finally, with respect to the argument relation
recognition (multiclass) task, GB –with an F1 value
of 0.554– was followed in performance by ap-
proaches that made use of dimensionality reduction
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Approach acc p r F1
NB .727 .726 .727 .726
NB + SVD (n=250) .647 .656 .647 .647
NB + PCA (n=425) .633 .649 .633 .632
LR .717 .717 .717 .715
LR + SVD (n=400) .708 .708 .708 .705
LR + PCA (n=350) .708 .708 .708 .705
SVM .711 .711 .711 .708
SVM + SVD (n=500) .727 .726 .727 .725
SVM + PCA (n=475) .719 .718 .719 .717
GB .730 .729 .730 .729
GB + SVD (n=325) .719 .721 .719 .714
GB + PCA (n=350) .710 .711 .710 .705

Table 2: Achieved results on the argumentative fragment
detection task.

Approach acc p r F1
NB .624 .589 .624 .587
NB + SVD (n=200) .499 .573 .499 .521
NB + PCA (n=150) .518 .594 .518 .539
LR .633 .603 .633 .607
LR + SVD (n=500) .636 .612 .636 .615
LR + PCA (n=400) .642 .618 .642 .620
SVM .621 .586 .621 .584
SVM + SVD (n=400) .624 .608 .624 .570
SVM + PCA (n=425) .627 .612 .627 .573
GB .648 .631 .648 .624
GB + SVD (n=100) .604 .577 .604 .556
GB + PCA (n=125) .594 .556 .594 .551

Table 3: Achieved results on the argument component
classification task.

Approach acc p r F1
NB .490 .363 .490 .355
NB + SVD (n=500) .455 .472 .455 .462
NB + PCA (n=475) .470 .488 .470 .477
LR .555 .537 .555 .489
LR + SVD (n=500) .555 .483 .555 .490
LR + PCA (n=300) .545 .456 .545 .470
SVM .570 .643 .570 .472
SVM + SVD (n=225) .525 .474 .525 .482
SVM + PCA (n=275) .535 .488 .535 .490
GB .615 .594 .615 .554
GB + SVD (n=350) .550 .510 .550 .482
GB + PCA (n=125) .555 .552 .555 .490

Table 4: Achieved results on the argument relation clas-
sification task.

for all the reminder ML algorithms. Thus, this task,
despite being the most complex of the three main
AM tasks, was the one that took the most advan-
tage from using the unsupervised SVD and PCA
techniques.

6 Conclusions

Although the conducted experiments can be con-
sidered preliminary, they have shown promising
results about the potential benefits of selecting in-
formative linguistic features and reducing dimen-
sionality in ML-based approaches to AM. For the

three major AM tasks (i.e., argumentative fragment
detection, argument component classification, and
argument relation recognition), and for almost all
the ML algorithms used in the AM literature, work-
ing on feature spaces of much lower dimensionality
generated by SVD and PCA has entailed not only
improvements in training efficiency, but also con-
sistent classification performance of the algorithms,
especially logistic regression and support vector
machines.

In addition to these issues, our work contributes
to the AM field through the publication of a new ar-
gumentative corpus in Spanish on e-participation, a
novel and relevant domain for the AM community.
We plan to increase the size and quality of the cor-
pus, and hope it will be of interest for researchers
and practitioners. Regardless of the impact of di-
mensionality reduction, the developed AM meth-
ods and their performance results on our corpus
could be of reference for future improvements.

Moreover, we believe that the corpus may be
exploited in different argumentative scenarios. In
particular, it could be used to extract argumentative
threads from online political discussions (Lawrence
et al., 2017) and parliamentary debates, whose tran-
scripts are available as open government datasets.

7 Limitations

As previous work on machine learning-based AM,
a limitation of our study is the fact that we have
aimed to extract argumentative units at sentence
level. However, a single sentence may contain
several units, such as a claim and an associ-
ated premise, and an argumentative unit could en-
compass several, generally two, consecutive sen-
tences (Habernal and Gurevych, 2017).

Moreover, to draw robust and generalizable con-
clusions about the advantages of applying dimen-
sionality reduction, we need to make further experi-
ments not only with more data, but also considering
other types of features (e.g., word embeddings) and
several domains and corpora, which may be in lan-
guages distinct to Spanish (Lawrence and Reed,
2020).

We could further research which are the most
relevant features in each of the AM tasks, and fo-
cus on and boost them with ad hoc algorithms. In
this context, we could also consider topic, senti-
ment, debate structure, and domain (or language)
dependent features that may be valuable to identify
argumentative fragments and their components and
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relations (Lawrence and Reed, 2020).
Finally, we should compare our results with

those achieved by of recent deep learning ap-
proaches to argument extraction (Eger et al., 2017;
Reimers et al., 2019), in order to properly ana-
lyze the benefits and drawbacks of using a simple
technique with respect to much more complex and
computational costly methods. For such purpose,
we have to extend our corpus, so that deep learning
architectures for AM could be fine-tuned with exist-
ing large language models, such as BETO (Cañete
et al., 2020) for the Spanish language.
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ment detection, argument component classification
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Figure 5: Micro-F1 score values achieved on the argumentative fragment detection task on training sets. NB,
LR, SVM and GB stand for Naive Bayes, Logistic Regression, Support Vector Machines, and Gradient Boosting,
respectively.

Figure 6: Micro-F1 score values achieved by the tested approaches on the argument component classification task
on training sets. NB, LR, SVM and GB stand for Naive Bayes, Logistic Regression, Support Vector Machines, and
Gradient Boosting, respectively.

Figure 7: Micro-F1 score values achieved by the tested approaches on the argument relation recognition task on
training sets. NB, LR, SVM and GB stand for Naive Bayes, Logistic Regression, Support Vector Machines, and
Gradient Boosting, respectively.
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Abstract

Debate naturalness ranges on a scale from
small, highly structured, and topically focused
settings to larger, more spontaneous and less
constrained environments. The more uncon-
strained a debate, the more spontaneous speak-
ers act: they build on contextual knowledge
and use anaphora or ellipses to construct their
arguments. They also use rhetorical devices
such as questions and imperatives to support
or attack claims. In this paper, we study how
the reconstruction of the actual debate contribu-
tions, i.e., utterances which contain pronouns,
ellipses and fuzzy language, into full-fledged
propositions which are interpretable without
context impacts the prediction of argument re-
lations and investigate the effect of incorporat-
ing contextual information for the task. We
work with highly complex spontaneous debates
with more than 10 speakers on a wide variety
of topics. We find that in contrast to our initial
hypothesis, reconstruction does not improve
predictions and context only improves them
when used in combination with propositions.

1 Introduction

Spontaneous natural debate is anything but easy to
track: it contains anaphora, elliptical constructions,
fragments, a fuzzy linguistic surface and a wide
variety of rhetorical structures. The waters get even
murkier when 10+ speakers contribute, multiple,
possibly divergent, topics are covered in one debate,
the stakes of the interlocutors are high, and debate
constraints are low.

So far, debates at this scale of naturalness have
been largely ignored in computational argumen-
tation: either the number of participants was
restricted and debates were highly constrained
(Visser et al., 2020), there was only one topic per
debate (Lawrence et al., 2018), or the setting was
structured and consisted of monological speaker
utterances (Mirkin et al., 2018a).

Most striking is the difference in the underlying

data: argument mining on natural debate has ei-
ther taken propositions as argumentative units of
analysis, i.e., fully reconstructed records of speaker
contributions that do not need context for interpre-
tation (Gemechu and Reed, 2019; Ruiz-Dolz et al.,
2021) or like Lavee et al. (2019) removed claims
that contain, for instance, unresolved demonstra-
tives. Another common approach, however, is to
take transcripts as is, without any edits or restric-
tions (Haddadan et al., 2019). Our hypothesis is
that using fully reconstructed material, i.e., propo-
sitions, increases the performance of argument re-
lation prediction. In the case of locutions, where
for instance anaphora and ellipses are not recon-
structed, we assume that some of the information
relevant to reconstruction is contained within the
preceding context, like in an example from the cor-
pus1 where an anaphoric pronoun ‘she’ from the
locution ‘She’s looking at what happened’ can be
resolved as ‘Sue Grey’ in a proposition ‘Sue Gray is
looking at what happened’ using preceding context
‘Sue Grey is doing this investigation’.

However, the task of completely reconstruct-
ing propositions from locutions, i.e., the actual,
skeletal contributions in the debate, is costly: man-
ual reconstruction requires an extensive amount
of effort (Hautli-Janisz et al., 2022; Visser et al.,
2020), while automatic approach struggles with un-
resolved non-personal anaphora and omitted verb
phrases (Jo et al., 2019, 2020).

Our contributions in this paper are as follows: (1)
we provide more insight into model performance in
a realistic debate mining setting where only skeletal
locutions and not fully reconstructed propositions
are available, using the best-performing model on a
dataset that is closest in nature to the debates here.
Our results indicate that despite the notable struc-
tural differences between locutions and proposi-
tions, we achieve comparable performance in argu-
ment relation prediction for both. (2) We perform a

1Node set ID 28238, access via http://ova3.arg.tech
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detailed error analysis and show that performance
across argument relations varies noticeably and that
context does not help in solving the issue of using
only skeletal locutions but improves the predictions
when used in combination with propositions.

2 Related work

In computational argumentation in the debate
genre, one strand of research focuses on mostly
monological speech, either produced by profes-
sional debaters (Mirkin et al., 2018a,b; Lavee et al.,
2019; Orbach et al., 2020) or by political actors
(Menini et al., 2018). A slightly different variety
of debate concerns heavily structured Oxford-style
debates (Zhang et al., 2016) where conversational
flow is important.

In the case of more natural but still highly mod-
erated debates, the focus is mostly on the polit-
ical genre with some work on the identification
of the central and divisive elements of the debate
(Lawrence and Reed, 2017) and prediction of the
argument relations using support and attack an-
notation scheme (Gemechu and Reed, 2019) as
well as more complex categories (Ruiz-Dolz et al.,
2021). There is more research on the US 2016
elections (Haddadan et al., 2019) as well as the UK
Prime-ministerial elections from 2015 (Lippi and
Torroni, 2016) with both papers focusing on the
detection of argument components such as claims
and premises/evidence.

In terms of segmentation, we are similar to most
other work in debate mining: Lippi and Torroni
(2016) and Haddadan et al. (2019) also assume
sentential (or potentially sub-sentential) segments
between which argument relations can hold, in con-
trast to Menini et al. (2018) who seem to take ut-
terances to be the minimal units of analysis. Given
the significant amount of argument relations within
one utterance, we are confident that the former
approach is what captures this genre most appro-
priately.

3 Empirical basis

3.1 Data
This paper is based on debates in ‘Question Time’
(QT), a political talk show in the UK broadcasted
on BBC1. QT is significantly less structured than
debate datasets in previous work, for instance, by
Mirkin et al. (2018a,b). In QT, the audience chal-
lenges a panel of political figures regarding cur-
rent topics who then respond and freely discuss

the issues with each other. As the participants
are different in each episode, their rhetorical skills
vary considerably. Topics discussed within and
across episodes range from UK-specific and time-
sensitive ones such as extension of the lockdowns
during the height of the COVID pandemic to more
general ones like racism and climate change.

The data is annotated with Inference Anchoring
Theory (IAT) (Budzynska et al., 2014, 2016). IAT

is a framework that captures how arguments evolve
and are reacted to in dialogue, anchoring argument
structure in dialogue structure by way of illocution-
ary connections. The pairs of argumentative units
and their relation that are used in this paper have
not been annotated in isolation, but have been an-
notated together with all surrounding material. For
the purpose of this paper, we only extract the pairs
and their relation (plus the immediately preceding
context). Arguments in QT30 comprise inferences
(‘Inference’, supports – serial, divergent, conver-
gent) conflicts (‘Conflict’, attacks – undercutting,
rebutting, undermining) and rephrases (‘Rephrase’,
reformulations of previous content). We extract
those argument relations and also include ‘No re-
lation’ instances (between adjacent units) due to
a large number of unconnected contributions in
natural debate (see Table 1 for details).

The training data is taken from QT30 (Hautli-
Janisz et al., 2022), which comprises analyses of 30
episodes of QT. With 19,842 locutions (plus their
propositional counterparts), 280,000 words and
more than 10,000 arguments, QT30 is three times
larger than the dataset that is most closely related in
genre and annotation scheme (Visser et al., 2020).
For testing, we use an additional ten episodes of
QT on topics that are different than those seen in
training (the training data aired between May 2020
and November 2021, test data aired between De-
cember 2021 and July 2022). Overall, this leaves
us with a training/test split of about 80/20.

Table 1: Number of argument relations of different types
and ‘No relation’ for training and testing

Training Test Total

Inferences 3,223 845 4,068
Conflicts 697 315 1,012
Rephrases 3,634 1,085 4,719
No relation 4,558 1,052 5,610
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Figure 1: Example with locutions (Loc1 and Loc2) and propositions (Prop1 and Prop2)

3.2 Locutions vs. propositions

Locutions are the actual, skeletal speaker contri-
butions in a debate. Propositions are their fully
reconstructed equivalents: anaphora and ellipses
are reconstructed, fragments are transformed into
grammatical structures and fuzzy language is re-
solved. In Figure 1, the locutions of the speaker
(an audience member) do not specify what they
want to do and why 2. The manually reconstructed
propositions contain this information, namely that
the speaker is discussing measuring their antibody
levels to inform their decision to get vaccinated.
Also, the pronoun ‘I’ is reconstructed to ‘Audience-
Member 20220210QT35’.

Data extraction We extract the pairs of locutions
and matching propositions corresponding to argu-
mentative discourse units (ADUs) which make up
an argument (inference, conflict or rephrase) or a
‘No relation’. For the ‘No relation’ category we
extract adjacent ADUs which are not connected via
an argumentative relation of inference, conflict or
rephrase. We also extract the locution and corre-
sponding proposition preceding the first element of
the pair – this is what we consider context. This can
be an adjacent unit or the one that is dialogically or
content-wise preceding the argumentative pair, for
instance, in the case of interruptions, the text seg-
ment before the interruption is extracted. We end
up with a total of 15,409 locution (and the same
number of corresponding proposition) triplets.

Structural comparison Locutions and proposi-
tions vary consistently in their structure: the aver-
age locution length is 11.72 words, propositions
tend to be longer with 14.02 words per unit (av-
erage Levensthein distance is 19.86, normalized
word-level distance is 0.83). For locutions, the
average number of pronouns is 1.17 per unit, for
propositions it drops significantly to 0.79 per unit.
The remaining pronouns in the propositions are ei-
ther instances where the antecedent of the anaphora
is within the same unit (e.g. in ‘Boris Johnson
lied in his speech about X’) or cases where their

2Node set ID 27967, access via http://ova3.arg.tech
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Figure 2: Cosine similarity between units in argument
relations that are locutions (a) and propositions (b).
Rephrases are indicated in blue, conflicts in red, in-
ferences in green, ‘No relation’ in purple.

resolution would result in overinterpretation (e.g.,
‘we need to take care of the older people in care
homes’). Pointing to a similar trend, there are on
average 0.37 named entities per locution, compared
to 0.76 per proposition.

Embedding space comparison Given that we
use BERT-based prediction for argument relations,
we also investigate the impact that the reconstruc-
tion has on the embedding space. We calculate the
cosine similarity between the first and the second
element of the arguments and ‘No relation’ pairs.
We do this for both propositions and locutions us-
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ing SentenceTransformers with BERT embeddings
(the all-MiniLM-L6-v2 model). The results are
plotted in Figure 2. The distribution of the cosine
similarity in the graphs suggests the following: (1)
the model sees very different input in the locution-
versus proposition-driven model, as the overall se-
mantic similarity is lower for locutions than propo-
sitions while the similarity for propositions is more
equally distributed. (2) The semantic space repre-
sentations can be indicative of the type of relation.
Propositions in rephrase relations are more similar
than those in conflict or inference ones. The ‘No
relation’ propositions are most dissimilar. Interest-
ingly, units in conflict relations tend to be more
similar than inference units.

4 Argument type prediction

4.1 Models

LSTM (baseline) We use softmax activation
with categorical cross-entropy as a loss function
and the Adam optimizer with a batch size of 32, a
maximum sequence length of 200 trained over 4
epochs.

BERT-Based We use pre-trained RoBERTa-
large-cased (Liu et al., 2019), the best model iden-
tified by Ruiz-Dolz et al. (2021), who worked with
the same categories as we do though for more con-
strained debate settings (fewer topics and speakers,
more moderation). In order to compare with a more
common BERT model, we also include results for
BERT-large-cased. For both models, finetuning is
performed on the QT30 data. We use 20% of the
training data for validation. For the evaluation, we
use 10 extra QT episodes. We train for 6 epochs
and choose the best-performing epoch checkpoint
on the test data. We use the Adam optimizer with
a learning rate of 1e-05, epsilon of 1e-08, a batch
size of 32 and a maximum sequence length of 200
which fits our data. In addition, we use 120 warmup
steps and a warmup ratio of 0.06. The hyperparam-
eters are taken from Ruiz-Dolz et al. (2021).

4.2 Results

As expected, RoBERTa outperforms the BERT and
significantly outperforms the LSTM models 3.

Our best-performing model (Proposi-
tions+context) (we use macro F1-score, as
in related work, see Table 2) is still lower in

3Code available at https://github.com/
ZlataKikteva/argmining2023-reconstr

comparison to Ruiz-Dolz et al. (2021), who use the
same four-way distinction as we did and achieve
the performance of 0.70. However, the corpus they
use contains both written discussions as well as
transcripts of the US presidential debates which
is much more constrained than the debates used
here. In comparison to other related work, our
results seem to indicate that the less constrained
debates are, the lower the performance of the
model is. This is supported by the results in earlier
work: Menini et al. (2018) who use monological
speeches with a binary distinction into inferences
and attacks, achieve an F1-score of 0.82, while
Gemechu and Reed (2019) achieve an F1-score
of 0.64 when using a political debate corpus with
multiple speakers with the same categories.

Table 2: Macro F1-scores across models and data

LSTM BERT RoBERTa
large cased large cased

Loc 0.25 0.41 0.54
Loc+cont 0.25 0.40 0.53
Prop 0.25 0.41 0.54
Prop+cont 0.24 0.41 0.56

Surprisingly, the results indicate that the use of
propositions does not improve the performance of
the model when compared to the locutions and that
context does not help the prediction of relations be-
tween locutions, but increases performance when
used with propositions. We will reflect on this in
the following section. This pattern also holds for
the predictions with BERT except for lack of im-
provement in the case of propositions with context;
LSTM also exhibits different kind of behaviour in
terms of context but the F1-scores are too low to
be able to draw any meaningful conclusions from
them.

5 Error analysis

Context only helps sometimes A closer inspec-
tion of the results (for details see Appendix A, Ta-
ble 3) shows that, with context, the model tends to
predict the ‘No relation’ more often, both in terms
of true and false positives. We hypothesize that
context locutions in some cases provide informa-
tion beyond the one relevant for the identification
of argument relations thus leading to an increase in
the number of predicted ‘No relations’.

When we compare the results for propositions
with and without context (for details see Appendix
A, Table 4), we see that the model is better at pre-
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dicting the class of ‘Conflict’ if context is given, as
well as reducing the number of misclassified ‘In-
ference’, in particular, inferences misclassified as
‘No relation’. With the introduction of context for
propositions, we still observe a tendency to over-
predict the ‘No relation’ category, however, this
tendency is not as strong as in the case with locu-
tions and context. This can be explained by the
fact that due to the reconstruction, the units of the
proposition pairs are more likely to have a higher
semantic similarity, making it slightly easier for
the model to identify the argumentative relations
as opposed to ‘No relation’.

Reconstruction improves predictions of infer-
ences and rephrases While the F1-scores of the
models based on locutions and propositions are the
same, the confusion matrices for the two settings
show that the underlying predictions are quite dif-
ferent (the confusion matrices for RoBERTa predic-
tions are attached in Appendix B). The overall ten-
dency when using propositions is leaning towards
identifying inferences and rephrases at the cost of
‘No relation’ (for details see Appendix A, Table
5). Specifically, while the number of correctly pre-
dicted ‘No relation’ propositions went down about
15%, the improvement in the prediction of both
rephrases and inferences is about 8%. The example
in Figure 1 illustrates the issue: without heavy re-
construction, the model cannot correctly predict the
inference and instead goes for ‘No relation’. The
reconstruction leads to the increased similarity of
the embeddings in a number of cases, which makes
the prediction of ‘Rephrase’ and ‘Inference’ easier
while losing out on ‘No relation’. In addition to
that, this kind of tendency also comes at the cost of
misclassifying ‘No relation’ as inferences.

6 Conclusion

Contrary to our expectations, the reconstruction
of skeletal locutions into full-fledged propositions
does not necessarily improve the overall perfor-
mance of the models. What we observe, however,
is that the model trained and evaluated on proposi-
tions is better at identifying argumentative relations
at the cost of the ‘No relation’ category. In addition,
context seems to be beneficial only in the case of
propositions as it improves the prediction of con-
flicts and inferences.
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A Differences in class assignments
(RoBERTa-large-cased predictions)

We generate these tables based on the class predic-
tions from the confusion matrices.

Table 3: Difference in class assignments between locu-
tions and locutions with context (in percentage)

Inference Conflict Rephrase No rel.

Inference -6.75% 0.36% -0.59% 6.98%
Conflict -8.57% -1.59% -0.63% 10.79%

Rephrase -1.94% 0.09% -2.58% 4.42%
No rel. -5.32% -0.48% -1.24% 7.03%

Table 4: Difference in class assignments between propo-
sitions and propositions with context (in percentage)

Inference Conflict Rephrase No rel.

Inference -1.30% -0.83% -0.12% 2.25%
Conflict -6.67% 1.90% -2.54% 7.30%

Rephrase -2.86% -0.28% -0.65% 3.78%
No rel. -10.17% -0.57% 3.14% 7.60%

Table 5: Difference in class assignments between locu-
tions and propositions (in percentage)

Inference Conflict Rephrase No rel.

Inference 7.69% -1.18% 2.96% -9.47%
Conflict 7.30% 1.27% 2.86% -11.43%

Rephrase -0.09% 0.28% 8.48% -8.66%
No rel. 14.16% 0.19% 0.86% -15.21%

B Confusion matrices
(RoBERTa-large-cased predictions)
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Abstract

Framing is an important mechanism in argu-
mentation, as participants in a debate tend to
emphasize those aspects or dimensions of the
issue under debate that support their standpoint.
The task of reframing an argument, that is
changing the underlying framing, has received
increasing attention recently. We propose a
novel unsupervised approach to argument re-
framing that takes inspiration from counterfac-
tual explanation generation approaches in the
field of eXplainable AI (XAI). We formalize
the task as a mask-and-replace approach in
which an LLM is tasked to replace masked
tokens associated with a set of frames to be
eliminated by other tokens related to a set of
target frames to be added. Our method relies
on two key mechanisms: framed decoding and
reranking based on a number of metrics similar
to those used in XAI to search for a suitable
counterfactual. We evaluate our approach on
three topics using the dataset by Ruckdeschel
and Wiedemann (2022). We show that our two
key mechanisms outperform an unguided LLM
as a baseline by increasing the ratio of success-
fully reframed arguments by almost an order of
magnitude.

1 Introduction

Framing is an important mechanism in argumen-
tation, as participants in a debate tend to empha-
size those aspects or dimensions of the topic under
debate that support their standpoint (Misra et al.,
2016; Mou et al., 2022). In this context, refram-
ing is a task that has recently received increased
attention, consisting in switching the underlying
framing of an argument (Chakrabarty et al., 2021;
Chen et al., 2021).

In our conceptualization of the problem, there
are frames to be deleted, D, and frames to be added,
A, to an argument. Our approach essentially masks
the tokens that belong to frame D and uses a lan-
guage model to regenerate the tokens so that ideally

they belong to A. Instead of rewriting complete sen-
tences as in previous work (Chen et al., 2021), our
approach aims to maximize the change in framing
by minimal precise and controlled intervention into
the argument. This “mask-and-replace” approach
circumvents the need to fine-tune a language model
for the specific task and is thus unsupervised.

Consider the following argument debating “nu-
clear energy” that emphasizes aspects related to
safety: “While geothermal, solar, and wind are
safe, nuclear energy is not”. A minimal change
to the argument that changes the frame from fo-
cusing on safety aspects towards emphasizing eco-
nomic aspects could yield the following argument:

“While geothermal, solar, and wind are affordable,
nuclear energy is not”.

In this paper, we draw inspiration from current
eXplainable AI (XAI) approaches to propose a
novel reframing approach that is based on coun-
terfactual explanation generation to explain the de-
cision of a classifier (Wachter et al., 2017). A coun-
terfactual can plainly speaking be seen as an answer
to the question: How would an example have to be
different to belong to a different class? We trans-
fer this idea to the task of reframing arguments,
coming up with a “counterfactual” that answers
the question: How would the argument need to be
changed to have a different frame? Counterfactual
generation can be seen as a search in the space of
possible changes to a given example or argument
that switches the class or respective frame. Differ-
ent metrics have been proposed to constrain and
guide the search in the space of possible counter-
factuals. As two examples, approaches have used
the following metrics: proximity, which measures
the similarity of the generated instance to the ini-
tial instance, and data manifold closeness, which
measures how well the generated counterfactual
fits within the target data distribution (Verma et al.,
2020).

Our approach in particular works on the token
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level, assuming that each frame-relevant token of
an argument is assigned to a frame class. The task
of frame classification on the token level of an
argument has been proposed by Ruckdeschel and
Wiedemann (2022). Given the feasibility of this
task, we build on this representation and use the
models by Ruckdeschel and Wiedemann (2022) as
a starting point for our reframing approach.

Our contributions are:

• We present an unsupervised approach to ar-
gument reframing that relies on a mask-and-
replace approach on the token level, relying
on a language model to replace tokens asso-
ciated with a set of frames to be deleted by
other tokens denoting a set of target frames to
be added.

• The approach in particular relies on a frame-
guided decoding and reranking strategy in-
spired by the metrics used in counterfactual
generation. Concerning the reranking strategy,
we transfer existing metrics used in counter-
factual explanation generation and adapt them
for the case of the reframing task.

• We conduct a comprehensive analysis and
evaluation on three controversial topics (nu-
clear energy, minimum wage, and marijuana),
demonstrating the impact of our reranking and
framed decoding strategies. We show in par-
ticular that these two mechanisms are effec-
tive, increasing the ratio of appropriately re-
framed arguments from 2% to 18% compared
to a baseline in our manual evaluation, cor-
responding to an improvement of almost an
order of magnitude. In addition, we analyze
the influence of the number of generated can-
didates as well as of LLM size.

The manual annotations, spanning over 600 re-
framed arguments as well as our code are available
on GitHub1.

2 Related work

The automatic analysis of frames in texts has been
pioneered by Boydstun et al. (2014) and Card et al.
(2015), who applied it to the analysis of newspa-
per articles. Frames help to organize and structure
text and arguments but are also used to bias dis-
cussions (Mou et al., 2022) or tailor arguments to

1https://github.com/phhei/
counterfactualREframing

specific audiences (de Vreese, 2005; Ajjour et al.,
2019; Chen et al., 2021).

The task of reframing arguments, as we consider,
has been tackled before by Chen et al. (2021), who
used the generic frame classes defined by Card et al.
(2015) and relied on fine-tuned language models to
rewrite complete sentences, using two surrounding
sentences as context.

Similar to our goal of minimal changes,
Chakrabarty et al. (2021) extended this approach
to generate a reframed argument that is closely re-
lated the original one. They propose an approach
that first identifies parts of the original argument to
be replaced and then relies on a fine-tuned BART

model to generate replacement candidates, picking
the candidate that has the highest score of being
entailed by the original argument according to an
entailment model.

In contrast to the above-mentioned previous
work on reframing that relies on models fine-tuned
for the task, our approach is unsupervised.

Beyond the inventory of 15 generic frames pro-
posed by Boydstun et al. (2014), recent work has
made a strong case for more fine-granular and topic-
specific framesets. Ajjour et al. (2019) have for ex-
ample explored an approach by which frame labels
can be derived bottom-up by clustering, and Mou
et al. (2022) have demonstrated that the transfer-
ability of frames across topics is limited. Reimers
et al. (2019) have made the case that arguments
rarely only evoke one frame and that often multi-
ple aspects are emphasized. In alignment with this
observation, Schiller et al. (2021) have operational-
ized the assignment of frames as a span extraction
task rather than as a document classification task.
Following up on this, Ruckdeschel and Wiedemann
(2022) present a dataset with topic-specific frame
classes annotated on token-level.

We directly build on the work of Schiller et al.
(2021) and Ruckdeschel and Wiedemann (2022) as
a starting point and rely on an argument in which
each token is labeled with a corresponding topic-
specific frame. This allows us to select the to-
ken/spans that have to be modified to switch the
frame.

Our proposed approach is inspired by research
in XAI, which uses counterfactuals to explain clas-
sifier decisions. In the context of XAI, counter-
factuals are explanations rooted in counterfactual
reasoning. This process entails pinpointing the
specific features that, if altered, would result in
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different outcomes or predictions (Miller, 2019).
Given this, applying counterfactual approaches to
reframing feels intuitive, since changing the frame
is conceptually similar to changing a classifier’s
prediction.

From the literature on counterfactuals, we adopt
the idea that suitable metrics can be used to guide
the search in the space of potential counterfactu-
als. Common metrics for selecting an appropri-
ate counterfactual are validity and proximity. A
recent paper catalogued up to eight such metrics
from contemporary XAI research on generating
and evaluating counterfactuals (Verma et al., 2020).
In our work, we reuse the metrics related to valid-
ity, proximity, and data manifold closeness that are
explained in section 3.2.

Counterfactual methods in natural language pro-
cessing have primarily been used to explain and
evaluate sentiment classifiers (Wu et al., 2021;
Madaan et al., 2021) or to uncover dataset arti-
facts (Ross et al., 2021). To our knowledge, their
application in the context of reframing is novel,
marking a primary contribution of our paper.

3 Methodology

We model the task of reframing as a generative
mask-and-replace approach. Given an argument
and its frameset S, called source frameset, and a
target frameset T , the task is to shift the aspects
covered by the argument towards this target frame-
set T by rewriting it. Hence, the goal is to remove
nd frames contained in set D to be deleted and add
na new frames in a set A that are not contained in
S. The frameset of the rewritten argument is thus
expected to be identical with the target frameset
T = (S \D) ∪A.

Our unsupervised approach is described in Fig-
ure 1. In particular, given an argument to be re-
framed, we apply a sequence tagging model to
classify each token into its corresponding frame,
relying on the approach proposed by Ruckdeschel
and Wiedemann (2022). We then mask each token
that has been assigned a frame label that is in the
set D. For each masked span, a language model
generates an alternative text span which is placed
in the corresponding spot, resulting in a new text
that is a mixture of original text spans and newly
generated text spans.

In order to guide the replacement of a masked
span by a span related to set A, we rely on two
strategies to increase the ratio of successfully re-

framed arguments: framed decoding and various
output reranking strategies based on the field of
counterfactual explanations. We explain these
strategies in more detail in what follows.

3.1 Framed Decoding

We follow the proposal of Heinisch et al. (2022)
to increase the probability of generating tokens of
the target frames to the given argument. In our
introductory example, for instance, our goal would
be to increase the probability of generating tokens
related to an economic frame, such as affordable in
the example.

For a given frame f , we compute p(f |v), that
is the (conditional) probability that if v occurs, it
occurs in a text position labeled with frame f . This
measures the specificity of v for frame f . At infer-
ence time, we modify the logit for each vocabulary
element lv for each target frame ft ∈ T to be added
as follows:

l̃v = lv + λ(max(l)−min(l)) p(ft|v) (1)

where λ is a hyperparameter controlling the degree
to which vocabulary elements related to the frames
to be targeted are boosted. While a small value of
λ yields only a weak boost, a high value strongly
boosts tokens related to the frames to be added,
potentially leading to output that is unrelated to
the input. In order to avoid the repetition of frame-
exclusive vocabularies and to aim for frame diver-
sity when multiple frames are applied, we set the
repetition penalty to 1 + λ as proposed by Keskar
et al. (2019).

3.2 Reranking strategies

We decode the model using beam search to yield
n rewrites of the original sentence. We then ap-
ply a re-ranking strategy to select sentences that
best align with a quartet of metrics. The first three
metrics derive inspiration from the collection pre-
sented by Verma et al. (2020) for counterfactuals:
i) Frame-Validity, ii) Proximity, iii) Data Manifold
Closeness. The fourth metric, iv) Grammatical-
ity and Fluency, is tailored to our specific require-
ments.

Equation 2 shows how the metrics are aggregated
to obtain the final score, which is used to rerank
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2

Stage 1:
Modify Text

Step 1. Classify tokens

Token Based
Frame Classifier

While geothermal, solar, and wind are
safe, nuclear energy is not.

Step 2. Mask unwanted tokens         

While geothermal, solar, and wind are
<mask>, nuclear energy is not.

Text Generation
Model with

Framed-Decoding

While geothermal, solar, and wind are
affordable, nuclear energy is not.
COST

Stage 2: Rank
Candidates

Validity: 0.8
Proximity: 0.9
Sparsity: 0.9

Data manifold
Closeness: 0.8

Causality: 1

Validity: 0.8
Proximity: 0.9
Sparsity: 0.9

Data manifold
Closeness: 0.8

Causality: 1

Frame Validity: 1
Proximity: 0.9
Grammar: 1
Data manifold      
Closeness: 0.8

While geothermal, solar, and wind are
affordable, nuclear energy is not.

Step 1. Get Scores for each candidate

Tokens correlated with

safe 0.02

Terroris
Attacks 0.1

cheap 0.22

0.32

RENEVABLE ENERGY

RENEVABLE ENERGY
RENEVABLE ENERGY

Step 3. Generate candidates with target tokens            

SAFETY

SAFETY

COST

COST

COST

Step 2. Select candidate with best score
Token Likelyhood

affordable

Figure 1: Proposed Reframing Method with Reranking Strategy via Counterfactual Properties

the rewrites in descending order:

score = ωvalidity · frame-validity
+ωproximity · proximity
+ωcloseness topic · data_manifold_closenesstopic
+ωcloseness frame · data_manifold_closenessframe
+ωgrammar · grammar

(2)
with ωm as a weight hyperparameter for metric m.

Frame-Validity The aim of our approach is to
generate a rewriting of the given argument that
evokes the frames to be targeted. In analogy to the
criterion of validity that is used in counterfactual
explanation generation to measure the degree to
which generated counterfactuals switch a classi-
fiers’ prediction, we introduce the analogous frame-
validity metric that indicates whether the refram-
ing has been successful. For this, we compute
a weighted Jaccard similarity between the target
frames T and the frames predicted by the sequence
labeling approach P for the reframed argument,
where the weights correspond to the probabilities
of the predicted frames:

∑
f∈P∩T p(f)

#T +
∑

f∈P\T p(f)
(3)

Proximity Proximity is used to ensure that the
generated counterfactual is semantically close to
the original example in counterfactual explanation
generation approaches. As we aim for a minimal
modification of the argument that effectively re-
frames the argument, we apply a similar metric
in our approach. We aim to maximize the prox-
imity of the generated argument to the original
argument, computed by using a Sentence-Bert-
model (Reimers and Gurevych, 2019) to embed

both sentences and calculate the cosine similarity
between them.

Data Manifold Closeness Counterfactual expla-
nation generation approaches aim to generate ‘re-
alistic’ counterfactuals with a high probability of
originating from the actual data distribution. The
same holds for reframed arguments, so we transfer
the Data Manifold Closeness used in counterfactual
explanation generation approaches to the refram-
ing task. We aim for reframed arguments to have a
strong relation to the desired frames as well as to
the issue/topic under discussion. To compute the
similarity to the frame and topic, we take the top-k
Sentence-Bert embedded neighbors and take the
average cosine similarity between those.

Grammaticality and Fluency An important
goal is to ensure the grammaticality and fluency of
the reframed arguments, so that as a further met-
ric we compute the acceptability of the sentence
according to the corpus of linguistic acceptability
(CoLA) by Warstadt et al. (2019).

4 Experiment Design

4.1 Dataset

We use the Argument Aspect Corpus (AAC) by
Ruckdeschel and Wiedemann (2022) that features
manually annotated frame labels for token spans
within argumentative sentences. These sentences
were drawn from the UKP Sentential Argument
Mining Corpus by Reimers et al. (2019), expressing
a stance on three major political topics: minimum
wage, nuclear energy, and marijuana legalization.
Since the dataset offers slightly above 1,000 anno-
tated sentences for each topic on the token level, it
fits our token-based reframing setting.
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4.2 Experimental Settings
As our approach relies on a model that can assign
a frame to each token of a given sentence, we re-
produce the model proposed by Ruckdeschel and
Wiedemann (2022), using the exact same hyperpa-
rameters and dataset. We consider the best variant
based on roberta-large with a sequence tag-
ging head, using the best-performing fine-tuned
model on the test data across 5 runs. On the token
level, we yield micro-averaged F1 scores across
all 12 to 13 frame classes (the topic-specific frame-
sets are defined by Ruckdeschel and Wiedemann
(2022)) of 0.63, 0.6, and 0.69 for “nuclear energy”,
“minimum wage”, and “marijuana”, respectively.

For the language model generating rewritings
for the masked tokens, we rely on the pretrained
T5-model variants t5-small (60 million pa-
rameters) and t5-large (770 million parame-
ters) (Raffel et al., 2020) as implemented in the
transformers-library by Wolf et al. (2020).
We mask all token spans with a predicted frame
belonging to the frames to be deleted D with place-
holders that were used in the masked language
pretraining objective of T5. For each placeholder
in an incrementing order, T5 generates alternative
text spans which we replaced with the placehold-
ers then. Note that T5 does not repeat the input
argument while generating. We generate between
4 and 25 tokens per reframed argument candidate,
sampling with a temperature of 1.25. To receive
n different candidates, we apply beam search with
2n beams.

For reranking the candidates, we apply
the automatic metrics as proposed in Section
3.2. As the Sentence-BERT model, we rely
on all-MiniLM-L6-v2 (or the more com-
plex model all-MiniLM-L12-v2 in exper-
iments where t5-large was used). For
the Data Manifold Closeness, we chose k =
5. For the grammar score, we rely on the
model textattack/roberta-base-CoLA
provided by Morris et al. (2020).

Determining the Target Frameset T Given the
frameset F defined for the debated topic of the ar-
gument (Ruckdeschel and Wiedemann, 2022) and
the set of all frames S contained in the argument
as predicted by the frame classifier, we randomly
delete nd ∈ {0, 1, 2} frame classes D from S and
randomly add na ∈ {0, 1, 2} frame classes from
F \S . In our primarily evaluated reframing setting,
we select nd = na = 1, exchanging a single frame

class in the set of frame classes emphasized by an
argument.

Manual study In order to evaluate the reframed
arguments beyond using the automatic frame pre-
dictions and measurements as proposed in Section
3.2, we conduct a manual study involving three
paid annotators, students from the field of (compu-
tational) social science.

For the assessment of frames, we use the original
well-explored and reviewed guidelines by Ruckde-
schel and Wiedemann (2022), including the defini-
tion and examples (when given) for each specific
frame. In order to ensure a fair evaluation, we hide
the original frames of the argument as well as the
target frames. Annotators were thus asked to select
none or up to five relevant frames evoked by the
reframed argument. This is in contrast to studies
that ask annotators to confirm whether the reframed
argument fits the target frame as a choice between
yes, partial, and no (Chen et al., 2021).

For the assessment of grammar and fluency, each
annotator had to rate the reframed argument on a
Likert scale between 1 (broken/unfinished text) to 5
(perfect fluency and grammar). For the assessment
of meaning, each annotator provided two binary
labels: one for the preservation of meaning in re-
lation to the original argument and another for the
plausibility of the proposed argument as a valuable
contribution to the discussion.

On the task of indicating the relevant frames, we
obtain a fair inter-annotator-agreement of ακ =
0.32 according to Krippendorff’s alpha measure,
which is comparable to other tasks in the field of ar-
gumentation. While we observe an almost perfect
agreement in frames that are directly mentioned
in the text, e.g. fossil fuels in the first example of
Table 3, disagreement occurs in cases of implicit
concepts or weakly related implications such as
reliable energy when only “special needs by indus-
try” is mentioned. The agreement on the tasks of
labeling fluency and grammaticality (ακ = 0.152)
and meaning (ακ = 0.16) are lower due to the
subjectivity of these tasks. However, we observe
common trends. In terms of grammaticality, we
receive constant low grammar scores for obviously
broken sentences. Higher deviations are mostly
caused by irregular punctuation in which different
perspectives are acceptable. In terms of the binary
categories related to the meaning, we observe dis-

2aligning the annotator-specific mean score across the an-
notators
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agreement on borderline examples and different
penalizations of tautologies and repetitions. For
example, while all annotators agree regarding the
plausibility of the first example in Table 3, they
disagree whether the reframed argument is still re-
lated to the original argument. Further details on
the manual study are provided in Appendix B.

5 Results

We analyze the appropriateness of our reframed
arguments along different dimensions. First of all,
we evaluate the reframing success of our approach,
that is the success of fitting the target frameset T .
For this, we compare the frames covered by the
reframed argument (P) with the target frames T .
Note that P is predicted by the model of Ruck-
deschel and Wiedemann (2022) in the case of the
automatic evaluation and annotated by humans in
the case of the manual evaluation. We present re-
sults with respect to the frames towards three cri-
teria: i) FIT measuring the target-set-fit ratio, that
is the ratio of instances where P = T , ii) REM
measures the ratio of instances where the unwanted
frames are successfully removed, i.e. P ∩D = ∅,
and iii) ADD measures the ratio of successfully
added frames A ⊆ P . These three metrics allow
us to judge the reframing validity of our approach.
The automatic results covering three topics are pre-
sented in Section 5.1. In Section 5.2 we broaden
the perspective by also including further metrics
that measure other relevant aspects of the reframed
argument beyond frame-validity, considering the
other automatic metrics introduced in Section 3.2.
In addition, we present the results of our manual
study in Section 5.3, adding the criteria of meaning
preservation and plausibility, evaluating the impact
of reranking and framed decoding as well as the
impact of the model size of the text-generating
model (Section 5.3.1) and the impact of the edit
distance between the source frameset S and the
target frameset T (Section 5.3.2).

We conducted further experiments regarding the
impact of the number of rewritings per argument
in Appendix A.

5.1 Evaluating Reframing Success

This section evaluates the reframed arguments us-
ing t5-small by automatically retrieving frames
from the rewritten arguments with the task of re-
moving one frame and adding a new frame. In
order to exclusively focus on the contained frames

while reranking, we set the weights of all counter-
factual metrics to 0 in Equation 2 except ωvalidity =
1. The automatic results are provided in Table 1.
Regarding yielding the target frameset T as the pre-
dicted frameset (FIT), we see an improvement of
approximately 4 times by using reranking among
10 rewrites across all three topics. Using nuclear
energy as an example topic, the ratio of success-
ful reframing increased from 2.1 to 8.6. Activat-
ing framed decoding (λ = 0.5) improves again
the ratios by approximately 6 times (more than an
order of magnitude compared to the baseline us-
ing a vanilla language model without reranking),
yielding ratios of 53.9, 40.1, and 50.9 for nuclear
energy, minimum wage, and marijuana. With re-
spect to the ability of the model to remove the
frames to be deleted as measured by REM, we ob-
serve the same trends but with only comparable
minor gains. Vanilla language models are already
good at generating replacements that do not share
the same frame, having success ratios between
82.6% and 89.7%. Reranking (gaining between
1.9% and 4.4%) as well as framed-decoding (gain-
ing between 6.4% and 11.7%) increases the ratio
further, ending with an almost guaranteed frame
removal (e.g. 98% for marijuana). Looking at the
success rate of adding frames as measured by ADD,
we observe major gains using reranking and framed
decoding comparable to the FIT analyses, yielding
ratios between 45.8% (minimum wage) and 63.4%
(nuclear energy).

Note that the results are worse for all topics
when decreasing the strength of framed decoding
(λ-value) from 0.5 to 0.1, showing the importance
of a higher boost of frame-related tokens.

The following example illustrates a common pat-
tern using a high value of λ = 0.5: Reframing the
argument against nuclear energy “Italy, Belgium,
Spain and Switzerland have also principally de-
cided to become nuclear energy-free” emphasizing
the aspect of energy policy (S) towards an argu-
ment emphasizing renewable energy (T ) results in

“It is essential solar panels wind farms concentrated
concentrated in hydro biomass farms to become nu-
clear energy-free.”, which is barely understandable.
The text mentions several technologies for renew-
able energies to maximize the probability of this
particular frame and avoids any names of countries
or decision processes to minimize the probability
of being labeled with energy policy. This exam-
ple shows that beyond successfully switching the
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Nuclear energy Minimum wage Marijuana
REM ADD FIT REM ADD FIT REM ADD FIT

MLM (T5small) 84.0 2.9 2.1 82.6 2.5 1.3 89.7 3.0 2.5
⌞+rerank (10) 88.4 ‡ 10.9 ‡ 8.6 ‡ 85.1 ‡ 9.5 ‡ 6.8 ‡ 91.6 ‡ 12.2 ‡ 9.7 ‡
⌞+frame-decλ=0.1 89.9 20.4 ‡ 15.9 ‡ 84.1 10.8 8.3 93.0 21.2 ‡ 17.8 ‡
⌞+frame-decλ=0.5 95.8 ‡ 63.4 ‡ 53.9 ‡ 96.8 ‡ 45.8 ‡ 40.1 ‡ 98.0 ‡ 55.7 ‡ 50.9 ‡

Table 1: Ratios in % of evaluating the reframing success. (‡) significant improvement to the method above with p <
0.005 according to the approximate randomization test with 10.000 resampling steps.

Nuclear energy
∅ FIT Gram.

MLM (T5small) 56.7 2.1 73.8
⌞+rerank (10) 61.1 ‡ 8.3 ‡ 85.6 ‡
⌞+frame-decλ=0.1 62.9 ‡ 15.9 ‡ 85.3
⌞+frame-decλ=0.2 65.7 ‡ 38.1 ‡ 80.1
⌞+frame-decλ=0.5 62.7 53.4 ‡ 39.3

Table 2: Scores (0-100) for the different model variants
on nuclear energy: Average of all metrics, target-set-fit
(FIT), and Grammaticality.

frame, grammaticality and preserving topicality are
crucial, so we evaluate our arguments with respect
to further criteria in the following section.

5.2 Evaluation including other Reframing
Aspects

In order to analyze the appropriateness of reframed
arguments beyond the reframing success, we evalu-
ate them with respect to all other metrics introduced
in Section 3.2 by introducing an unweighted aver-
age of those five (∅), scaling each metric from 0 to
100. However, for reranking, while still regarding
frame-validity as the most important metric, we
compute an aggregate involving all metrics with
weights ω as follows3: ωvalidity = 4, ωproximity =
1, ωcloseness topic = 1, ωcloseness frame = 0.5, and
ωgrammar = 2 (Equation 2)

The results of the automatic evaluation using
again t5-small exchanging exactly one frame
are provided in Table 2. We observe that the rerank-
ing improves every single metric and, hence, the
average score. In the case of the topic of nuclear
energy, the improvement is 3.4 points, increasing
from 56.7 to 61.1. While looking at the different
rewrites, we notice that arguments with shorter re-
placements are preferred on average in order to

3In an application case such as a dashboard with sliders, a
user of the system could select an individual weighting of the
different metrics to get different reranked lists.

avoid hallucination and therefore optimize proxim-
ity and data manifold closeness while ensuring a
high frame-validity. Introducing framed decoding
shows a tradeoff between target-set-fit (favoring
high λ) and grammaticality/proximity (favoring
low λ). The highest target-set-fit ratio (53.4%) is
achieved at λ = 0.5 at the expense of a lower
grammaticality (39.3). Conversely, deactivating
framed decoding yielded the highest score in terms
of grammaticality (85.6) but lowered target-set-fit
(8.3%). Thus, framed decoding enforces the target
frameset but decreases the (linguistic) coherence,
moving the reframed argument away from the orig-
inal. We find the optimal λ value at 0.2 with a
38.1% ratio of fitting target framesets and a gram-
maticality score of 80.1. Table 3 shows examples
using this setting, containing one successfully re-
framed argument and two examples of failing to
introduce the added frame in the target set.

5.3 Manual Evaluation

To explore the trade-off between target-set fit and
linguistic acceptance further, we conducted a man-
ual study with 50 randomly selected arguments
derived from the debate on nuclear energy. Once,
we exchanged one frame without framed decoding
and twice with framed decoding (λ = [0.1, 0.2]).
We automatically selected the best-reframed sen-
tence out of 10 each using the proposed weights in
Section 5.2. Table 4 presents the results of the 150
annotated arguments, incorporating the majority
vote for frames and meaning and mean values for
grammaticality/fluency.

The results of the manual evaluation generally
confirm the results of the automatic evaluation. De-
activating framed decoding results in a low target-
set-fit (8% of the generated arguments add the new
frame, 64% of them remove the deleted frame, and
4% fit the target frameset exactly). However, these
arguments have only minor grammaticality/fluency
flaws with an average of 3.9, every second preserv-
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Original argument Reframed argument
Just to maintain the
current world pro-
duction of nuclear
power, either the
oldest, creakiest plants
need to be relicensed
or a veritable orgy of
nuclear construction
needs to begin. [RELIA-

BILITY]

There is a need for
fossil oil, either the
oldest, creakiest plants
need to be relicensed
or a veritable orgy
of nuclear construction
needs to begin. [FOSSIL

FUELS]

The support of nuclear
power by government
results from special
pleading lobbying by
the industry. [ENERGY

POLICY]

The support of nuclear
power by the indus-
try results from special
needs by the industry.
[RELIABILITY]

Prospects for nuclear
energy as an option
are limited, the report
found, by four unre-
solved problems: (1)
high relative costs;
(2) perceived adverse
safety, environmental,
and health effects;
(3) potential security
risks stemming from
proliferation; and (4)
unresolved challenges
in long-term man-
agement of nuclear
wastes. [COSTS], [AC-

CIDENTS/SECURITY],

[ENVIRONMENTAL

IMPACT], [HEALTH

EFFECTS], [WASTE]

Prospects for nuclear
energy as an option
are limited, the report
found, by four unre-
solved problems: (1)
high relative costs;
(2) perceived adverse
safety, safety, and
health effects; (3)
potential security
risks stemming from
proliferation; and (4)
unresolved challenges
in long-term man-
agement of nuclear
wastes. [COSTS], [AC-

CIDENTS/SECURITY],

[HEALTH EFFECTS],

[WASTE], [TECHNOLOG-

ICAL INNOVATION]

Table 3: Examples using t5-small+rerank (10) with
framed decoding (λ = 0.2), removing and adding one
frame class

w/o λ λ = 0.1 λ = 0.2

Success of reframing (%)
REM 64 82 82
ADD 8 8 26
FIT 4 4 18

Grammar/ Fluency (1-5)
∅ 3.9 3.9 3.7

Meaning (%)
Preservation 50 48 40
Plausibility 60 68 60

Table 4: Results of manual evaluation (t5-small + rerank
(10)), debating nuclear energy

t5-small (10) t5-large (10)
w/o λ λ = 0.2 w/o λ λ = 0.2

Frame-FIT (%) 4 18 6 18
Grammar (1-5) 3.9 3.7 4.1 4.1
Preservation (%) 50 40 62 60
Plausibility (%) 60 60 70 72

Table 5: Results of the manual study considering two
model variants, debating nuclear energy

ing the meaning of the original argument, and 60%
of which are plausible. Activating the framed de-
coding again shows a similar λ influence with a
sweat-spot of λ = 0.2, yielding a high target-set-fit
(18%) and generating well-formulated arguments
(3.7) while preserving meaning (40%) and plausi-
bility (60%).

In comparison to the automatic evaluation results
shown in Table 2, we notice a significant drop by
≈ 50% in the target-set-fit ratio. This discrepancy
can be primarily attributed to the use of the same
classifier for both the automatic evaluation and the
classification of tokens with frames. This classifier
plays a crucial role in identifying the text segments
that need to be replaced to achieve a new target
frameset. As a consequence of this setup, incorrect
frame predictions that occur outside the replaced
text segments go unnoticed in the automatic evalu-
ation but are detected in the manual evaluation.

5.3.1 Impact of model size
To analyze the impact of using a larger model
(namely t5-large), we expanded our manual an-
notation study by 50 reframed arguments for each
hyperparameter setting. Table 5 shows the results.

Regarding the target-set-fit ratio, we observe sim-
ilar performances, yielding only 4% and 6% for
t5-small and t5-large, respectively, with-
out framed decoding. While t5-small is better
in avoiding the removed frame class (64%) but
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not successful and targeting the added frame class
(8%), t5-large is worse in removing (58%)
but better in adding (16%). Due to the higher
model complexity, t5-large is better at gener-
ating context-fitting replacements, having a higher
chance to restore the masked text part but also to
uncover new aspects, while t5-small tends to
generate more general and debate-unspecific re-
placements, resulting in less meaning preservation
(dropping from 62 to 50%) and plausibility (from
70% to 60%).

Nevertheless, activating the framed decoding
process with λ = 0.2 reduces the impact of
model size regarding the framing. Both text-
generating models produce a target-set-fit ratio of
18%, demonstrating the success of our decoding
strategy being insensitive to model size. However,
t5-large shows a better performance on select-
ing linguistically fitting tokens which leads to com-
parable ratings in grammaticality (∅4.1), meaning
preservation (60%) and plausibility (72%). Here,
t5-small starts to generate clearly ungrammati-
cal or unfitting text replacements in some cases.

5.3.2 Evaluating reframing on multiple
frames

Up to this point, our focus has been on the task
of reframing involving the replacement of a single
frame class within an argument in a multilabel set-
ting. Next, we experimented with removing and
adding none or multiple frame classes simultane-
ously, exclusively relying on arguments covering at
least two frame classes. Due to the increasing com-
plexity, we used t5-large with activated framed
decoding (λ = 0.2), again reranking among 10 can-
didates per argument. The manual analysis incor-
porated 50 reframed arguments, once for removing
1 frame class (deframing) and once for exchanging
2 frame classes (extended reframing).

Increasing the edit distance between the source
frameset S and target frameset T increases the task
difficulty. With deframing, we achieve a target-
set-fit of 24% (yielding 66% reframed arguments
without the removed target frame). By exchanging
1 target frame class we measure a target-set-fit of
18% while finally dropping to 8% by exchanging
2 target frame classes due to the major changes
needed to achieve the complex changes between S
and T . The challenge of this extended reframing
is also reflected by the other three manual metrics
but still yielding an average grammar score of 3.9,
a ratio of 42% in meaning preservation, and a ratio

of 64% in terms of plausibility.

6 Conclusion

We have proposed an unsupervised approach to
argument reframing, which takes inspiration from
approaches to counterfactual explanation genera-
tion in the sense that we transfer and adapt metrics
used in counterfactual generation to implement a
reranking strategy for reframed arguments. We use
an LLM to replace text spans that were tagged by a
token classifier with a frame to be deleted by tokens
that are associated with the frame to be added.

Our automatic and manual evaluation demon-
strates that the combination of framed decoding and
reranking, utilizing metrics such as frame-validity,
proximity, data manifold closeness, and grammat-
icality, outperforms a vanilla LLM baseline by
nearly an order of magnitude in terms of reframing
success. Furthermore, by showing a tradeoff be-
tween tailoring the rewritten argument to the target
frameset and yielding a plausible and grammati-
cally correct argument, we identified a sweet spot
in the strength of framed decoding yielding across
two different language generation model sizes.
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A Analysing the impact of the number of
generated candidates for reframing

This section presents a concise analysis of how
the quantity of rewrites impacts the quality of the
best-reframed argument considering the automatic
reranking with weights proposed in Section 5.2,
measured by the target-set-fit ratio and the average
score of the reranking metrics.

Investigating the debate of “nuclear energy”, Fig-
ure 2 illustrates a pattern wherein an increasing
number of rewrites monotonously increases both
metrics across all models since additional rewrites
potentially outperform the choice among fewer
rewrites, but can not worsen the metrics based
on the best argument after reranking. However,
the curves flatten with an increasing number of
rewrites, representing a stochastic principle of sam-
pling from an ordered distribution. Since we apply
sampling at decoding time itself, every language
model has the capability to generate every text that
maximizes the automatic metrics (100%). Hence,
our distribution contains this optimal text which has
to be sampled assuming access to infinite rewrites.
However, this is not practicable, raising the ques-
tion of the probability mass of the “good” rewrites.
Here, we observe that framed decoding shifts the

Figure 2: Influence of the number of rewrites debating
“Nuclear energy” (t5-small)

Figure 3: Influence of the number of rewrites debating
“Minimum wage” (t5-small)

probability mass significantly, leading to better so-
lutions at fewer rewrites compared to instances
where framed decoding is not employed.

The observation holds for other topics as well.
Figure 3 for the topic “minimum wage” shows a
similar relation between the metrics and number
rewrites, having only a smaller slope of increment.
Looking at Table 1, we see that this topic yields
the smallest ratio of successfully reframed argu-
ments on average, suggesting more complex frame
classes. Nevertheless, the same stochastic princi-
ples apply here, observing the same trends.

B User Interface of the Manual study

Figure 4 shows the user interface of our manual
study. Annotators were shown one argument at a
time and were asked to rate the mentioned frames,
the fluency, and the meaning. Each frame class is
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Frame ακ

Accidents/security 0.361
Costs 0.462
Energy policy 0.133
Environmental impact 0.362
Fossil fuels 0.286
Health effects 0.498
Public debate 0.107
Reliability/efficiency 0.173
Renewables 0.386
Technological innovation 0.209
Waste 0.454
Weapons 0.457
Overall 0.324

Table 6: Inter-annotator agreements (Krippendorff’s
Alpha) of the manual user study, topic Nuclear energy

described adapting the original descriptions4, once
by hovering the frames and once in the guidelines
at the bottom of the page, containing examples
as well. The annotators answered the questions
sample by sample independently from each other.

C Replacing T5 with larger
prompt-based Large Language Models

Recent advancements in prompt-based Large Lan-
guage Models, such as chatGPT or the successor
GPT-4 (OpenAI, 2023), show wide applicability
for many NLP tasks in a few- or even zero-shot
setting. To test the potential for usage as reframing
models, we used a prompt5 to test the performance
of GPT-4 on some selected examples shown in Ta-
ble 3:

4https://zenodo.org/record/7525183/
files/AAC_NE_Guidelines.md?download=1

5You are an assistant for reframing sentences that are
tagged with specific aspects. The current topic is nuclear
energy and the tags show which aspects of the topic the tokens
belong to. You will be given a sentence with a set of initial
aspects and your task is to perform minimal changes on the
sentence to reframe it into a new target set of aspects, without
changing words that are not labeled to an aspect that needs to
be removed. The new aspects are general topics and not the
words that need to be included.

This is a tagged sentence with the aspects [SOURCE SET]
and the target set is [TARGET SET]

[Sentence with annotated labels]
Now perform minimal changes to this sentence to achieve a

reframed sentence that has the target set as annotated aspects.
Try to keep the sentence as close to the original one and change
only what is necessary. The fewer changes the better. Keep
the tokens that are not related to the reframing the same, i.e.
don’t remove unnecessary tokens if they are not related to
an aspect that needs to be removed. Write the new sentence
without aspect classifications but just as a plain sentence.

1. Just to maintain the current world consump-
tion of fossil fuels, either the oldest, most de-
pleted fields need to be rejuvenated or a sig-
nificant surge in new drilling needs to begin."

2. "The support of nuclear power by the govern-
ment results from its reliability in the industry.

3. "Prospects for nuclear energy as an option
are limited, the report found, by four unre-
solved problems: high relative costs; per-
ceived adverse safety and technological chal-
lenges; health effects; potential security risks
stemming from proliferation; and unresolved
challenges in long-term management of nu-
clear wastes."

While the first look at the reformed arguments
is promising (introducing related phrases towards
the frame class which should be added in all ar-
guments), we see critical drawbacks using GPT-
4. Although the parts marked as “fit the target
frame set” of the reframed arguments align with
the original argument, GPT-4 failed to keep them
completely unchanged and, hence, perform more
changes than necessary, leading to less controlla-
bility. Furthermore, with respect to the automatic
frame class prediction, GPT-4 often fails to reframe
successfully. In the presented examples, GPT-4
successfully added only once the new frame class
and failed two times to remove the frame class
that should have been discarded. GPT-4 shows
also a dependency on descriptions of the frame
classes, e.g. to guide the second example towards
“reliable energy” rather than “reliability” in gen-
eral. All in all, GPT-4 alone without further guid-
ance as provided by framed decoding or reranking
is not suited to support the type of minimalistic
reframing that we are targeting. However, using
these two techniques to introduce framing capabili-
ties in an unsupervised manner, we require only a
general language understanding of the underlying
generative language model. Using a much larger
prompt-based model with more capabilities is not
necessarily beneficial here. In order to keep the
requirements for the computational resources real-
istic, especially with respect to a beam search using
up to 100 beams in order to yield a comprehensive
search space for counterfactual reranking, we con-
sider T5 as the model of choice for this paper.
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Figure 4: Screenshot of part of the annotator interface of the manual study
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Abstract
This paper presents an overview of the Im-
ageArg shared task, the first multimodal Ar-
gument Mining shared task co-located with
the 10th Workshop on Argument Mining at
EMNLP 2023. The shared task comprises two
classification subtasks - (1) Subtask-A: Argu-
ment Stance Classification; (2) Subtask-B: Im-
age Persuasiveness Classification. The former
determines the stance of a tweet containing
an image and a piece of text toward a contro-
versial topic (e.g., gun control and abortion).
The latter determines whether the image makes
the tweet text more persuasive. The shared
task received 31 submissions for Subtask-A
and 21 submissions for Subtask-B from 9 dif-
ferent teams across 6 countries. The top sub-
mission in Subtask-A achieved an F1-score of
0.8647 while the best submission in Subtask-B
achieved an F1-score of 0.5561.

1 Introduction

Research in Argument Mining (AM) typically cen-
ters around the examination of an author’s argu-
mentative position, achieved through the automated
identification of argument structures. This research
has predominantly concentrated on domains pre-
sented in textual formats, encompassing endeavors
such as mining persuasiveness in essays (Stab and
Gurevych, 2014) and user-generated web discourse
(Habernal and Gurevych, 2017). Recently, there
has been a growing recognition of the need for mul-
timodality in AM research. A noteworthy develop-
ment in this regard is the Retrieval for Argument
shared task (Carnot et al., 2023). This task is de-
signed to retrieve images related to a controversial
topic that aligns with the textual stance, whether it
supports or contradicts the topic. In a related con-
text, Liu et al. (2022) introduced the ImageArg cor-
pus, which is designed to investigate multimodal
persuasiveness within tweets. This corpus repre-
sented an advancement in the field of automated

∗ These authors contributed equally to this work.

Figure 1: Examples of Subtask-A: Argument Stance
(AS) Classification and Subtask-B: Image Persuasive-
ness (IP) Classification.

persuasive text identification (Duthie et al., 2016)
by introducing a new modality through the inclu-
sion of images.

This paper introduces the ImageArg shared task1,
building upon the groundwork laid by Liu et al.
(2022) and conducted as a part of the 10th Work-
shop on Argument Mining2. The shared task com-
prises two subtasks that center around two highly
controversial topics (gun control and abortion):

• Subtask-A: Argument Stance (AS) Classifica-
tion. The primary objective is to determine,
for each of these topics, whether a given tweet
text and its accompanying image express ei-
ther support or opposition. This subtask ad-
dresses the research question: how to identify
an argument stance of the tweet that contains
a piece of text and an image?

1https://imagearg.github.io/
2https://argmining-org.github.io/2023/
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• Subtask-B: Image Persuasiveness (IP) Clas-
sification. The goal is to assess whether the
image associated with a tweet makes the tweet
text more persuasive or not. This subtask ad-
dresses the research question: does the tweet
image make the tweet text more persuasive?

Figure 1 shows examples of the two subtasks. The
upper left tweet expresses a strong stance towards
supporting gun control by indicating a house bill
about the requirement of background checks for
all gun sales. The upper right tweet opposes gun
control because it is inclined to self-defense. The
lower left tweet has an image irrelevant to the gun
control topic. It does not improve the persuasive-
ness of the tweet text (and its stance) that argues to
focus on mental health instead of gun restriction.
The lower right tweet makes the tweet text (and its
stance) more persuasive because it provides strong
evidence to show the statistics of the murder rate
in major U.S. cities due to restrictive gun control
laws, so citizens cannot easily arm themselves.

The shared task received 31 submissions for
Subtask-A and 21 submissions for Subtask-B from
9 diverse teams, comprising both academic ex-
perts from various universities and industry re-
searchers, across 6 different countries. In general,
the submissions that utilized text information from
tweet images and performed data augmentation
yielded favorable results for Subtask-A. The sub-
missions that utilized unified multimodal models
also achieved good performance in Subtask-B. The
highest Subtask-A F1-score of 0.8647 was attained
by Team KnowComp (Zong et al., 2023), while
the leading Subtask-B F1-score of 0.5561 was at-
tained by Team feeds (Torky et al., 2023). Details
about task submissions are described in Section 4.

2 Related Work

Multimodal Learning Recently, there has been
increasing attention to assessing the ability of artifi-
cial intelligence models to process and understand
multimodal input signals that occur in real-world
applications (Zhang et al., 2018; Alwassel et al.,
2020). In the vision-language domain, tasks are pri-
marily designed to evaluate the capacity of models
to comprehend visual data and articulate reasoning
in language (Goyal et al., 2017; Hudson and Man-
ning, 2019). In addition, Zheng et al. (2021) are in-
terested in the discourse relations between text and
its associated images in recipes, while Kruk et al.
(2019) explores the multimodal document intent of

Instagram posts. More recently, Liu et al. (2022)
introduce ImageArg, the first multimodal learning
corpus for argument mining. However, the size
of the ImageArg corpus is small, which motivates
our construction of an extension of the original cor-
pus. Regarding multimodal modeling, researchers
have developed methods to derive strong represen-
tations for each modality and implement fusion
techniques (Tsai et al., 2018; Hu et al., 2019; Tan
and Bansal, 2019; Lu et al., 2020). Although sev-
eral shared tasks in machine translation (Specia
et al., 2016; Barrault et al., 2018) and argument
retrieval (Carnot et al., 2023) have revealed the ef-
fectiveness of multimodal learning, none of them
focused on argument persuasiveness. Therefore,
this shared task provides opportunities to bench-
mark the new multimodal argument persuasiveness
corpus by utilizing various image and text encoders
along with effective fusion strategies.

Computational Persuasiveness While classical
argument mining primarily focuses on the identifi-
cation of argumentative components and their cor-
responding relationships (Stab et al., 2014, 2018;
Lawrence and Reed, 2020), researchers have also
focused on argument persuasiveness (Chatterjee
et al., 2014; Park et al., 2014; Lukin et al., 2017;
Carlile et al., 2018; Chakrabarty et al., 2019). Fur-
thermore, while Riley (1954), O’Keefe (2015), and
Wei et al. (2016) investigated the ranking of debate
arguments on the same topic, they did not focus
on discovering factors contributing to the persua-
siveness of these arguments. In addition, Lukin
et al. (2017) and Persing and Ng (2017) investi-
gate how audience personality influences persua-
siveness through diverse argument styles, such as
factual versus emotional arguments. However, their
work only focuses on the textual modality. In con-
trast, Higgins and Walker (2012) and Carlile et al.
(2018) focus their attention on persuasion strate-
gies, e.g., Ethos (credibility), Logos (reason), and
Pathos (emotion), within the context of reports and
student essays. Building upon their work designed
for textual corpora, Liu et al. (2022) extend the
annotation schemes to include the image modality.
Although Park et al. (2014), Joo et al. (2014), and
Huang and Kovashka (2016) employ facial expres-
sions and bodily gestures to analyze persuasiveness
within the realm of social multimedia, their investi-
gations remain limited to human portraits and fail
to generalize across diverse image domains. While
prior work does explore persuasive advertisements
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Confidence Abortion Gun control

>= L5 0.8437 0.7434
>= L4 0.7842 0.6697
>= L3 0.7824 0.6551
>= L2 0.7820 0.6516
>= L1 0.7807 0.6487

Table 1: Krippendorff’s alpha for abortion and gun
control topics with respect to different confidence levels.

in a multimodal fashion (Hussain et al., 2017; Guo
et al., 2021), it is important to note that their fo-
cus is on sentiment analysis, intent reasoning, and
persuasive strategies tailored specifically for adver-
tisements. In contrast, our shared task is interested
in argument mining, marking an aligned goal to
the ImageArg work (Liu et al., 2022), offering sub-
stantial value to multimodal computational social
science.

3 Corpus

We extended the ImageArg corpus (Liu et al.,
2022) by following its annotation protocol to an-
notate new data on abortion and gun control top-
ics. Specifically, we annotated 1141 new abortion
tweets and 301 new gun control tweets. Parts of
the new gun control tweets were used to replace
131 out of the original 1003 gun control tweets in
the ImageArg corpus which were no longer avail-
able due to deletions or account suspensions. The
other extras were annotated to ensure gun control
and abortion tweets have close data distributions.
Therefore, we obtained 1173 gun control tweets in
total. In addition to using the original annotation
protocol (Liu et al., 2022), we required annotators
to score confidence levels, which was designed
to improve the inter-annotation agreement. Con-
fidence was divided into 5 levels: L5-Extremely
confident (understood and answered all annota-
tions carefully), L4-Quite confident (tried to un-
derstand and answered most annotations carefully),
L3-Somewhat confident (confused about some an-
notations), L2-Not very confident (did not under-
stand some annotations), and L1-Not confident
(mostly educated guesses).

In the annotation process, each tweet was an-
notated by three annotators on Amazon Mechani-
cal Turk (AMT)3 who had done more than 5,000
approved annotations with at least 95% approved
rates in their historical hits. Annotators were re-
quired to pass a qualification exam that annotated

3https://www.mturk.com/

Topic Split AS IP Total
Sup. Opp. Yes No

Gun
control

train 475 448 251 672 923
dev 54 46 33 67 100
test 85 65 53 97 150

Abortion
train 244 647 278 613 891
dev 19 81 26 74 100
test 33 117 53 97 150

Table 2: The data statistics for Subtask-A and Subtask-
B for gun control and abortion topics.

pilot examples with at least 0.7 accuracy. Table 1
shows AS annotation agreements in terms of Krip-
pendorff’s alpha (Krippendorff, 2011) and confi-
dence levels. We observed that annotations with
high confidence levels had high agreements but
dropped more annotations. To make the trade-off
between annotation costs and agreements, we disre-
garded annotations with confidence levels less than
L4 for abortion and less than L5 for gun control.
The remaining new AS annotations for abortion
and gun control have alpha scores of 0.78 and 0.74,
respectively. The new IP annotations were also
inherited from the ImageArg protocol. First, an-
notators annotated two persuasiveness scores: one
for tweet text (st), another for tweet text and im-
age (sit). Then we computed a score difference
∆si = max(sit − st, 0) as a persuasiveness gain
from adding a tweet image. The final image per-
suasiveness score for each tweet was the average
of persuasiveness gains from three annotators. To
interpret image persuasiveness, we used the same
threshold (0.5) in ImageArg to split them into bi-
nary labels, indicating whether the image made the
tweet text more persuasive or not.

We split the corpus into train, development, and
test sets in the shared task, which obtained 1814
train, 200 development, and 300 test samples for
both subtasks4. The data statistics are shown in
Table 2 for Subtask-A and Subtask-B, respectively.
We released the train and development data splits
for model development and the test set without
labels before the task submission deadline. We
shared the complete test set with labels after com-
pleting the shared task. The full corpus can be
downloaded from the GitHub repository5.

4We removed one abortion tweet in the test set when we
evaluated team submissions for the leaderboard because the
tweet was no longer available during the task submission
phase so a few teams were unable to download the full 300
test samples.

5https://github.com/ImageArg/
ImageArg-Shared-Task
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ID System Score Modality Model Notes

1* KnowComp-4 0.8647 I+T ResNet50 +
DeBERTa

Augment Text with Back Translation +
WordNet

2 KnowComp-5 0.8571 I+T ResNet50 +
DeBERTa

Augment Text with Translation + WordNet
+ Semantic SimilarityAttention

3 KnowComp-1 0.8528 I+T ResNet101 +
DeBERTa

Augment Text with Translation + WordNet

4* Semantists-4 0.8506 T+E Ensemble of All Models

5 Semantists-3 0.8462 T+E BERTweet OCR on Image

6 Semantists-5 0.8417 T+E BERT Dual Contrastive Loss + OCR on Image

7 Semantists-1 0.8365 T+E BERT Contrastive Loss + OCR on Image

8 Semantists-2 0.8365 T+E T5 OCR on Image

9 KnowComp-2 0.8365 I+T ResNet50 +
DeBERTa

Augment Text with Translation + WordNet
+ Semantic SimilarityAttention

10 KnowComp-3 0.8346 I+T LayoutLMv3
+ DeBERTa

Augment Text with Translation + WordNet

11* Mohammad Soltani-2 0.8273 I+T CLIP32 AdaBoost for Abortion + Xgboost for Gun
Control

12* Pitt Pixel Persuaders-2 0.8168 T Emsemble All The Model

13 Mohammad Soltani-1 0.8142 I+T CLIP32 AdaBoost for Abortion and Gun Control

14 Mohammad Soltani-4 0.8093 I+T CLIP32 Xgboost for Abortion and Gun Control

15* GC-HUNTER-2 0.8049 T XLMRoberta

16 Mohammad Soltani-3 0.8000 I+T CLIP32 AdaBoost for Abortion + RUSBoost for
Gun Control

17 Pitt Pixel Persuaders-1 0.7910 T BLOOM-
560m

18 Mohammad Soltani-5 0.7782 I+T CLIP32 SVM-Poly for Abortion and Gun Control

19 GC-HUNTER-1 0.7766 T BERT

20* IUST-1 0.7754 T+E BERTweet Augment Text with ChatGPT paraphraser +
OCR on image

21 IUST-2 0.7752 T+E RoBERTa Augment Text with ChatGPT paraphraser +
OCR on image

22 Pitt Pixel Persuaders-4 0.7710 T Bloom-1B

23 Pitt Pixel Persuaders-5 0.7415 T XLNet

24* KPAS-1 0.7097 I+T CLIP

25* ACT-CS-4 0.6325 I+T+E+C ViT+BERT Cross-Attention

26 ACT-CS-3 0.6178 I+T+E ViT+BERT Cross-Attention

27 ACT-CS-2 0.6116 I+T ViT+BERT Cross-Attention

28 ACT-CS-1 0.5863 I+T ViT+BERT Simple Concatenation of features

29 IUST-3 0.5680 I+T+E CLIP+BERT Augment Text with ChatGPT paraphraser +
OCR on image

30 Pitt Pixel Persuaders-3 0.5285 I+T ViLT

31* feeds-1∗∗ 0.4418 T BERT

Table 3: The Subtask-A submission results. The System column refers to the Team name and submission attempt
number connected by "-". Each Team has at most five submissions. The scores are positive F1 scores. The T, I, E,
and C represent text, image, extracted text from image, and image caption modality, respectively. Rows with bold
ID and marked with * refer to the best system for each participating team. ** Team feeds submitted results for one
topic by the submission deadline, so only partial results are evaluated.
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4 Submission Results

We provide summaries about Subtask-A (Sec. 4.1)
and Subtask-B (Sec. 4.2) submissions for all the
teams. In cases where a team did not submit a de-
scription paper, we include their results and provide
a brief description based on the survey completed
by the team at the time of submission.

4.1 Subtask-A: AS Classification

Initially, we observed that models utilizing mul-
timodal features (I+T or T+E) displayed higher
performances, where I denotes tweet images, T
denotes tweet text, and E denotes the text ex-
tracted from images. Table 3 illustrates that the top-
performing submissions (top 10) employed two pri-
mary strategies: they either fused features extracted
from both image and text encoders separately, or
used pretrained language models finetuned on text
extracted from images and tweets, which gave an
additional textual context to the original tweet. This
innovative method improved model performance
compared to the ones that only used tweet text data
in general6. Also, the last column shows that data
augmentation exhibited promise, given the limited
annotated data in this shared task.

4.1.1 System Descriptions

We describe representative methods from leading
teams while summarizing the approaches from the
remaining teams as follows:

Team KnowComp introduced a unified Frame-
work for Text, Image, and Layout Fusion in Ar-
gument Mining, TILFA (Zong et al., 2023). They
highlighted the need for better image encoding with
textual information. To tackle the problem of un-
balanced data, they augmented the tweet texts with
backtranslation and synonym replacements.

Team Semantists (Rajaraman et al., 2023) sub-
mitted five system runs for task A, focusing mainly
on the text-based approaches. To harness the infor-
mation from the images, they extract text from the
tweet image through an OCR system and concate-
nate it with the tweet texts. Pretrained language
models such as T5 NLI (Raffel et al., 2020) and
BERTTweet are applied for label predictions. The
team also adopts a Multi-task Contrastive Learning
Framework similar to Chen et al. (2022) with the
label aware augmentation for contrastive learning.

6Results may vary depending on the model training details
and experimental setups across participating teams

Team Mohammad Soltani (Soltani and
Romberg, 2023) experimented with CLIP (Radford
et al., 2021) to extract the textual and visual modal-
ity features. They then combined features from
both modalities by concatenating them along the
last dimension according to an early fusion strategy,
followed by traditional machine learning classifiers
such as AdaBoostClassifier and SVM-Poly.

Team Pitt Pixels Persuaders (Sharma et al.,
2023) fine-tuned multiple text-based pre-trained
models such as XLNet (Yang et al., 2019) and
BLOOM (Scao et al., 2022) on the corpus. Team
IUST (Nobakhtian et al., 2023) did data augmen-
tation using GPT to paraphrase tweet text and ex-
tracted text from images and finetuned text-based
models. Team feeds (Torky et al., 2023) and Team
GC-Hunter (Shokri and Levitan, 2023) only fine-
tuned pre-trained language models on the tweet
text. Both Team ACT-CS (Zhang et al., 2023) and
Team KPAS studied multimodal feature fusions.

4.1.2 Method Discussions

Table 3 reveals that the most successful submis-
sions utilized pretrained language models such as
DeBERTa, BERT, and BERTweet (Nguyen et al.,
2020). Furthermore, the integration of data aug-
mentation techniques, such as backtranslation and
word substitution using WordNet, was observed to
enhance performance, as depicted in Figure 2. This
boost in performance can be attributed to the in-
herent reliance on textual information in the stance
detection task. Augmenting the relatively limited
annotated corpus with these techniques appears to
be advantageous. Additionally, leveraging features
from the visual modality, whether through image
representations or image-text representations, fur-
ther improved performance, ultimately leading to
the highest overall scores, as demonstrated in Table
3 (rows 1 to 10).

On the other hand, the methods that utilized mul-
timodal techniques like CLIP performed relatively
lower than those that employed separate encoders
for text and visual modalities. This is evident when
referencing Table 3, where the system achieving
the highest performance using CLIP as the joint
encoder, namely the submission by Mohammad
Soltani-2, is ranked 11th on the leaderboard. Ad-
ditionally, it’s noteworthy that only a limited num-
ber of teams explored the use of Large Language
Models (LLMs). This might be attributed to our
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Figure 2: Subtask-A: system performance in relation to the computation approaches (left: modalities, right:
techniques). We grouped systems based on the modalities used by the model (left) and computational techniques
(right). The T, I, E, and C represent text, image, extracted text from image, and image caption modality, respectively.

initial guidelines7, which indicated that the utiliza-
tion of commercial APIs like chatGPT8 would not
contribute to the final ranking. Nevertheless, sub-
missions that leveraged open-source LLMs, such
as BLOOM-1B (row 22), exhibited lower perfor-
mance compared to other submissions using pre-
trained language models. This opens up opportu-
nities for further research into exploring the capa-
bilities of LLMs in understanding argumentation,
especially in multimodal contexts.

4.1.3 Error Analysis
Figure 3 categorized the systems based on the
modalities they incorporate and evaluated their re-
spective success rates. Our analysis focused on
system’ ability to make accurate predictions, quan-
tified by the number of successful systems out of
31 systems. We found that systems that incorpo-
rated both image and text modalities (I+T) gener-
ally yielded reasonable predictions, with at least
one system in this category correctly identifying
the label. Additionally, models that combined text
and extracted text from images (T+E) displayed
particularly strong performance, especially for data
of intermediate difficulty. In these cases, the suc-
cess rate for these systems exceeded 60%, with
at least 19 out of the 31 systems making correct
predictions.

In a qualitative analysis of the 299 valid tweets

7https://imagearg.github.io/
8https://platform.openai.com/docs/guides/gpt/

chat-completions-api

Figure 3: Average rate of correct predictions for
Subtask-A systems (grouped by modalities) across tweet
difficulties: the y-axis represents the number of systems
making correct predictions out of 31 systems.

in the test set, we found that 160 tweets (53%) were
accurately predicted by a majority of systems (>=
26 out of 31 systems). Among the subset of tweets
(86) exhibiting intermediate difficulty (where 6-
20 teams failed to predict the correct labels), we
manually sampled ten tweets for label analysis and
provided potentially correct labels. Our findings
indicate that these tweets often encompass cyni-
cism or sarcasm regarding a specific topic (3 cases),
are heavily reliant on the image contents/charts (3
cases), or can be traced back to annotation noise
or contents unrelated to the provided topic. De-
tailed insights are shown in Table 5 in Appendix A.
For instance, the first example associates "pro-life"
with "Abortion Law", suggesting the tweets favor
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abortion. In the second example, a deep under-
standing of the text embedded within images is
crucial for providing accurate labels. These obser-
vations underscore the complexities in multimodal
argument mining tasks and highlight the critical
role of cross-modal information fusion.

4.2 Subtask-B: IP Classification
In contrast to Subtask-A, participating teams made
fewer submission attempts for Subtask-B (a total of
21 compared to 31 for Subtask-A). Notably, all sub-
missions in Subtask-B employed approaches that
incorporated multiple modalities, as this task inher-
ently requires an integration of visual and textual
information to assess image persuasiveness.

As shown in Table 4, utilizing CLIP (Radford
et al., 2021) model is evident to be the most effec-
tive technique in extracting multimodal features,
which yields the best results (top-4 systems lever-
aged CLIP). This indicates that a unified encoder
can better model the cross-modal information fu-
sion, compared to employing individual models
(i.e., ViT (Dosovitskiy et al., 2020) for image and
BERT (Devlin et al., 2019) for text) for feature
extractions. Moreover, three teams utilized off-the-
shelf Optical Character Recognition (OCR) tools
to extract image text content. This extracted text
was then combined with the original tweet texts to
fine-tune pre-trained language models, which sug-
gests that users could include arguments through
texts embedded in the images.

4.2.1 System Descriptions
We describe systems from the top-performing
teams and briefly summarize the remaining teams:9

Team feeds (Torky et al., 2023) made 2 submis-
sions (Table 4 rows 1 and 3). The team utilized the
CLIP model to encode the image and text and use
a simple concatenation to fuse the two modalities,
then trained a neural network on the concatenated
features. They carefully cleaned tweet texts by
recovering common abbreviations with their full
forms (such as "I’m to I am") and also removed
content such as URLs, emails, and phone numbers.

Team KPAS did not submit a system demon-
stration paper. However, their submission notes
showed that they also employed the CLIP model to
extract multimodal features.

Team Mohammad Soltani (Soltani and
Romberg, 2023) made a total of 5 submissions

9While Team KPAS was among the top-performing teams,
they did not submit a system description paper.

(Table 4 rows 4, 7, 8, 9, and 12). Notably, they
adopted a topic-specific approach, tailoring their
strategies to each topic separately. For the "Abor-
tion" topic, they integrated visual features extracted
from the CLIP model and utilized them as inputs
for a classifier. Conversely, when tackling the "gun
control" topic, their most successful model was
crafted by combining features from Reformer (Ki-
taev et al., 2019), ELECTRA (Clark et al., 2019),
and LayoutLM (Xu et al., 2020).

Similar to the systems in Subtask-A, Team Se-
mantists (Rajaraman et al., 2023) extracted texts
from images and fine-tuned pretrained Language
models such as T5 NLI and StancyBERT (Popat
et al., 2019) on the corpus. Team ACT-CS (Zhang
et al., 2023) and Team KnowComp (Zong et al.,
2023) used separate models to encode the visual
and textual information individually, then fine-
tuned classifiers based on the fused features. Team
IUST (Nobakhtian et al., 2023) (Table 4 row 11)
leveraged the MultiModal Bit Transformer to ex-
tract features from both image and text sources
concurrently. Team GC-Hunter (Shokri and Levi-
tan, 2023) chose to concatenate text content from
both tweets and OCR outputs to fully leverage tex-
tual information, complemented by image features
extracted from a separately trained ViLT model. Fi-
nally, Team Pitt Pixel Persuaders (Sharma et al.,
2023) (Table 4, row 21) did not include the details
of their Subtask B submission in their system de-
scription paper. However, their submission notes
reveal that they also relied on CLIP, which proved
to be less successful in their case.

4.2.2 Method Discussion
Figure 4 illustrates that, unlike Subtask A, the appli-
cation of data augmentation techniques which pri-
marily concentrated on augmenting the text modal-
ity exclusively obtained only modest improvements
in classification performance. Notably, none of the
participating teams explored augmentation for the
visual modalities, which presents an opportunity
for further research into the impact of image aug-
mentation on enhancing persuasiveness detection.

Additionally, Table 4 indicates that none of the
submissions integrated LLMs into their systems.
This observation can also be attributed to the task’s
primary emphasis on both visual and textual modal-
ities and the guidelines we enforced, which limited
the use of LLMs to open-source models. These
open-source models have received less attention
within the context of multimodal tasks, providing
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ID System Scores Modality Model Notes

1* feeds-1 0.5561 I+T CLIP Cleaned Text

2* KPAS-2 0.5417 I+T CLIP

3 feeds-2 0.5392 I+T CLIP Uncleaned Text

4* Mohammad Soltani-5 0.5281 I+T CLIP32+REL
+Convnext

5* Semantists-1 0.5045 T+E T5 OCR on Image

6* ACT-CS-1 0.5000 I+T Vit+BERT

7 Mohammad Soltani-1 0.4875 I+T CLIP32 SVM-Poly for Abortion LogisticReg for
Gun Control

8 Mohammad Soltani-4 0.4778 I+T CLIP32+REL
+Convnext

SGD for Abortion LogisticReg for Gun
Control

9 Mohammad Soltani-3 0.4762 I+T CLIP_L_14 SVM-Poly for Abortion and Gun Control

10 Semantists-5 0.4659 T+E Emsemble with majority vote

11* IUST-1 0.4609 I+T CLIP+BERT Augment Text with ChatGPT paraphraser +
OCR on image

12 Mohammad Soltani-2 0.4545 I+T CLIP32 SGD for Abortion and Gun Control

13 ACT-CS-4 0.4432 I+T+E+C Vit+BERT Cross Attention

14 ACT-CS-3 0.4348 I+T+E Vit+BERT Cross Attention

15 Semantists-4 0.4222 T+E Emsemble with consistency loss

16 Semantists-2 0.4141 T+E Stancy BERT

17* KnowComp-1 0.3922 I+T LayoutLMv3
+DeBERTa

Augment Text with Translation + WordNet

18* GC-HUNTER-1 0.3832 I+T+E ViLT OCR on Image

19 ACT-CS-2 0.3125 I+T Vit+BERT Cross Attention

20 Semantists-3 0.2838 I+T+E ALBEF

21* Pitt Pixel Persuaders-1 0.1217 I+T CLIP

Table 4: The Subtask-B submission results. Each Team is allowed at most 5 submissions. The scores are positive
label F1. The T, I, E, and C, represent text, image, extracted text from image, and image caption modality,
respectively. Rows with bold ID and marked with * refer to the best system for each participating team.

an explanation for their absence in the submissions.

4.2.3 Error Analysis

Figure 5 categorizes the systems based on the
modalities they incorporate and their respective
success rates. Our analysis focused on the models’
ability to make accurate predictions, quantified by
the number of successful systems out of the 21 total
systems. We found that systems incorporating both
image and text modalities (I+T) consistently pro-
duced accurate predictions across data points with
varying levels of difficulty. Interestingly, systems
that combined text, text on images, images, and cap-
tions (I+T+E+C) demonstrated strong performance,
particularly for data with high difficulty levels (as
indicated by rows where only 4/5 systems made
correct predictions). As reported by Soltani and
Romberg (2023), these systems tended to classify

images showing only text as persuasive. Further
analysis on the data illustrated different argumen-
tation techniques, such as cases, consequences, or
outcomes related to the textual argument, further
highlighting the complexity and diversity of ap-
proaches employed in this shared task.

5 Conclusion

In this paper, we introduced the ImageArg shared
task, marking a significant milestone as the inau-
gural shared task in multimodal argument mining,
co-located with the 10th Argument Mining Work-
shop at EMNLP 2023. A total of 9 teams from
6 different countries enthusiastically participated
in this task, collectively submitting 31 systems
for Subtask-A Argument Stance (AS) classifica-
tion and 21 systems for Subtask-B Image Persua-
siveness (IP) classification. The results reveal that
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Figure 4: Subtask-B: system performance in relation to the computation approaches (left: modalities, right:
techniques). We grouped systems based on the modalities used by the model (left) and computational techniques
(right). The T, I, E, and C represent text, image, extracted text from image, and image caption modality, respectively.

Subtask-A is comparatively more predictable than
Subtask-B. Models that utilized both textual in-
formation and the text embedded within images
demonstrated considerable performance in Subtask-
A. Furthermore, the strategic use of data augmen-
tation and ensemble methods further enhanced the
models’ effectiveness. In contrast, Subtask-B wit-
nessed the predominant adoption of CLIP for fea-
ture extraction from both images and texts, a tech-
nique that exhibited significant promise. The two
subtasks offered valuable opportunities for partic-
ipants to actively engage and foster fruitful ex-
changes in multimodal argument mining research.

6 Limitations

In this section, we discuss the limitations of our
work from multiple perspectives. First, the datasets
utilized in this task may not sufficiently cover a
broad range of multimodal data, possibly leaning
toward social media content related to two specific
topics: gun control and abortion. The language
of data included in the paper is English, which is
limited and should be extended to other languages
for argument mining. Meanwhile, as demonstrated
in Section 4.1.3, the label annotations may exhibit
inconsistencies or inaccuracies, given the inherent
complexity of the task. Also, the use of rhetorical
devices, especially in addressing challenges like
sarcasm detection, remains an underexplored area.
The evaluation metrics employed may not fully en-
compass the nuanced performance aspects crucial

Figure 5: Average rate of correct predictions for
Subtask-B systems (grouped by modalities) across tweet
difficulties: the y-axis represents the number of systems
making correct predictions out of 21 systems.

for multimodal argument mining. Lastly, it’s im-
portant to acknowledge that participating systems
may encounter challenges when attempting to gen-
eralize their approaches across diverse data types,
domains, or modalities.

Regarding the analysis of the results, it’s impor-
tant to acknowledge that since we mainly collected
final predictions for both subtasks, the interpretabil-
ity of the systems might remain unclear, presenting
challenges in gaining insights into their decision-
making processes. The intricate nature of multi-
modal argument mining can lead to multiple valid
interpretations, potentially affecting the clarity of
the ground truth.
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7 Ethics

We acknowledge that there are privacy and ethical
considerations in the collection and utilization of
social media data. It’s possible that biases within
the dataset or system outputs may not have been
fully mitigated. Given that our data originates from
Twitter and the annotators predominantly come
from English-speaking countries, it’s inevitable
that cultural biases are inherent in the data. How-
ever, we have implemented several measures to mit-
igate potential risks. To address privacy concerns,
we have chosen to publicly share only the tweet
IDs with the research community, which aligns
with Twitter Developer Policy10.
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Image Text Annotations

’Abortion law is pro-life. It
saves ’mother over ’growing fe-
tus in unwanted pregnancy due
to rape, psychological trauma,
social stigma, etc. It stops back-
alley abortions that kill. Coun-
seling & transition homes can
lessen ’need for abortion.

Topic: Abortion
Annotated Label: Oppose
System Predictions:
{’Oppose’: 19, ’Support’:12}
Potentially Correct Label: Support
Rationale: The human annotation is inaccurate, super in-
teresting on the usage of ’pro-life’, to advocate for abortion.

How Pro-Life is the Republican
party and Justices? Facts mat-
ter here the answer, they’re not.
Thanks to their rulings, women
have been able to safely have
abortions. #RoeVWade #Repub-
licans #SCOTUShearings #Con-
stitution #prochoice #ProLife
#Facts

Topic: Abortion
Annotated Label: Support
System Predictions:
{’Oppose’: 20, ’Support’:11}
Potentially Correct Label: Support
Rationale: This tweet uses sarcasm, and is hard to annotate
(republicans are in general not supporting legal abortion).
Here the contents are image-dependent.

Table 5: Manually checked data with controversial scenarios for Subtask-A, where nearly half of the systems failed
to predict the correct label. We sampled a few tweets and provided a potential correct label based on our manual
inspections. The first example redefines a widely used anti-abortion term, pro-life, and advocates for abortion
instead. The second is a complicated one that requires the comprehension of texts embedded in the image.
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Abstract
ImageArg is a shared task at the 10th ArgMin-
ing Workshop at EMNLP 2023. It leverages
the ImageArg dataset to advance multimodal
persuasiveness techniques. This challenge
comprises two distinct subtasks: 1) Argumen-
tative Stance (AS) Classification: Assessing
whether a given tweet adopts an argumentative
stance. 2) Image Persuasiveness (IP) Classifica-
tion: Determining if the tweet image enhances
the persuasive quality of the tweet. We con-
ducted various experiments on both subtasks
and ranked sixth out of the nine participating
teams.

1 Introduction

Argumentation mining, a task in Natural Language
Processing (NLP), aims to automatically detect ar-
gumentative structures in a document (Green et al.,
2014). This process unveils not only people’s view-
points but also the reasons behind their beliefs
(Lawrence and Reed, 2019). It offers valuable in-
sights across a wide spectrum of fields, ranging
from predicting financial market trends to public re-
lations. However, prior research in this field mainly
concentrates on text and does not exploit multi-
modal data.

ImageArg, a multimodal dataset introduced by
Liu et al. (2022), is designed to bridge this gap. It
includes persuasive tweets accompanied by images
and its goal is to identify the image’s stance towards
the tweet and assess its persuasiveness score on
specific topics.

ImageArg constitutes a collaborative challenge
(Liu et al., 2023) tailored to advance multimodal
persuasive techniques, using the ImageArg dataset.
It is made of two subtasks: Argumentative Stance
(AS) Classification and Image Persuasiveness (IP)
Classification which will be further discussed in
subsection 3.1 and subsection 3.2 respectively.

The whole system architecture is shown in Fig.1.
We make three experiments on the AS subtask.

Figure 1: Our System Architecture

While in two of them, we only used the text as
input data, in the third, we adopted a multimodal
approach, considering both image and text inputs.
In the former, we utilize BERTweet (Nguyen et al.,
2020) in one experiment and RoBERTa (Liu et al.,
2019) in the other. For our final experiment, we
employed the Multimodal Bitransformer (MMBT)
architecture (Kiela et al., 2020), harnessing tweets’
text, text within images, and the images themselves.
Our first approach, which leveraged BERTweet,
achieved the highest F1-score compared to the two
other methods.

For the IP task, we conducted a single experi-
ment employing the MMBT model. We employed
tweets’ text, text extracted from images, and the
images themselves as inputs.

2 Related Work

Persuasiveness Mining: Persuasiveness mining
has been the subject of many recent studies (Chat-
terjee et al. (2014); Park et al. (2014); Lukin et al.
(2017); Carlile et al. (2018); Chakrabarty et al.
(2019)) but they do not provide the factors that
make an argument persuasive. Liu et al. (2022)
provides a framework to assign numerical score to
the persuasiveness of an image based on its content
type. They also determine the mode of persuasive-
ness for their images which can be based on reason,
emotion, or ethics. In this work, we are going to
use the dataset provided by Liu et al. (2022) for de-
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Original Processed
Topic Split Pos Neg Total Pos Neg Total

Argumentative
Stance

Gun Control
Train 475 448 923 470 442 912
Dev 54 46 100 52 45 97
Test 85 65 150 85 65 150

Abortion
Train 244 647 891 729 644 1373
Dev 19 81 100 19 81 100
Test 33 117 150 33 117 150

Image
Persuasiveness

Gun Control
Train 251 672 923 747 663 1410
Dev 33 67 100 31 66 97
Test 53 97 150 53 97 150

Abortion
Train 278 613 891 556 609 1165
Dev 26 74 100 26 74 100
Test 53 97 150 53 97 150

Table 1: Statistics for the Original and Processed (Cleaning & Paraphrasing) Datasets. The ’Pos’ class corresponds
to ’Yes’ and ’Support’, while the ’Neg’ class corresponds to ’No’ and ’Oppose’. Numbers modified due to data
augmentation are highlighted in bold.

termining image persuasiveness and argumentative
mining.

Multimodal Learning: The recent surge in at-
tention towards AI models lies in their capability
to handle and comprehend inputs from multiple
sources, thanks to the complementary nature of
these multimodal signals in real-world applications
(Aytar et al. (2016); Zhang et al. (2018); Alwas-
sel et al. (2020)). Within the field of vision and
language, tasks primarily revolve around assess-
ing the models’ proficiency in both grasping visual
data and articulating reasoning through language
(Agrawal et al. (2016); Goyal et al. (2017); (Hud-
son and Manning, 2019)). Although some research
diverges from this mainstream which explores the
connection between images and text: Alikhani et al.
(2019) delve into annotating discourse relations be-
tween textual and accompanying visual elements in
recipe instructions, while Kruk et al. (2019) delve
into understanding multimodal document intent in
Instagram posts.

3 Task and Data

ImageArg Shared Task includes two subtasks: Ar-
gumentative Stance (AS) Classification and Image
Persuasiveness (IP) Classification. The dataset pro-
vided for this task encompasses two distinct topics
of societal significance, namely abortion and gun
control. Within the training subset of the dataset1,
a total of 912 examples are allocated to the domain

1We observed that we had data inconsistency according to
the ImageArg statistics.

of gun control, while 887 examples pertain to the
topic of abortion. In the development subset, there
are 100 data entries related to abortion and 97 data
records related to gun control. In the testing parti-
tion, both the abortion and gun control categories
are represented equally, each comprising 150 ex-
amples.
In the following parts, we will provide more de-
tails about subtasks and statistics related to the data
specified for each subtask.

3.1 Argumentative Stance Classification
In this subtask, a tweet consisting of an image and
text is given and the task is to predict whether this
tweet supports or opposes a certain topic. It is con-
sidered a binary classification task; the proposed
topics are abortion and gun control.

According to the data distribution shown in Fig.2
in the gun control section, we deal with a dataset
that is approximately balanced and there is no need
to worry about imbalanced classes. On the other
hand, the abortion topic has different conditions;
unfortunately, the dataset is imbalanced in both the
train and dev sections. Over 70% of the data has
been specified to the "Oppose" class.

3.2 Image Persuasiveness Classification
Like the previous subtask, a tweet composed of an
image and text is given to a model as input and
it will predict if the image beside the tweet text
makes it more persuasive or not. The scenario is
the same as the first subtask, a binary classification
problem with the mentioned topics.
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Figure 2: Data distribution in Argumentative Stance
Classification. (A) Abortion Train. (B) Abortion Dev.
(C) Gun Control Train. (D) Gun Control Dev.

As shown in Fig. 3, the dominant class label
in both topics is "No", indicating that a significant
portion of images does not enhance the persuasive-
ness of the tweet text. More than 65% of tweets on
gun control and abortion belong to the "No" class.

Figure 3: Data distribution in Image Persuasiveness
Classification. (A) Abortion Train. (B) Abortion Dev.
(C) Gun Control Train. (D) Gun Control Dev.

4 Methods

We first present preprocessing techniques used for
both subtasks, as well as some ideas to make the
performance of both tasks better before training
models. Next, we introduce models developed for
the argumentative stance followed by image per-
suasiveness models.

4.1 Preprocessing
Initially, we undertook text processing enhance-
ments for the tweet content, incorporating vari-
ous modifications to enhance their overall qual-
ity. In the preprocessed tweet corpus, all URLs

were systematically substituted with the designated
keyword "URL". A similar substitution approach
was employed for mentions, seamlessly replaced
by the keyword "MENTION". Given the inherent
limitations of numerous text-processing models in
deciphering emojis, a pragmatic approach of sub-
stituting them with the term "EMOJI" was adopted.
Lastly, non-English characters were transcoded
into their corresponding ASCII representations,
subsequently utilized to supplant these characters
within the text.

After inspecting the data instances, we found
that many images have some text in their back-
ground. We assumed that including this text as an
additional feature in the dataset, would improve
our ability to develop more effective models for
detecting valuable concepts. To achieve this, we
used an OCR API2 to extract text from images if
it is available. It was the best tool that we came
across in the variety of approaches.

OCR will bring many advantages to our ap-
proach. Firstly OCR can extract text from im-
ages that would otherwise be unavailable to the
model. This can be especially useful for social
media posts and other types of online content that
often include images. Secondly, OCR can help to
improve the performance of the model on multi-
modal data, where the image and the text are both
relevant to the task.

In the preceding section, we examined the dis-
tribution of classes, revealing the presence of
an imbalanced dataset issue. While diverse ap-
proaches exist to address this concern, our strategy
is centered on employing oversampling techniques.
Specifically, we chose to implement an oversam-
pling methodology by augmenting the minority
class instances independently for each subtask and
topic. To achieve this equilibrium, we employed
a paraphrasing technique facilitated by the Chat-
GPT paraphraser (Vladimir Vorobev, 2023) , har-
nessed from the foundational T5 model (Raffel
et al., 2020). Tailored to each unique class ra-
tio within varying contexts, a variable count of
paraphrased samples was generated for each in-
stance within the dataset. In the table 1 you can
see the dataset statistics before and after applying
pre-processing and paraphrasing techniques. Our
primary objective was to approximate a balanced
class distribution across diverse scenarios.

2https://ocr.space
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4.2 Argumentative Stance Classification

We employed two different approaches for this sub-
task: One of them solely relies on text and the
second method utilizes both images and text from
tweets.

To ascertain the stance of tweets, it appears that
placing trust in the textual content alone would
suffice, given that images are unlikely to provide
supplementary information. As a result, our first ap-
proach depends exclusively on text-based analysis.
Within this approach, we used two distinct models
for text classification, RoBERTa and BERTweet.

While RoBERTa leverages both the textual con-
tent of tweets and text extracted from accompa-
nying images to infer stance, BERTweet focuses
solely on training with tweet text. These models
have undergone training on the entire dataset, en-
compassing gun control and abortion topics.

Our third approach capitalizes on a multimodal
classification framework by integrating both tex-
tual content and images sourced from tweets. To
realize this objective, we adopted the Multimodal
Bitransformer (MMBT) architecture (Kiela et al.,
2020), designed specifically to address image-and-
text classification challenges. The MMBT model
merges insights from text and image encoders.
While the original configuration employs BERT
(Devlin et al., 2019) as the text encoder and ResNet
(He et al., 2015) as the image encoder, Inspired by
(Neskorozhenyi, 2021) we replaced the image en-
coder with diverse iterations of the CLIP (Radford
et al., 2021) model. CLIP, or Contrastive Language-
Image Pre-Training, emerges as a neural network
fine-tuned on (image, text) pairs, yielding feature
representations that exhibit greater richness and
applicability to the task at hand. Our exploration
encompassed a spectrum of image encoders, loss
functions, and optimizers within this framework,
pursued to secure optimal outcomes for each dis-
tinct topic.

4.3 Image Persuasiveness Classification

Due to time limitations, we focused our efforts on
presenting a singular methodology for this partic-
ular subtask. This approach harnesses the MMBT
architecture, as detailed in the preceding section.
This subtask similarly involves a multimodal classi-
fication challenge, entailing the utilization of both
tweet images and text as inputs to the model. We
undertook the development of separate models tai-
lored to each individual topic, thereby enabling

Model Topic Precision Recall F1-score

BERTweet
All data 0.9068 0.6772 0.7754
Abortion 0.8778 0.5777 0.6824

Gun Control 0.9176 0.7358 0.8168

RoBERTa
All data 0.8475 0.7143 0.7752
Abortion 0.8485 0.5600 0.6747

Gun Control 0.8471 0.8000 0.8229

MMBT
All data 0.9915 0.3980 0.5680
Abortion 0.9697 0.2222 0.3616

Gun Control 1.0000 0.5667 0.7234

Table 2: Argumentative Stance classification results on
test data

Model Topic Precision Recall F1-score

MMBT
All data 0.5000 0.4274 0.4609
Abortion 0.5094 0.4030 0.4500

Gun Control 0.4906 0.4561 0.4727

Table 3: Image Persuasiveness classification results on
test data

optimization specific to the nuances of each topic’s
content and characteristics.

5 Experiments and Results

First, we discuss our results of the first subtask,
which is summarised in Tab.2. Our first and best
submission for argumentative stance classification
was BERTweet which is a variant of BERT specif-
ically trained for tweets. We achieved 0.7754 F1-
score on test data and we stand out as the 6-th team
among others. BERT-based models are known for
their strong performance in various NLP tasks, and
this experiment confirms their utility for Argumen-
tative Stance classification in tweets.

RoBERTa was the second submission and its re-
sult was highly close to BERTweet, with a score
of 0.7752 based on F1. It suggests that incorporat-
ing text from images did not notably enhance the
model’s performance, which is an interesting find-
ing. It is possible that the text within images may
not have provided much additional useful informa-
tion for this specific task. Both BERTweet and
RoBERTa were trained for 10 epochs with batch-
size of 8, using AdamW as optimizer (Loshchilov
and Hutter, 2019).

MMBT was the last approach and it did not per-
form as well as the two first approaches. It yielded
a noticeably lower F1-score of 0.5680 compared
to the text-only models. Although we employed
separate models for each topic, the image encoder
was the same and we utilized CLIP-RN50x4 for
this purpose. In addition, weighted Binary Cross
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Entropy (BCE) was used as a loss function and we
specified a weight according to class distribution
for each topic for a better performance. The drop
in performance could indicate that the addition of
image information did not help and may have even
introduced noise or complexity into the model. It’s
important to note that multimodal models can be
challenging to train and may require a substantial
amount of data and careful tuning to outperform
text-only models in specific tasks.

Figure 4: Examples of Image Persuasiveness subtask
that were misclassified

Figure 5: Examples of Image Persuassieveness that
were classified correctly

In the second subtask, the only approach we
followed was MMBT. The specified model for the
gun control topic employed CLIP-RN101 as its
image encoder whereas the abortion model used
CLIP-RN50x16. These models were trained for 10
epochs with batch-size of 32. Its result is shown in
Tab.3. While the model’s performance may not be
exceptionally high, it demonstrates some capability
in assessing the persuasiveness of tweets with both
text and image content. Some instances of the
dataset with the model’s predictions are shown in
Fig.4 and Fig.5.

6 Conclusion

In this paper, we presented our approach in the Im-
ageArg shared task which was the first shared task
in Multimodal Argument Mining. We proposed
three methods for the first subtask. These mod-
els have different varieties from models solely de-
pendent on text to multimodal pre-trained models.
We also had only one submission for the second
subtask and we achieved 6-th place in both tasks
among other groups that participated.
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Abstract
A main goal of Argument Mining (AM) is to
analyze an author’s stance. Unlike previous
AM datasets focusing only on text, the shared
task at the 10th Workshop on Argument Min-
ing introduces a dataset including both text and
images. Importantly, these images contain both
visual elements and optical characters. Our new
framework, TILFA1 (A Unified Framework for
Text, Image, and Layout Fusion in Argument
Mining), is designed to handle this mixed data.
It excels at not only understanding text but also
detecting optical characters and recognizing
layout details in images. Our model signifi-
cantly outperforms existing baselines, earning
our team, KnowComp, the 1st place in the
leaderboard2 of Argumentative Stance Classifi-
cation subtask in this shared task.

1 Introduction

Argument mining (AM) aims to automatically an-
alyze the structure and components of arguments
in text. Persuasiveness analysis is a crucial aspect
of it, which has gained significant attention in the
NLP community (Habernal and Gurevych, 2017;
Carlile et al., 2018). However, previous works fo-
cus solely on text, overlooking other modalities
like images which can also impact an argument’s
persuasiveness. To fill this gap, Liu et al. (2022)
introduces ImageArg, a dataset going beyond text
to include also images. It features tweets centered
on contentious topics like gun control and abortion.
These associated images contain not only objects
but also optical characters (e.g., slogans, tables).

The 10th Workshop on Argument Mining in
EMNLP 2023 introduces a shared task (Liu et al.,
2023b) called ImageArg Shared Task 2023, cen-
tering around this dataset. It is divided into two
subtasks: Argumentative Stance (AS) Classifica-
tion and Image Persuasiveness (IP) Classification.

1The code and data are available at https://github.
com/HKUST-KnowComp/TILFA.

2https://imagearg.github.io/

Tweet Text: Background checks 
save lives. Full stop. We deserve 
#MoreThanThoughtsAndPrayers 
from our elected leaders to end 
gun violence.  
Topic: gun control
Stance: support

Tweet Text: A child deserves a 
chance at life. A child deserves 
a future. A child deserves to be 
loved. We will always fight for 
the innocent unborn. #ProLife 
Topic: abortion
Stance: oppose

Tweet Image: Tweet Image: 

Figure 1: Examples of positive (support) and negative
(oppose) tweets of different topics. The images also con-
tain a lot of information crucial to stance identification.

We primarily focus on the former, which aims to
identify the stance of a given tweet towards a spe-
cific topic. Examples can be found in Fig. 1.

After scrutinizing the dataset, we found several
challenges: (1) Imbalanced data distribution (Ratio
of positive to negative examples on abortion topic
is about 1 : 2.65); (2) Limited data size (Neither
of the two topics has more than 1000 entries); (3)
Presence of both objects and optical characters in
images (They are difficult to be handled by a single
model at the same time). To address these chal-
lenges, we have made the following contributions:

• To tackle data imbalance, we employ back-
translation to enrich data in the fewer class,
as described by Yu et al. (2018); Wieting and
Gimpel (2018).

• For data augmentation, we utilize Word-
Net (Miller, 1994) with GlossBERT (Huang
et al., 2019) to create additional data by replac-
ing synonyms of nouns in original instances.

• We introduce TILFA which can understand
both text and image well, especially adept
at detecting optical characters and discerning
layout details in images.
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2 Related work

Data Augmentation: Data augmentation en-
hances a model’s performance and increases its
generalization capabilities in Natural Language
Processing (NLP). At the word level, Wang et al.
(2019) used databases like WordNet (Miller, 1994),
to replace certain words with their synonyms, while
Rizos et al. (2019) implemented embedding re-
placement to find contextually fitting words; At
the document level, Yu et al. (2018) used back-
translation, translating data to another language
and then back to the source one.

Document AI: Document AI refers to the ex-
traction and comprehension of information from
scanned documents, web pages, ads, posters, or
images with textual content. Previous works like
Hao et al. (2016); Liu et al. (2019) all missed the
integrated pre-training of text and layout details,
which are vital for document image comprehension.
To fix this, Xu et al. (2020) proposed LayoutLM.
Its updated versions, LayoutLMv2 (Xu et al., 2021)
and LayoutLMv3 (Huang et al., 2022), encapsu-
lated text, layout and also image interactions within
a unified multimodal framework.

3 Methods

We employ back-translation (Yu et al., 2018) to
address data imbalance and apply WordNet (Miller,
1994) for data augmentation, assisted by Gloss-
BERT (Huang et al., 2019). Our new framework,
TILFA, uses DeBERTa (He et al., 2021) as the text
encoder and LayoutLMv3 (Huang et al., 2022) as
the image encoder, thus excels at not only under-
standing text but also detecting optical characters
and recognizing layout details in images. We also
experiment with several multimodal fusion mecha-
nisms. Consequently, we achieve the highest F1-
score in the Argumentative Stance Classification
subtask of the ImageArg Shared Task 2023.

3.1 Addressing Data Imbalance

Label imbalance is serious in the training set, par-
ticularly concerning the abortion topic (The ratio
of positive to negative examples is about 1 : 2.65).
To address this, we preprocess the data through
bask-translation (Yu et al., 2018). We translate
the English tweet text belonging to the underrep-
resented label (e.g., positive in abortion topic) to a
random language (e.g., French, German) and then
back to English. This maintains the tweet’s mean-

ing and thus the stance label. The translated text is
finally paired with its original image.

3.2 Data Augmentation

More data usually leads to better model perfor-
mance (Bayer et al., 2022; Fang et al., 2022). We
employ data augmentation methods since our Im-
ageArg training set is limited: only 918 entries for
gun control and 888 for abortion. We first utilize
spaCy to tokenize the tweet text and extract the
nouns in it. Then we find all their synonym sets
in WordNet (Miller, 1994). We determine these
nouns’ meanings in context by Word Sense Disam-
biguation (WSD) using GlossBERT (Huang et al.,
2019), thus getting their correct synonym set. Fi-
nally, we replace these nouns with their synonyms
to create new data.

3.3 Model

To solve this task, we introduce a model: TILFA (A
Unified Framework for Text, Image, and Layout
Fusion in Argument Mining). The structure of
TILFA is illustrated in Fig. 2, comprising three
components: Image Encoder, Text Encoder, and
Multimodal Fusion. We will discuss details of them
one by one.

Image Encoder: As highlighted by Liu et al.
(2022), traditional image encoders like ResNet50,
ResNet101 (He et al., 2016), VGG (Simonyan and
Zisserman, 2015) are good at identifying objects
but fall short in recognizing optical characters in
images, which may hurt performance. However,
as shown in Fig. 1, many of the images in our
dataset contain significant amount of characters.
So we reasonably believe that using models which
can capture the text in the images will have bet-
ter results. And we notice that those characters
with more prominent position and larger size are
relatively more important. So considering the im-
portance of this layout information of characters
in images, we employ LayoutLMv3 (Huang et al.,
2022)) to encode the images, favoring it over sole
OCR tools.

Text Encoder: To encode tweet texts, we employ
DeBERTa (He et al., 2021). It has shown great per-
formance in various NLP tasks . Our experimental
results confirm its effectiveness in the ImageArg
task as well.

Multimodal Fusion: We explore three multi-
modal fusion methods, illustrated in Fig. 2. The

140



[�; �; �-�; �⊙�][�; �; �-�; �⊙�]

...

Text Inputs

Image Inputs

Text 
Encoder

Image 
Encoder

Multimodal

Fusion
Linear

Pooling Pooling

...

...

... ... ...

Linear Linear Linear

Q K V

Cross-modal
Multi-head Attention

Pooling

Softmax Attention

... ...�

�

�

... ...�

Average & Max Pooling

[����; �max; ����; �max]

(1) Concatenation (2) Cross-modal Multi-head Attention (3) Semantic Similarity Attention

Text Modality

  Image Modality + Layout Modality  

(English)

Translation

(Random language 
e.g. French)

Translation

(English)

Back-translation
Noun

WordNet
synonym

synonym
synonym

Addressing Data Imbalance Data Augmentation

Copy

Matching

Figure 2: Our model, TILFA, includes three main parts: a text encoder, an image encoder, and a multimodal fusion
module. In this fusion module, we experiment with three different methods: (1) Concatenation; (2) Cross-modal
Multi-head Attention; (3) Semantic Similarity Attention.

first simply concatenates the hidden states from
text and image inputs. The second method, named
cross-modal multi-head attention, is adapted from
Yu et al. (2021). And the third is a new approach
adapted from ESIM (Chen et al., 2017). ESIM is a
sequential natural language inference model used
to predict the logic relationship between two sen-
tences. We adapt it for text and image fusion, and
name our version: Semantic Similarity Attention.

4 Experiments

4.1 Experiment Settings
Metrics: We use F1 score, Macro F1, AUC (Area
Under Curve) and accuracy scores to evaluate base-
lines and our models. Models with the best F1-
score on validation set are chosen.

Baselines: For images, we use ResNet50,
ResNet101, VGG16, and LayoutLMv3. For text,
we use DeBERTa. For combined image and text
input, DeBERTa serves as text encoder, while
ResNet50, ResNet101, and VGG16 act as image
encoder. All models use the original dataset.

Implementation Details: To be more specific,
we report scores within topics. Since the hyperpa-

rameters have a non-negligible effect on the scores,
we conduct the experiments at a learning rate of 1e-
4, 1e-5, 5e-6 and a batch size of 16, 8, 4. More im-
plementation details can be found in Appendix A.

4.2 Results and Analysis

Table 1 shows the results on both topics in Im-
ageArg dataset. (Experimental results of more
models can be seen in Appendix B.)

Our model, TILFA, outperforms the base-
lines (those above the double horizontal line) on all
the four evaluation metrics by a large margin. Also,
our model achieves the SOTA performance on the
leaderboard of Argumentative Stance Classifica-
tion subtask in ImageArg Shared Task 2023, which
demonstrate the effectiveness of our methods.

For combined text and image inputs, models
utilizing LayoutLMv3 for image encoding per-
form much better than those using traditional ones,
which verifies our belief in Section 3.3 that a better
understanding of the text in images is beneficial.

Back-translation and WordNet also greatly im-
prove performance across all metrics (e.g. an im-
provement of 1.68 on gun control and 3.98 on abor-
tion for TILFA in F1-score), confirming the value
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Models Modality Gun Control Abortion
F1 Ma-F1 AUC Acc F1 Ma-F1 AUC Acc

ResNet50 I 65.00 62.50 62.90 62.67 35.71 60.42 59.55 75.84
ResNet101 I 67.43 60.91 60.86 62.00 38.89 59.71 60.44 70.47
VGG16 I 67.44 61.85 61.81 62.67 38.46 58.32 59.80 67.79
LayoutLMv3 I+L 56.98 46.67 46.92 48.67 39.47 59.38 60.66 69.13
DeBERTa T 86.32 81.34 80.54 82.67 71.43 80.11 86.40 83.89
DeBERTa+ResNet50 T+I 88.04 84.54 83.80 85.33 70.59 79.43 85.97 83.22
DeBERTa+ResNet101 T+I 87.50 82.64 81.72 84.00 73.17 81.49 87.26 85.23
DeBERTa+VGG16 T+I 87.96 83.43 82.49 84.67 74.07 82.20 87.70 85.91

DeBERTa+ResNet50 T+I + 90.32 87.27 86.33 88.00 75.95 83.64 88.56 87.25
DeBERTa+ResNet101 T+I + 87.43 83.89 83.21 84.67 70.73 79.81 85.32 83.89
DeBERTa+VGG16 T+I + 89.73 86.60 85.75 87.33 77.50 84.62 90.07 87.92

TILFA (DeBERTa+LayoutLMv3) t1 T+I+L 89.13 85.94 85.16 86.67 76.54 83.89 89.64 87.25
TILFA (DeBERTa+LayoutLMv3) t1 T+I+L + 90.81 88.01 87.10 88.67 80.52 86.87 91.37 89.93
TILFA (DeBERTa+LayoutLMv3) t2 T+I+L + 90.32 87.27 86.33 88.00 77.50 84.62 90.07 87.92
TILFA (DeBERTa+LayoutLMv3) t3 T+I+L + 88.89 84.98 84.03 86.00 79.01 85.59 91.59 88.59

Table 1: Performance of all frameworks on the testing set of both topics. Those below the double horizontal line
use our methods, and the above are baselines. For models that have both base and large sizes, we use the large
one. We abbreviate F1-score, Macro F1-score, Accuracy to F1, Ma-F1, Acc, respectively. T, I and L are short for
text modality, image modality and layout modality. Three multimodal fusion methods are named t1, t2 and t3 here.
Those with a superscript + use both back-translation and WordNet, while others don’t use either.

of our data preprocessing and augmentation strate-
gies. When it comes to multimodal fusion methods,
the simplest Concatenation works best. We think it
may because the second method is initially applied
in video field (Yu et al., 2021), and the third one in
pure text field (Chen et al., 2017). So, neither of
them is suitable to be migrated to this task.

We merge the answers belonging to different top-
ics together and report the Micro F1-score. With a
90.32 F1 on gun control and a 77.50 F1 on abortion,
we get a Micro F1-score of 86.47, which is the top
on the leaderboard, 1.41 higher than the second
best team. Our score improves even further after
changing the hyperparameters, up to 87.79 (90.81
on gun control and 80.52 on abortion).

4.3 Ablation Study

To fully understand the impact of different compo-
nents, we conduct an ablation study in Table 2.

Both back-translation and WordNet do help
to the improvement of model performance, with
WordNet having a larger impact. Models using
only text inputs outperform just image inputs. This
suggests that information in the text is more effec-
tive in determining the author’s stance than images.
However, the best performance is achieved when
both text and image inputs are used, showing that
images also do contribute to stance determination.

LayoutLMv3 performs better than Resnet50 on

Text Image T W F1
Gun Abortion

− ResNet50 − − 65.00 35.71
− LayoutLMv3 − − 56.98 39.47

DeBERTa − − − 86.32 71.43

DeBERTa ResNet50 − − 88.04 70.59
DeBERTa ResNet50 ✓ − 88.42 71.11
DeBERTa ResNet50 − ✓ 88.77 75.61
DeBERTa ResNet50 ✓ ✓ 90.32 75.95

DeBERTa LayoutLMv3 − − 89.13 76.54
DeBERTa LayoutLMv3 ✓ − 89.73 76.92
DeBERTa LayoutLMv3 − ✓ 90.22 77.50
DeBERTa LayoutLMv3 ✓ ✓ 90.81 80.52

Table 2: Ablation studies in ImageArg. The first two
columns illustrate text and image encoders. T and W
represent back-translation and WordNet. All models use
the Concatenation method for multimodal fusion.

abortion topic when based solely on image inputs,
but on both topics when text inputs are added. This
indicates that image encoders which can take the
text and layout information in the images into ac-
count can really work better.

4.4 Case Study

We conduct a case study to better understand the
behavior of our data augmentation method, with an
example presented in Table 3. In the original text,
we select the noun "risk". Then we find its differ-
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Original Text SCOTUS has balanced rights w/ public safety, ruling that gun safety laws essential &
constitutional Rushing through a replacement to RBG could undermine that balance
and put life-saving laws at risk.

Selected Noun "risk"

Word Senses "hazard.n.01": a source of danger; a possibility of incurring loss or misfortune
"risk.n.02": a venture undertaken without regard to possible loss or injury
"risk.n.03": the probability of becoming infected given that exposure to an infectious
agent has occurred
"risk.n.04": the probability of being exposed to an infectious agent
"risk.v.01": expose to a chance of loss or damage
"gamble.v.01": take a risk in the hope of a favorable outcome

Disambiguation "hazard.n.01": a source of danger; a possibility of incurring loss or misfortune

Synonyms "hazard.n.01" = ["peril", "jeopardy", "endangerment", "hazard"]

New Text SCOTUS has balanced rights w/ public safety, ruling that gun safety laws essential &
constitutional Rushing through a replacement to RBG could undermine that balance
and put life-saving laws at peril/jeopardy/endangerment/hazard.

Table 3: An example of our data augmentation method.

ent meanings and corresponding synonym sets in
WordNet. Using GlossBERT, we determine its ex-
act meaning "hazard.n.01" and thus get the correct
synonym set ["peril", "jeopardy", "endangerment",
"hazard"]. Finally, we replace the noun "risk" in
the original text with these synonyms to form new
text.

5 Conclusion

We present TILFA, a new framework for multi-
modal argumentative stance classification. Unlike
existing methods, TILFA considers not only the
text and images in tweets but also the characters
and their layout information in those images. Back-
translation and WordNet also contribute to our
SOTA performance. Our results reveal that better
handling of images is essential to model improve-
ment, and suggest that more effective methods for
multimodal fusion are yet to be found.

Limitations

We have experimented with three multimodal fu-
sion methods, but the simplest one, Concatenation,
turned out to be the best. So the other two methods
that we use are not suitable for this task actually.
But we believe that there are more effective multi-
modal fusion methods (Liu et al., 2023a; Li et al.,
2023; Yang et al., 2022) waiting to be discovered.

Also, we notice that images in the dataset vary
widely, some feature only objects, but others con-

tain significant text. Further research is needed
to effectively handle these differences, and we ex-
pect that better image encoders will improve per-
formance in future works.

Moerover, in the data augmentation part, we
only explore the methods related to text, but there
are also many ways to augment images. Whether
these methods (Shorten and Khoshgoftaar, 2019;
Xu et al., 2023) are effective for images containing
lots of characters is a question worth studying.

For the text modality, we found that most in-
stances are a piece of text containing a few events,
such as the example in Table 3. With the recent ad-
vances in event understanding (Lin et al., 2023), we
can incorporate different relations among events, in-
cluding temporal (Fang et al., 2023), causal (Zhang
et al., 2022; Wang et al., 2023c; Gao et al., 2023),
sub-event (Wang et al., 2022; Zhang et al., 2020),
hierarchical (Wang et al., 2023b,a).
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A Implementation Details

In this appendix, we introduce the implementa-
tion details of every component in our framework
TILFA.

We use the dataset divisions provided in the
shared task, and the dataset sizes are detailed in
Table 4. Each tweet text is cut by a maximum
length of 512, and each tweet image is resized to
224× 224 dimension. For back-translation, we use
Youdao translation API3. For layout information,
we follow Xu et al. (2020) and use Tesseract4, an
open-source OCR engine, to get the recognized
words and their 2-D positions in the images. Our
models are implemented with Pytorch, and trained
on a NVIDIA A6000 GPU. AdamW optimizer is
used for those networks with LayoutLMv3 and
Adam optimizer for others.

Topic Train Validation Test

Gun control 918 96 150
Abortion 888 100 149

Table 4: Dataset scale of both topics. Following the
shared task, one unavailable tweet in the abortion testing
set is removed. And due to the downloading issues, our
downloaded train and dev sets have little difference from
the original one.

B Experimental Results

Our full experiment results are shown in Table 5.

3http://fanyi.youdao.com/openapi/
4https://github.com/tesseract-ocr/

tesseract
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Models Modality Gun Control Abortion
F1 Ma-F1 AUC Acc F1 Ma-F1 AUC Acc

ResNet50 I 65.00 62.50 62.90 62.67 35.71 60.42 59.55 75.84
ResNet101 I 67.43 60.91 60.86 62.00 38.89 59.71 60.44 70.47
VGG16 I 67.44 61.85 61.81 62.67 38.46 58.32 59.80 67.79
LayoutLMv3 I+L 56.98 46.67 46.92 48.67 39.47 59.38 60.66 69.13
BERT T 81.48 74.97 74.52 76.67 64.10 75.69 79.26 81.21
RoBERTa T 83.52 79.05 78.55 80.00 71.60 80.50 85.75 84.56
DeBERTa T 86.32 81.34 80.54 82.67 71.43 80.11 86.40 83.89
BERT+ResNet50 T+I 81.97 76.88 76.43 78.00 65.06 75.79 81.00 80.54
RoBERTa+ResNet50 T+I 84.82 79.11 78.42 80.67 73.42 81.91 86.61 85.91
DeBERTa+ResNet50 T+I 88.04 84.54 83.80 85.33 70.59 79.43 85.97 83.22
BERT+ResNet101 T+I 80.63 73.34 72.99 75.33 64.52 74.21 82.52 77.85
RoBERTa+ResNet101 T+I 83.77 77.66 77.06 79.33 65.22 74.84 82.95 78.52
DeBERTa+ResNet101 T+I 87.50 82.64 81.72 84.00 73.17 81.49 87.26 85.23
BERT+VGG16 T+I 79.37 72.11 71.81 74.00 68.24 77.78 84.03 81.88
RoBERTa+VGG16 T+I 83.52 79.05 78.55 80.00 72.50 81.20 86.18 85.23
DeBERTa+VGG16 T+I 87.96 83.43 82.49 84.67 74.07 82.20 87.70 85.91

BERT+ResNet50 T+I + 81.05 74.16 73.76 76.00 68.24 77.78 84.03 81.88
RoBERTa+ResNet50 T+I + 84.66 79.26 78.60 80.67 71.60 80.50 85.75 84.56
DeBERTa+ResNet50 T+I + 90.32 87.27 86.33 88.00 75.95 83.64 88.56 87.25
BERT+ResNet101 T+I + 82.87 78.41 77.96 79.33 62.50 72.34 81.23 75.84
RoBERTa+ResNet101 T+I + 84.21 78.47 77.83 80.00 68.97 78.08 85.11 81.88
DeBERTa+ResNet101 T+I + 87.43 83.89 83.21 84.67 70.73 79.81 85.32 83.89
BERT+VGG16 T+I + 81.03 72.89 72.62 75.33 68.97 78.08 85.11 81.88
RoBERTa+VGG16 T+I + 83.24 78.14 77.60 79.33 72.50 81.20 86.18 85.23
DeBERTa+VGG16 T+I + 89.73 86.60 85.75 87.33 77.50 84.62 90.07 87.92

BERT+LayoutLMv3 t1 T+I+L 81.32 76.25 75.84 77.33 65.75 77.32 79.47 83.22
RoBERTa+LayoutLMv3 t1 T+I+L 85.26 79.90 79.19 81.33 75.95 83.64 88.56 87.25
DeBERTa+LayoutLMv3 t1 T+I+L 89.13 85.94 85.16 86.67 76.54 83.89 89.64 87.25
BERT+LayoutLMv3 t1 T+I+L + 81.72 75.95 75.48 77.33 69.14 78.81 83.80 83.22
RoBERTa+LayoutLMv3 t1 T+I+L + 86.19 82.59 82.04 83.33 76.32 84.10 87.90 87.92
DeBERTa+LayoutLMv3 t1 T+I+L + 90.81 88.01 87.10 88.67 80.52 86.87 91.37 89.93
BERT+LayoutLMv3 t2 T+I+L + 83.52 79.05 78.55 80.00 69.88 79.13 84.89 83.22
RoBERTa+LayoutLMv3 t2 T+I+L + 84.95 80.19 79.55 81.33 72.29 80.80 86.83 84.56
DeBERTa+LayoutLMv3 t2 T+I+L + 90.32 87.27 86.33 88.00 77.50 84.62 90.07 87.92
BERT+LayoutLMv3 t3 T+I+L + 82.16 76.73 76.24 78.00 69.05 78.45 84.46 82.55
RoBERTa+LayoutLMv3 t3 T+I+L + 84.78 80.32 79.73 81.33 71.05 80.57 84.01 85.23
DeBERTa+LayoutLMv3 t3 T+I+L + 88.89 84.98 84.03 86.00 79.01 85.59 91.59 88.59

Table 5: Experimental results of more models on both topics in ImageArg dataset. Compared to Table 1, the scores
of the models which use BERT or RoBERTa as the text encoder are also listed here.
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Abstract

An important property of argumentation con-
cerns the degree of its persuasiveness, which
can be influenced by various modalities. On so-
cial media platforms, individuals usually have
the option of supporting their textual statements
with images. The goals of the ImageArg shared
task, held with ArgMining 2023, were there-
fore (A) to classify tweet stances considering
both modalities and (B) to predict the influence
of an image on the persuasiveness of a tweet
text. In this paper, we present our proposed
methodology that shows strong performance
on both tasks, placing 3rd team on the leader-
board in each case with F1 scores of 0.8273
(A) and 0.5281 (B). The framework relies on
pre-trained models to extract text and image
features, which are then fed into a task-specific
classification model. Our experiments high-
lighted that the multimodal vision and language
model CLIP holds a specific importance in the
extraction of features, in particular for task (A).

1 Introduction

How convincing are the arguments put forward in
a discussion? Are these arguments effective in per-
suading a dissenting voice to change its opinion
or behavior? Automatically answering such ques-
tions of argument persuasiveness holds significant
importance within the field of argument mining.

There has been a growing body of research on
tasks pertaining to persuasiveness (Persing and Ng,
2015; Wachsmuth et al., 2016; Chakrabarty et al.,
2019). Works like Stab and Gurevych (2014, 2017)
and Habernal and Gurevych (2017) have brought
persuasive essays into focus. To capture the persua-
siveness of arguments based on Aristotle (2007)’s
idea of logos, ethos and pathos, different annotation
schemes have been developed (Duthie et al., 2016;
Carlile et al., 2018; Wachsmuth et al., 2018). More-
over, phenomena of argument persuasion were ex-
amined using a variety of data sources, including
online debates (Lukin et al., 2017; Durmus and

Cardie, 2018; Longpre et al., 2019) and news edi-
torials (El Baff et al., 2020).

What these works have in common is their em-
phasis on argumentation in textual form. However,
the options for persuading the counterpart of one’s
own view are by no means limited to written speech
(Park et al., 2014). There are further means that can
be employed, usually as supplements, like images
or videos (Joo et al., 2014; Huang and Kovashka,
2016; Liu et al., 2022b).

In this paper, we present our solution approach
to the ImageArg shared task (Liu et al., 2023). We
propose using a general framework to solve tasks
related to argument persuasiveness in multimodal
settings. The framework comprises two feature
extraction modules designed for processing text
and image modalities, which are subsequently in-
putted into a classifier. In our experiments, CLIP-
extracted features (Radford et al., 2021) excelled
for subtask (A), and supplementing them with ad-
ditional features (ConvNeXt (Liu et al., 2022c),
Reformer (Kitaev et al., 2020), ELECTRA (Clark
et al., 2020), LayoutLM (Xu et al., 2020), Camem-
BERT (Martin et al., 2020), Swin V2 (Liu et al.,
2022a)) proved most beneficial for subtask (B).

We begin with a brief description of task and
dataset (§2), followed by a detailed description of
our methodology (§3). We then present the ex-
perimental results (§4) and analyze the errors that
occur (§5). In addition, we report progress on our
approach in the post-evaluation phase, which has
enabled us to further improve classification perfor-
mance (§6). Finally, we draw a conclusion and
make recommendations for future work (§7).

2 Task Description

The shared task relies on ImageArg (Liu et al.,
2022b), a multimodal dataset for argument persua-
siveness. It consists of English-language argumen-
tative tweets supported by images as provided by
users. The version of the dataset used for the shared
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Figure 1: Framework design: model 1 and 2 extract the text and image features for each tweet as vectors of sizes a
and b. Multimodal fusion combines these into a single vector of size c, with c = a+ b. The n tweet feature vectors
then jointly form a matrix C ∈ Rc×n. Along with the n task-specific labels, they serve as input for model 3.

task includes two subtasks: Argumentative Stance
(AS) Classification (Subtask A): Given a tweet and
an accompanying image, predict the stance (either
support or oppose) that the tweet takes on a particu-
lar topic. Image Persuasiveness (IP) Classification
(Subtask B): Given a tweet and an accompanying
image, predict whether or not the image makes the
tweet more persuasive (either yes or no).

Table 1 gives an overview of the dataset1, which
covers two controversial topics, abortion and gun
control. Evidently, there is an imbalance in the
data pertaining to both subtasks. For AS, while
both stances reach a balance on gun control, oppo-
sition clearly prevails on abortion. As for IP, adding
images only contributes to tweet persuasiveness in
about one-third of the cases for both topics.

AS IP
abortion gun control abortion gun control

tr
ai

n total 887 914 total 887 914
supp. 243 471 yes 278 250
opp. 644 443 no 609 664

de
v

total 100 96 total 100 96
supp. 19 51 yes 26 31
opp. 81 45 no 74 65

te
st

total 150 150 total 150 150
supp. 33 85 yes 53 53
opp. 117 65 no 97 97

Table 1: Overview of the data distribution among the
two topics and for the different data splits.

3 Methodology

Motivated by Liu et al. (2022b), we developed a
versatile framework (illustrated in Figure 1) that
takes tweet texts and images as input, extracts fea-
tures for both modalities, and feeds the combined
features into a classification model. This frame-
work is designed to work readily for both tasks and

1Our statistics differ slightly from the organizer’s data due
to inconsistencies in the downloading process.

comprises the following stages:

3.1 Multimodal Feature Extraction & Fusion

The multimodal feature extraction consists of three
steps that are iterated for every tweet in the dataset.

Feature Extraction from Text Each tweet text
is first tokenized. Using some pre-trained language
model (model 1), text features are then extracted in
order to represent the semantic information.

Feature Extraction from Image In parallel,
each tweet image is readied for feature extraction
through transformation, resizing, normalizing, and
adjusting dimensions. Subsequently, the prepared
image is processed by a specified pre-trained model
(model 2) to extract image features.

Early Multimodal Fusion We then combine fea-
tures from both modalities by concatenating them
along the last dimension according to the early fu-
sion strategy suggested by Boulahia et al. (2021)
for creating a unified representation that combines
image and text information.

3.2 Feature Concatenation and Scaling

We retain combined features of all data instances in
an array and enhance their impact during learning
by scaling them (Singh and Singh, 2020). For this,
we re-scale each feature by its maximum absolute
value, keeping them in a range between −1 to 1.

3.3 Classification

In a final step, the tweet representation obtained
by the previous process serves as input to a clas-
sification model (model 3). This model is trained
using the given training data and the corresponding
labels for the respective task (either AS or IP).
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Model Type Model Architectures
Text

(model 1)
Sentence-BERT, BERT, RoBERTa, ALBERT, DistilBERT, ELECTRA, XLNet, CTRL, Longformer, DeBERTa, XLM-RoBERTa,
FlauBERT, DialoGPT, LayoutLM, Funnel-Transformer, MBart, CamemBERT, Reformer, Transformer-XL, GPT3, CLIP, ALIGN

Image
(model 2)

AlexNet, ConvNeXt, DenseNet, EfficientNet, EfficientNetV2, GoogLeNet, Inception v3, MaxViT, MnasNet, MobileNetV2, VGG,
MobileNetV3, RegNet, ResNet, ResNeXt, ShuffleNet v2, SqueezeNet, Swin Transformer, ViT, Wide ResNet, CLIP, ALIGN

Classifier
(model 3)

Logistic Regression, XGBoost, Gradient Boosting, AdaBoost, CatBoost, LightGBM, MLPClassifier, SGDClassifier, SVM (with
kernels: linear, poly, rbf, sigmoid), Gaussian Naive Bayes, EasyEnsemble, KNeighborsClassifier, Random Forest, Decision Trees,

Extra Trees, RUSBoostClassifier, BalancedBaggingClassifier, BalancedRandomForestClassifier, PassiveAggressiveClassifier,
GaussianProcessClassifier with kernel RBF, RidgeClassifier, Linear Discriminant Analysis, Quadratic Discriminant Analysis

Table 2: Summary of the models utilized in our experiments.

abortion gun control
attempt model 1 model 2 model 3 model 1 model 2 model 3 train mode F1 (dev) F1 (test)

AS

1 CLIP32 CLIP32 AdaBoostClassifier CLIP32 CLIP32 AdaBoostClassifier separate 0.9254 0.8142
2 CLIP32 CLIP32 AdaBoostClassifier CLIP32 CLIP32 XGboost+GradientBoosting separate 0.9333 0.8273
3 CLIP32 CLIP32 AdaBoostClassifier CLIP32 CLIP32 RUSBoostClassifier separate 0.9333 0.8000
4 CLIP32 CLIP32 XGboost+GradientBoosting CLIP32 CLIP32 XGboost+GradientBoosting joint 0.9142 0.8093
5 CLIP32 CLIP32 SVM-Poly CLIP32 CLIP32 SVM-Poly joint 0.9197 0.7782

IP

1 CLIP32 CLIP32 SVM-Poly CLIP32 CLIP32 SVM-Poly joint 0.6605 0.4875
2 CLIP32 CLIP32 SGD CLIP32 CLIP32 SGD separate 0.6552 0.4545
3 CLIP_L_14 CLIP_L_14 SVM-Poly CLIP_L_14 CLIP_L_14 SVM-Poly joint 0.6721 0.4762
4 CLIP32 CLIP32 SGD Convnext_small REL LogisticRegression separate 0.6726 0.4778
5 CLIP32 CLIP32 SVM-Poly Convnext_small REL LogisticRegression separate 0.6667 0.5281

Table 3: Selected submissions and their performance on dev and test for both tasks. Participants were free to decide
whether they wanted to create a cross-topic model (train mode: joint) or topic-specific ones (train mode: separate).

4 Experiments

4.1 Model Selection for Submission

We conducted extensive experiments using our
framework with a variety of pre-trained mod-
els from both PyTorch (Paszke et al., 2019)
and Transformers (Wolf et al., 2020) libraries.
Our Python implementation is available at
https://github.com/mohsoltani/GFMAP.

In fact, we examined more than 300 different
combinations of these models for each subtask and
topic. For our classification approach, we experi-
mented either with a single classifier or with ensem-
ble learning (Dong et al., 2020), combining two or
more classifiers. Table 2 provides an overview of
the different models we tested.

Using CLIP as a text and image model, we con-
ducted experiments with all of the listed classifi-
cation models. Subsequently, we investigated the
performance of the top classification models for
other combinations of pre-trained models, where
Logistic Regression was found to be the most effec-
tive classification model. The best hyperparameters
of the classification model were determined by trial
and error (an overview is provided in Appendix A).

Among these experiments, we identified the best-
performing models, which were then candidates for
further experimentation involving the joint consid-
eration of topics within each subtask. Ultimately,
our submissions for the shared task at hand con-
sisted of the top five performing models derived
from our thorough experimentation.

4.2 Results

Table 3 shows our five submissions to both tasks.
In AS, attempt 2 performed best, using CLIP2 to
extract the features that are subsequently fed into
the classifier (AdaBoost for abortion, an ensemble
of XGBoost and GradientBoosting for gun control).
While our most effective strategy utilizes models
tailored to specific topics, attempt 4 demonstrates
that a generalized model is only slightly inferior to
customized solutions (0.8273 vs. 0.8093 F1).

The best approach for IP shows that in this case
the choice of feature extraction models is differ-
ent for the topics. While CLIP is again suitable
for abortion, a combination of ConvNeXt3 and
REL (a concatenation of features extracted through
Reformer4, ELECTRA5 and LayoutLM6) is the
best choice for gun control, leading to an F1 score
of 0.5281. Cross-topic models score significantly
lower on this task, which may indicate that the
role of imagery in making textual arguments more
persuading is topic-dependent.

5 Error Analysis & Discussion

In the following, we analyze the outputs of our best
model for AS and IP in terms of misclassifications:

2CLIP32: https://huggingface.co/openai/clip-vit-base-patch32;
CLIP_L_14: https://huggingface.co/sentence-transformers/clip-ViT-L-14

3Convnext_small: https://pytorch.org/vision/stable/models/generated/
torchvision.models.convnext_small.html

4https://huggingface.co/google/reformer-crime-and-punishment
5https://huggingface.co/google/electra-small-discriminator
6https://huggingface.co/microsoft/layoutlm-large-uncased
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5.1 Argumentative Stance Classification

The main reasons behind the most prevalent mis-
takes are:

Sarcasm, Humor, & Lack of Information In
some cases, our approach faces difficulties in dis-
cerning a tweeter’s true intent. One reason for this
is sarcastic tweets: If a tweet seems to express pos-
itivity, but the tweeter takes the opposite view, mis-
classifications occur. Likewise, very short tweets
tend to be misclassified, especially when negative
words dominate but the overall stance is support.
However, as we have noted, indirect communica-
tion (i.e., the speaker does not explicitly express his
or her intentions or feelings) using humor or sar-
casm can confuse not only the model but also the
human audience when it comes to understanding
the author (Appendix B.1 gives further insights).

Specifics of the Gun Control Topic In the area
of gun control, there are two opposing groups and
one supporter group: (1) The first group of critics
advocates for a world without guns. (2) The second
group of critics champions personal freedom and
opposes any restrictions on the sale or use of guns.
(3) The supporters advocate for regulated sales and
usage of firearms.

In fact, the interesting dynamic surrounding gun
control is that both groups of detractors are op-
posed to the proponents but also hold conflicting
views among themselves. This complexity can
make it challenging to discern the intention behind
certain words or phrases in a tweet, such as “end
of gun violence”. Depending on the context and
tweeter’s specific stance, this phrase could poten-
tially be interpreted in two different ways: It could
be seen as a call for regulations and controls on
the sale and use of guns to put an end to gun vi-
olence. This interpretation aligns with the stance
of supporting gun control. Alternatively, it could
be interpreted as a call for complete prohibition of
selling and using guns, with the aim of eliminating
gun violence entirely. This interpretation aligns
with the stance of opposing guns altogether. An
even more complicated scenario arises when con-
sidering this phrase in the context of using firearms
for defense purposes: There seems to be a shared
belief among groups 2 and 3 that the presence of a
firearm may occasionally reduce the likelihood of
firearm-related violence when used for defense.

Facing such scenarios, it is difficult to decide
definitively whether we should take the supportive

group stance, since a statement may not have direct
relevance to an opposing group. In certain cases,
discerning between the supportive group and one
of the opposing groups can be quite challenging.
We are dealing with a triangular arrangement of
groups that must be classified into two classes. For
further insights, please refer to Appendix B.2.

Ambiguities in Labels In certain instances
where there are deviations between the predicted
and gold labels, we found it difficult to confirm
ourselves that the predicted stance is definitely in-
correct (see Appendix B.3 for more details).

5.2 Image Persuasiveness Classification

Assessing whether an image enhances the tweet’s
persuasiveness presents a significant challenge –
even for humans. The methods for visually repre-
senting or amplifying the stance of a tweet offer a
variety of options compared to pure text:

Text Within Image A common approach is to
insert a repetition of the tweet text or other rele-
vant text in the image. This also allows the text’s
impact to be enhanced through visual effects such
as image transformations, shading, different letter
styles, adding text borders, colors, and background
changes. We found that our best model developed
a tendency to classify images showing only text
as persuasive. However, the gold standard also
contains many cases where this type of image was
coded as not contributing to persuasiveness. We
suspect that our model’s behaviour is due to the
fact that it is not able to extract and understand
text from images. Therefore, in these cases, the
model cannot make decisions based on linguistic
semantics, but only on the structure of the image.

Image Persuasion Strategies Further strategies
involve illustrating cases, consequences, or out-
comes related to the text argument. A more intri-
cate approach we found in the analysis visualizes
counterexamples for opposing points of view.

It is difficult to objectively determine whether
these methods are compelling or not, as images pro-
vide extensive creative freedom, allowing words
and phrases to take on different visual forms. In ad-
dition, image effects (see e.g. Szeliski, 2022) such
as occlusion, distinct object placements, viewpoint
variations, deformations, background clutter, expo-
sure bracketing, and morphing can change the illus-
trating form, consequently influencing the viewer’s
perception in various ways. Given the multitude of
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phenomena, we abstain from delving into specifics
within the scope of this article.

Human Label Variation Human perceptions are
often subjective and influenced by emotions, per-
sonal preferences or cultural backgrounds (Petters-
son, 1982). For example, depictions of scenes such
as protests can evoke different reactions depending
on cultural norms and personal experiences. While
protests are welcome in some cultures, they can be
prohibited in others, resulting in either excitement
or a sense of normality. Annotators with different
thinking styles, such as holistic and analytical (Li
et al., 2022), may also make different judgments
when considering the background context or focus-
ing solely on the objects in an image (for examples
see Appendix B.4). Liu et al. (2022b) annotated im-
age persuasiveness by assigning an aggregate label
to establish a unified scoring. To account for dif-
ferent valid perceptions of persuasiveness resulting
from the previously listed reasons, this approach
may be insufficient and deserves reconsideration.

Impact of Image In the process of constructing
the dataset, when a tweet’s text was rated as ex-
tremely persuasive, the supplementary persuasive-
ness attributed to attached images was devalued,
eventually resulting in a no label. This may lead the
machine learning approach astray since the image
itself can be highly persuasive in its own right.

6 Additional Experiments

As can be seen from the results presented so far,
predicting IP in particular presents a challenge. For
this reason, we present additional experiments that
we conducted as a follow-up to the shared task.

In our experimental efforts, we obtained notably
positive results when using CamemBERT as text
model, particularly for abortion in combination
with ConvNeXt or Swin Transformers V2 as image
model. Given the significant disparity between
our dev and test scores for IP in the shared task
submissions, we proceeded to conduct additional
experiments with various adaptations of this model
in order to find more robust models.

It turned out, that employing camembert-base7 to
extract text features and swin_v2_s8 to extract im-
age features for the abortion topic, while retaining
the proven combination of REL and ConvNeXt for

7https://huggingface.co/camembert/camembert-base
8https://pytorch.org/vision/main/models/generated/torchvision.models.swin

_v2_s

the gun control topic, resulted in promising results.
The classifier was Logistic Regression. With this
setup, we managed to attain an F1 score of 0.5941
for the test set, while the F1 score for the dev set
was 0.5950. As can be seen, the approach signifi-
cantly increases previous test scores (cf. Table 3)
while obtaining robust results across dev and test
set. Our finding suggests that model performance
should generalize to further in-domain datasets.

We performed further experiments, eventually
achieving test scores above 0.66. At the same time,
however, the dev performance deviated strongly
downwards in these cases. Despite the very encour-
aging results, additional investigations are needed
in order to ensure reliable performance.

7 Conclusion & Future Work

On social media, users have the freedom to use
informal, formal, or mixed styles of language, and
to incorporate elements such as hashtags, mentions,
links to websites, and emojis. In addition, images
can be used to substantiate textual statements. This
variety presents a challenge when trying to classify
argument stances and their persuasiveness from
sources such as X (formerly known as Twitter). As
the analysis of our approach was able to reveal, the
prevalence of sarcasm and the limited information
content in tweets substantially complicates the clas-
sification. This observation underscores the need
for further improvement of models tailored to the
specific characteristics of social media data.

In the context of classifying the additional per-
suasive power of images over text, it is crucial to
use models that not only extract image features or
detect objects in images, but can also extract the at-
titude and persuasion expressed through the images
themselves. This necessitates the design of visual
argument extraction models. The particular diffi-
culty of evaluating the argumentative persuasive-
ness of images, as well as the inherently subjective
nature of the task, require special attention.

What is more, due to the training dataset’s lim-
ited size, it becomes challenging to differentiate
learned image features at a granular level from
those in other images. A larger dataset may assist
us in improving classification results, particularly
to overcome the challenges outlined in Section 5.

Possible research directions also include delving
into the applicability of CamemBERT to English
texts and exploring the reasons why this model
surpasses English models in the task at hand.
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A Hyperparameter Fine-tuning

Table 4 outlines the hyperparameters used in the
classification models of our submissions.

B Error Analysis: Details

B.1 Sarcasm
We have noticed that some tweets can be infused
with sarcasm, such as: Gov. Ralph ’Coonman’
Northam proud to sign a slew of new ’common-
sense gun safety measures’ that will save lives
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abortion gun control
attempt classifier(s) parameters classifier(s) parameters

AS

1 AdaBoostClassifier

base_estimator=
DecisionTreeClassifier(max_depth=2),
n_estimators=150, learning_rate=0.2,
algorithm=’SAMME’

AdaBoostClassifier

base_estimator=
DecisionTreeClassifier(max_depth=2),
n_estimators=150, learning_rate=0.3,
algorithm=’SAMME’

2 AdaBoostClassifier

base_estimator=
DecisionTreeClassifier(max_depth=2),
n_estimators=150, learning_rate=0.2,
algorithm=’SAMME’

XGboost+GradientBoosting

XGB : max_depth=3, learning_rate=0.1,
subsample=0.8, colsample_bytree=0.8,
reg_alpha=0.1, reg_lambda=0.1
GradientBoosting: learning_rate=0.2,
n_estimators=80, random_state=42
Voting:’xgb’, ’gb’, voting=’soft’,
weights=[3, 1]

3 AdaBoostClassifier

base_estimator=
DecisionTreeClassifier(max_depth=2),
n_estimators=150, learning_rate=0.2,
algorithm=’SAMME’

RUSBoostClassifier
n_estimators=150, random_state=42,
learning_rate=0.18,
sampling_strategy=’not majority’

4 XGboost+GradientBoosting

XGB : max_depth=2, learning_rate=0.3,
subsample=0.8, colsample_bytree=0.8,
reg_alpha=0.1, reg_lambda=0.12
GradientBoosting: learning_rate=0.4,
n_estimators=80, random_state=42
Voting:’xgb’, ’gb’, voting=’soft’,
weights=[5, 2]

XGboost+GradientBoosting

XGB : max_depth=2, learning_rate=0.3,
subsample=0.8, colsample_bytree=0.8,
reg_alpha=0.1, reg_lambda=0.12
GradientBoosting: learning_rate=0.4,
n_estimators=80, random_state=42
Voting:’xgb’, ’gb’, voting=’soft’,
weights=[5, 2]

5 SVM-Poly kernel=’poly’, degree=2, coef0=0.6 SVM-Poly kernel=’poly’, degree=2, coef0=0.6

IP

1 SVM-Poly
kernel=’poly’, degree=2, coef0=0.02,
shrinking=False, probability=True SVM-Poly

kernel=’poly’, degree=2, coef0=0.02,
shrinking=False, probability=True

2 SGD alpha=0.0344, random_state=42 SGD alpha=0.05, random_state=42
3 SVM-Poly kernel=’poly’, random_state=42, coef0=0.17 SVM-Poly kernel=’poly’, random_state=42, coef0=0.17
4 SGD alpha=0.0344, random_state=42 LogisticRegression by default
5 SVM-Poly kernel=’poly’, degree=2, coef0=0.25 LogisticRegression by default

Table 4: Hyperparameters employed for tuning the classification models in the Python implementation.

https://t.co/3toCAPRO1b via @twitchyteam9. In the test set,
this tweet has been labeled as opposing gun con-
trol. However, there is no clear evidence that the
tweet explicitly expresses a contrary view, as the
presence of sarcasm might be a factor to consider
in this case given the particular use of quotation
marks.

B.2 Specifics of the Gun Control Topic: A
Triangular Perspective

The three groups in this triangular arrangement
advocate for a gun policy characterized by: (1)
absence of guns (opposing gun control), (2) unre-
stricted use of guns (opposing gun control), and (3)
regulated and legally permissible use of guns (sup-
porting gun control). Table 5 shows differences
and similarities in opinion among all three groups.

Groups Similarities in Opinion
1-2 Oppose to regulation of usage and selling guns
1-3 Safety Measures to Protect Lives from Gun Violence
2-3 Existence of guns

Groups Differences in Opinion
1-2 Existence of guns
1-3 Existence of guns
2-3 Stringent Regulations for Gun Control

Table 5: Comparison of the three groups (gun control).

In certain cases, it is not straightforward to as-
sociate a sentence or tweet to one of these groups.
To illustrate these challenges, we analyze the fol-
lowing tweet from the perspectives of all three

91249087853558222850: https://t.co/2KiRh4RAEA

groups: Women are five times more likely to be
killed by their abuser if there is a gun present. We
can prevent tragedy. We can work together and
help people. We need #gunsenselegislators. We
need @JoeBiden and @KamalaHarris. #VAWA
#DisarmHate #ERPO #OneThingToDo #expectUs
@MomsDemand10.

Challenges arise in the first sentence: Women are
five times more likely to be killed by their abuser
if there is a gun present. This can be assigned to
the first group that fights for the absence of guns.
However, it is also conceivable that the argument
could be used by the other groups. Group 3, sup-
porters of gun control, accept the existence of guns
but argue that without strict laws, the presence of
guns can lead to such violence. Group 2, which
criticizes gun regulation, may argue that such regu-
lations could create situations in which women, by
taking advantage of the law, might provoke abusers
to use violence against them. They seem to hold
the view that restrictions on gun control can lead
to acts of violence.

To determine the true stance of the tweet, we
analyze the following sentences. The next two sen-
tences can align with each perspective, supporting
their respective stances. The essential sentence in
this tweet is as follow: We need #gunsenselegisla-
tors. This statement can be linked to supportive
groups, as the term “gunsense” refers to individuals
advocating for gun control. In addition, the tweeter

101296267688310906880: https://t.co/ydP75LeEmQ
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mentioned @MomsDemand, which reinforces the
same notion (Greene et al., 2022). They are ac-
tively involved in promoting stricter gun control
regulations and reducing gun violence.

This example demonstrates that the presence of
a specific word or phrase can be decisive in in-
dicating the actual stance of a tweet, even when
other sentences could be associated with other or
all groups. This complexity poses a major chal-
lenge for argumentation mining models.

B.3 Ambiguities in Labels
In the subsequent cases, comprehending the moti-
vations behind the assigned stances in the test set
proves to be a challenging task:

Abortion Our model has classified the follow-
ing tweet as supportive, whereas in the gold stan-
dard it is labeled as opposing abortion. A closer
look reveals, that it is a promotional tweet promot-
ing clinic’s abortion pills: Abortion pills are effec-
tive, and you could have your abortion in Bethal
with pills anytime at an affordable price. Contact
+27727793390. https://t.co/fj25TRLlB011. This tweet em-
phasizes women’s right to make decisions about
their own bodies and, thus, seems to be in line with
the positions of groups promoting abortion rights.

The following tweet criticizes the dismantling
of abortion rights but has been labeled as oppos-
ing abortion, while our model predicts it as sup-
porting abortion: Overturning Roe v. Wade will
not reduce abortions but become a contributing
factor in increasing poverty, dismantling Civil
Rights, and literally moving the country back
decades. @mskathykhang #SCOTUS Sign the
#PledgetoPause: https://t.co/Dtf8a6SSSR12.

Gun Control Another example of a possible mis-
interpretation of a tweet in the test set is: Women
are five times more likely to be killed by their
abuser if there is a gun present. We can prevent
tragedy. We can work together and help people.
We need #gunsenselegislators. We need @Joe-
Biden and @KamalaHarris. #VAWA #DisarmHate
#ERPO #OneThingToDo #expectUs @MomsDe-
mand13. While the gold label is oppose, the phrases
“gunsenselegislators” and “MomsDemand” refer
to actions advocating gun control measures. Our
model has classified the aforementioned tweet as
supportive of gun control.

111331187788096606208: https://t.co/ZFoAGRje4T
121022572268147208192: https://t.co/TS6ZNBbR8v
131296267688310906880: https://t.co/ydP75LeEmQ

Irrelevance to Topic Vaccines save. Stupidity
kills. #antimask #antimaskers #karensgonewild
#karenmemes #trump2020 #vaccines #elec-
tion2020 #prochoice #bidenharris2020 #memes
#racism #covid19 #endracism #prolife #wear-
adamnmask #hoax #trumpvirus14. This tweet
refers to the topic of COVID vaccination. Although
the tweet is labeled as supporting abortion in the
test set (and our model predicted it as opposing
abortion), there is no clear indication in the tweet
to express support or opposition to abortion.

B.4 Challenging Examples in Image
Persuasiveness

As noted in the discussion in subsection 5.2, a
broader range of methods are available to convey
the attitude of a tweet through images compared to
text alone. In the test set, following tweets labeled
as not persuasive were predicted as persuasive by
our best model:

Abortion: New year. New opportunities to end
abortion. Are you with us? RT if you stand with
preborn children. #EndAbortion #ProLife15. The
corresponding image mirrors the message “New
Year. New opportunities to end abortion” under-
pinned with the illustration of a smiling pregnant
woman to enhance persuasiveness (in our subjec-
tive perception).

Gun Control: Gun stores are not essential busi-
nesses during the #COVID19 crisis. Arming the
medical community with the equipment they need
is. Sign this petition urging The Trump Admin to
remove gun stores from that list.16. The correspond-
ing image shows a woman wearing a red shirt with
a “MomsDemand” symbol to encourage signing.
Again, this can be perceived to strengthen the urge
for a petition to remove gun stores from the list of
essential businesses during the pandemic.

141335685471205289989: https://t.co/UfJ74ayA9S
151347211895674122245: https://t.co/os3O4lwPa2
161245045552984674304: https://t.co/05vcbnrH6r
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Abstract

This paper reports on the submissions of We-
bis to the two subtasks of ImageArg 2023. For
the subtask of argumentative stance classifica-
tion, we reached an F1 score of 0.84 using a
BERT model for sequence classification. For
the subtask of image persuasiveness classifi-
cation, we reached an F1 score of 0.56 using
CLIP embeddings and a neural network model,
achieving the best performance for this subtask
in the competition. Our analysis reveals that
seemingly clear sentences (e.g., “I support gun
control”) are still problematic for our otherwise
competitive stance classifier and that ignoring
the tweet text for image persuasiveness predic-
tion leads to a model that is similarly effective
to our top-performing model.

1 Introduction

In recent years, the analysis of the argumentative
stance of images and texts has gained significant at-
tention. Several shared tasks have been conducted
in this area, like the same-side stance classifica-
tion (Körner et al., 2021) on texts, and the image
retrieval for arguments (Bondarenko et al., 2022,
2023) on images. However, especially for images,
the task of stance detection is far from being solved
(Carnot et al., 2023). The ImageArg 2023 compe-
tition then provided a platform for researchers to
explore this task further in the multi-modal context
of tweets with images. Moreover, the competition
featured a second task of predicting whether the
image enhanced the persuasiveness of the text.

In this paper, we present the work conducted by
our team, “feeds,” for the ImageArg 2023 compe-
tition. Our efforts led to insightful findings and
promising results in both tasks, shedding light on
the complexities of combining visual and textual
information for argumentative analysis.

For subtask A (argumentative stance classifica-
tion), we employed a BERT model (Devlin et al.,

1Authors contributed equally

2019) with stacked Transformer encoders. A sep-
arate model was trained for each of the two top-
ics. Training encompassed tokenization, batch pro-
cessing, optimizer, and learning rate optimization
for F1 scores on the validation set. Our approach
achieved an F1 score of 0.84 on the test set.

For subtask B (image persuasiveness classifica-
tion), we employed the CLIP model (Radford et al.,
2021) and a linear neural network. We integrated
image and text embeddings to have multimodal
features fed into the neural network. Tests with
separate models and combined models for the two
tasks were conducted. When removing the text fea-
tures, we still get similar performance compared to
using both features. Therefore image features seem
more decisive for persuasiveness than the text and
the multimodality of this task is hard to leverage.
We achieved an F1 score of 0.56 on the test set,
which is the highest among all submissions.

This paper is structured as follows: Section 2
provides a brief overview of related work. In Sec-
tion 3, we detail our methodology and approaches
for both subtasks. Section 4 presents our results
and their implications, while Section 5 discusses
the obtained results. Finally, Section 6 concludes
the paper, summarizing our contributions and out-
lining potential directions for future research.

2 Related Work

Argumentative stance detection is still considered
a major problem in NLP. Ajjour and Al-Khatib
(2021) analyzed several stance classifiers for tex-
tual arguments, which achieved an accuracy be-
tween 0.50 to 0.77, and identified as challenges an
inadequate topic knowledge of classifiers or when
arguments only partial agree or disagree. Simi-
larly, Carnot et al. (2023) identified several chal-
lenges for detecting the stance expressed in images
when analyzing the submissions to the Touché 2022
shared task on image retrieval for argumentation
(Bondarenko et al., 2022): bridging the seman-
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Figure 1: Example of tweet from the dataset, showing
support for gun control and with the image increasing
the persuasiveness of the text (class=yes).

tic gap for diagrams, ambiguity arising from di-
verse valuations leading to varied interpretations,
the dependence of image understanding on back-
ground knowledge, regional relevance, the pres-
ence of both stances in one image, irony, and more.
All of these also apply here, but maybe to a lesser
degree as classifiers were trained for each topic.
Liu et al. (2022) dealt with multi-modal analysis
in persuasiveness classification. They identified an
issue that the image encoder could not capture text
like slogans in images. They suggested extracting
and using textual features from images.

3 Task

We participated in both ImageArg subtasks:
Subtask A: Argumentative Stance Classification.

Given a tweet with text and an image, predict if the
tweet supports or opposes a topic.

Subtask B: Image Persuasiveness Classification.
Given a tweet with text and an image, predict if the
image makes the tweet text more persuasive.

For both subtasks, the organizers provide a human-
annotated dataset of 2K tweets (Liu et al., 2022).2

Submissions are evaluated using F1 score. For il-
lustration, Figure 1 shows an example tweet for the
gun control topic with associated classes: “support”
for subtask A and “yes” for subtask B.

2The script for downloading the dataset can be found in
the shared task’s Git-repository: https://github.com/
ImageArg/ImageArg-Shared-Task

4 Our Approach

We employed neural models on text and image em-
beddings for tackling the tasks. For training, we
either trained two separate models for the two top-
ics of the dataset (“gun control” and “abortion”)
to capture topic-specific characteristics, or trained
a combined model on both topics to capture topic-
independent features. We then describe data pre-
processing (Section 4.1), and the models used in
subtask A (Section 4.2) and B (Section 4.3). Our
code is available online.3

4.1 Data Preprocessing

For both tasks, we tested cleaning the tweet text
data and combined vs. separate models per topic.

For text cleaning, we replaced common abbrevi-
ations with their full forms, like changing “I’m” to
“I am” and “won’t” to “will not.” We then used the
‘neattext‘ library4 to remove URLs, emails, phone
numbers, punctuation, and special characters. The
text was then converted to lowercase.

In addressing the class imbalance issue, we uti-
lized an oversampling technique. Throughout both
subtasks, we inserted random minority class exam-
ples until reaching an even distribution.

4.2 Model for Argumentative Stance
Classification (Subtask A)

For stance classification, we employ a BERT model
for sequence classification5 to classify the stance
based on the tweet text only.

Architecture: Figure 2 shows the employed ar-
chitecture. We employed the BERT tokenizer6 for
tokenizing tweets. We feed the tokens into a pre-
trained 12-layer BERT model for sequence classifi-
cation with 12 attention heads, 110M parameters,
and 768 output nodes (CLS-Token pooled from the
768 embeddings per token), with one additional lin-
ear layer and softmax-activated classification layer.

Training: The model is trained for 8 epochs on
the tweets. Tested optimizers are Adam (Kingma
and Ba, 2014), AdamW (Loshchilov and Hutter,
2017), and SGD (Bottou, 2010), with learning rates
between 1 · 10−5 and 3 · 10−2.

3https://github.com/webis-de/
argmining23-image-arg

4https://github.com/Jcharis/neattext
5https://huggingface.co/docs/

transformers/model_doc/bert
6https://huggingface.co/docs/

transformers/model_doc/bert#transformers.
BertTokenizer
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Text

Bert Embeddings
(768 per token)

Pooled Embeddings
(768)

Classifier

Support Oppose

Figure 2: Our architecture for argumentative stance
classification: The tweet text is tokenized, embedded
through the BERT model, and then classified through a
binary classification layer.

Model Selection: We submitted the model with
the best F1 score on the validation set, as deter-
mined by grid search, to the shared task. Namely,
separate models per topic using cleaned data, the
Adam optimizer with a learning rate of 3 · 10−5 for
the topic of “gun control”, and the SGD optimizer
with a learning rate of 3 · 10−2 for “abortion.”

4.3 Model for Image Persuasiveness
Classification (Subtask B)

For image persuasiveness classification, we employ
concatenated CLIP embeddings (Radford et al.,
2021) of images and texts.

Architecture: Figure 3 shows the employed archi-
tecture. We used the 512-dimensional embeddings
generated by CLIP for each image and text. Since
CLIP can only embed texts of up to 77 word-tokens,
we split longer tweets into chunks of a maximum
of 77 tokens each. These chunks were then individ-
ually tokenized and stacked to a tensor to create the
necessary input for CLIP’s text embedding. The
CLIP embeddings for text and image pairs are each
represented as tensors of 512 dimensions. These
embeddings are then concatenated, first the image
embedding followed by the text embedding, creat-
ing a unified representation for each tweet that is
1024-dimensional. We fed the concatenated embed-

Image

Yes

Text

Concatenate (1024)

No

Classifier

CLIP Image
Embeddings (512)

CLIP Text
Embeddings (512)

Figure 3: Our architecture for persuasiveness classifica-
tion: Tweet text and image are tokenized and embedded
through the CLIP model. Then features are concate-
nated and fed to a linear neural network, which predicts
persuasiveness probability via a softmax.

dings to a linear neural network, which included
subsequent layers leading to a binary softmax clas-
sification layer. To investigate the influence of the
features, we also tested setting all tweet texts to the
empty string.

Training: The model is trained over 10 epochs
for both cleaned and uncleaned tweets. We selected
10 epochs as we found that gains decreased after-
ward in preliminary test runs. For optimizers, we
tested the same as for subtask A (Adam, AdamW,
and SGD).

Model Selection: We submitted the models with
the best F1 score on the validation set, determined
by optimizing the learning rate and optimizer. We
found that separate models per topic performed
best, so we submitted those, both for cleaned and
uncleaned data.

5 Results

To analyze our approach, we provide both an
overview table (Table 1) and a confusion matrix
(Table 2) for both subtasks.7

7Our train and dev sets have a slightly different distribu-
tion of classes compared to the original datasets, related to
downloading issues.
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Subtask / Model F1 score

Abortion Gun control Overall

Subtask A: Argumentative Stance Classification
Cleaned, separate *7 0.91 0.77 0.84
Uncleaned, separate 0.90 0.77 0.83
Cleaned, combined 0.89 0.72 0.81

Subtask B: Image Persuasiveness Classification
Cleaned, separate * 0.56 0.54 0.56
Uncleaned, separate * 0.53 0.54 0.54
Image-only, separate 0.55 0.49 0.52

Table 1: Achieved best F1 scores for each Subtask on
the Test Dataset. A “*” marks the submitted approaches.

A Prediction

Truth Oppose Support

Oppose 0.49 0.11
Support 0.05 0.35

B Prediction

Truth Yes No

Yes 0.18 0.14
No 0.17 0.50

Table 2: Confusion matrices for the best-performing
models on both subtasks on the test set: Argumentative
Stance (A) and Image Persuasiveness Classification (B).

5.1 Results for Argumentative Stance
Classification (Subtask A)

As Table 1 indicates, our approach achieves an
F1 score of 0.84,8 highlighting its strong perfor-
mance in stance classification based on tweet text.
This score corresponds to the 3rd place in the com-
petition. The confusion matrix (Table 2) shows
that our model performs a bit better on supportive
tweets (0.05/0.40 ≈ 0.13 misclassification rate)
than on opposing ones (0.11/0.60 ≈ 0.18), but
this might be an artifact from the specific topics.

Furthermore, we trained separate models on an
uncleaned dataset and a combined model using the
cleaned dataset that includes both topics. The re-
sults are displayed in Table 1. As the table shows,
using separate models and cleaning the dataset re-
sults in slightly improved results.

5.2 Results for Image Persuasiveness
Classification (Subtask B)

As Table 1 indicates, our approach achieves an
F1 score of 0.56, reflecting mediocre performance
despite winning the competition. From the con-
fusion matrix (Table 2), we can observe that the
model’s performance is mixed. While it can rel-
atively accurately identify images labelled as not

8Due to a mistake, we submitted predictions for only one
topic by the ImageArg 2023 deadline. The values reported
here are calculated using the evaluation script and data pro-
vided by the organizers after the deadline

enhancing the persuasiveness (0.17/0.67 ≈ 0.25
false positive rate), it struggles to correctly identify
images labelled as enhancing the persuasiveness
(0.14/0.32 ≈ 0.44 false negative rate). This dis-
crepancy indicates that the model did hardly learn
to recognize persuasive elements in the images.
However, we assume that more features can im-
prove the performance of our models, for example
by identifying infographics or processing text from
the images using on-screen character recognition.

Furthermore, we tested a model that did not con-
sider the tweet text at all. As Table 1 shows, this
approach performed nearly as good as our full ap-
proach (F1 score: 0.52 vs. 0.56), especially for the
topic of abortion (F1 score: 0.55 vs. 0.56). As this
result highlights, our model does currently barely
take advantage of the actual text.

6 Conclusion

We presented the submissions of team “feeds” to
the two subtasks of ImageArg 2023 (Liu et al.,
2023) and results of further analyses we performed
after the submission deadline.

Our approach for argumentative stance classifica-
tion (subtask A) achieved a commendable F1 score
of 0.84, but, as our analysis revealed, it, amongst
other issues, struggled with classifying straight-
forward sentences like “I support gun control” or
“I support abortion.” Additionally, subtask A’s
model didn’t incorporate image data. Future work
could include images, for example using the Visu-
alBERT9 (Li et al., 2019) model, enabling classifi-
cation using both text and images.

Our approach for image persuasiveness (subtask
B) achieved the first position with an F1 score of
0.56. We observed that the model effectively classi-
fies images that do not enhance persuasiveness, but
struggles with identifying images that enhance the
text’s persuasiveness. This highlights the impor-
tance of advanced feature engineering to enhance
the model’s ability to identify nuanced persuasive
elements within images. Moreover, we found that
our classifiers perform nearly as good without con-
sidering the text at all. This emphasizes the influ-
ential role of CLIP image embeddings within the
model’s decision-making process. Further investi-
gations are needed for understanding which role, if
any, features from the tweet text could play in the
classification of this task.

9https://huggingface.co/docs/
transformers/model_doc/visual_bert
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Ethics Statement

We utilized the ImageArg dataset (Liu et al., 2023)
without making substantial modifications to its con-
tent. The dataset was exclusively employed for
participation in the ImageArg Shared Task, while
adhering to the guidelines of the Twitter Developer
Policy and the ACL Ethics Policy. Our primary
objective was to perform stance and persuasive-
ness classification based on the provided text and
images. Significantly, our experimental results un-
derscore that our approach is presently unsuitable
for product integration. Our primary focus remains
on advancing research in this specific task.
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Abstract
With the rising prominence of social media,
users frequently supplement their written con-
tent with images. This trend has brought about
new challenges in automatic processing of so-
cial media messages. In order to fully under-
stand the meaning of a post, it is necessary
to capture the relationship between the image
and the text. In this work we address the two
main objectives of the ImageArg shared task.
Firstly, we aim to determine the stance of a
multi-modal tweet toward a particular issue.
We propose a strong baseline, fine-tuning trans-
former based models on concatenation of tweet
text and image text. The second goal is to pre-
dict the impact of an image on the persuasive-
ness of the text in a multi-modal tweet. To
capture the persuasiveness of an image, we
train vision and language models on the data
and explore other sets of features merged with
the model, to enhance prediction power. Ulti-
mately, both of these goals contribute toward
the broader aim of understanding multi-modal
messages on social media and how images and
texts relate to each other.

1 Introduction

Argumentative stance detection is an important
problem within the field of natural language pro-
cessing (NLP). Its primary objective is to discern
the underlying position of a text in relation to a
specific topic. Accurate identification of a text’s
stance enhances the performance of several other
NLP applications, including text summarizing, in-
formation retrieval, fact-checking, and broadly con-
tributes to enhanced understanding of the text. In
recent years, the landscape of information dissem-
ination has evolved beyond text, and a growing
number of online users express themselves on so-
cial media using multi-modal messages. This shift
underscores the need for more sophisticated ap-
proaches in argumentative stance detection .

The emergence of pre-training models based on
transformer architecture (Vaswani et al., 2017) has

introduced new horizons for analyzing and under-
standing text. All areas of natural language pro-
cessing have been impacted by transformers and
the subsequent models derived from them. Al-
though remarkable strides have been made in most
uni-modal applications of language processing, re-
searchers are now shifting to multi-modal problems
such as vision-language learning. Similar to the
uni-modal challenges, large high quality labeled
datasets are needed to pre-train the multi-modal
models and fine-tune them for the downstream task.

In this work, we use lightweight vision and lan-
guage learning models to learn joint representations
of image-text pairs to capture patterns that help us
predict how an image contributes to persuasive-
ness of a tweet comprised of an image and text. In
addition to multi-modal models, we argue that to
capture the stance of a tweet toward a given topic,
only processing the text modality acts as a strong
baseline for any multi-modal learning models. This
is because detecting the stance of the text will pro-
vide valuable insights into the overall stance of the
tweet itself.

The remainder of the paper is organized as fol-
lows. We first review previous studies on argument
mining and stance detection, as well as vision and
language learning in Section 2. Then we intro-
duce the dataset used in this work in Section 3. In
Section 4, we detail our experiments and results
obtained. Finally, we conclude in Section 5 and
summarize the main findings of this work.

2 Related Work

Numerous works have studied the problem of clas-
sifying argumentative stance, focusing on devel-
oping robust and accurate models for identifying
the stance expressed in text. Existing studies have
explored a different approaches, such as feature
based classification, structure based classification,
neural networks and attention based models, and
domain specific knowledge and lexicons (Li and
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Caragea, 2019; Du et al., 2017; Rajadesingan and
Liu, 2014; Habernal and Gurevych, 2017).

Earlier studies of argument mining mostly fo-
cused on learning the argumentative structure of a
text document or classifying different argumenta-
tion strategies. Recently, researchers have begun
to study persuasiveness-related tasks related to ar-
gument mining. Wei et al. (2016) proposed several
features to capture persuasiveness in online forums.
They argue that online persuasive texts contain an
argument strategy that is not common in other gen-
res. In a similar study, researchers created an an-
notated dataset comprised of argumentative text
pairs on the same topics and performed a thorough
analysis of how to quantify each argument’s persua-
siveness (Habernal and Gurevych, 2016). Despite
these efforts to develop methods to identify per-
suasiveness of arguments in text, studying image
persuasiveness is a largely unexplored problem.

Multi-modal learning involves joint processing
of information from two or more modalities. In
recent years, multi-modal learning has gained sub-
stantial attention in the machine learning commu-
nity. Researchers have explored various architec-
tures to effectively fuse information from differ-
ent modalities. Some successful models use sep-
arate embeddings for image and text modalities
and then capture the similarities using dot products
or attention models (Faghri et al., 2017; Radford
et al., 2021). Other models use deeper networks
to model the image-text representations (Nguyen
et al., 2020). In this work we build on prior studies
to explore models and approaches for multi-modal
stance detection. We use lightweight neural models
for learning joint embeddings of image-text pairs
in the data. We also capture similarity scores with
more computationally expensive transformer em-
bedders to gain more information about how both
modalities interact with the given topic.

3 Dataset

We use the data provided for the ImageArg Shared
Task 2023 (Liu et al., 2022, 2023). The data con-
sists of a multi-modal corpus (ImageArg) of tweets
on two social topics, gun control and abortion. The
corpus was collected with the aim of studying the
persuasiveness of a post that contains both text
and an image, and also the argumentative stance
of multi-modal tweets towards the topic. They de-
velop schemes to annotate images based on their
stance and persuasiveness. While stance detection

Topic Train Validaiton Test

Abortion 891 100 150
Gun Control 923 100 150

Table 1: ImageArg dataset splits.

is an established discipline with many resources,
persuasiveness in a multimodal context is an under-
explored problem without existing labeled corpora.
To annotate the stance of the tweets, tweets are
assumed to hold a consistent stance towards the
topic in both modalities. The pipeline to annotate
persuasiveness is designed in a way that only the
tweets that have a clear stance towards the topic are
annotated for how persuasive they are. The corpus
is divided into train, validation, and test sets. The
dataset details are provided in Table 1.

The train datasets are slightly imbalanced with
regard to persuasiveness labels. Both datasets have
more instances where the image is not making the
tweet more persuasive. In terms of supporting or
opposing the stance however, gun control dataset
is quite balanced but in abortion dataset, "oppose"
is the dominant class.

Dataset Support Oppose Not Persuasive Persuasive

Abortion 244 647 613 278
Gun Control 475 448 672 251

Table 2: Counts of labels in train datasets.

4 Experiments

4.1 Sub-task A

The aim of Subtask A of this shared task is to de-
termine if a tweet composed of image and text
supports or opposes a given topic, which is a bi-
nary classification problem. After carefully exam-
ining the data and the challenge, we hypothesized
that a transformer based model fine-tuned only on
text would be a solid baseline. That is because
we expect users to express their attitude toward a
topic in the written text and include pictures and
graphics that further enhance their argument. We
believe it’s unlikely that a user would post an im-
age that contradicts the message conveyed through
the text. Therefore, we began our experiments by
fine-tuning a BERT model (Devlin et al., 2018) on
the tweet texts. We trained the model with a linear
layer on top of it. We trained the model for ten
epochs with a learning rate of 5e − 5, and saved
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the best model at the end, based on their perfor-
mance on the validation set. The results of the
BERT model, evaluated on both abortion and gun
control datasets, are shown in Table 3. As shown in
the table, the model performs slightly better on gun
control validation data than abortion data. This is
possibly due to the more balanced nature of the gun
control data. The abortion validation data mostly
contains oppose labels. The model’s F1 score on
the combined test sets was 0.776.

Dataset Class Precision Recall F1 Support

Abortion

Support 0.92 0.63 0.75 19
Oppose 0.92 0.99 0.95 81
Macro Avg 0.92 0.81 0.85 100
Weighted Avg 0.92 0.92 0.91 100

Gun Control

Support 0.89 0.90 0.91 52
Oppose 0.90 0.86 0.88 44
Macro Avg 0.90 0.89 0.89 96
Weighted Avg 0.90 0.90 0.90 96

Table 3: Bert model fine-tuned on ImageArg validation
data (Subtask A).

Next, we aimed to improve the results of our
text-only classification. We fine-tuned an XLM-
Roberta (Conneau et al., 2019) model on the data,
as its pre-trained on a lot more data and its shown to
outperform BERT on the GLUE benchmark (Wang
et al., 2018). We trained the model for ten epochs
with learning rate of 5e− 6, and saved the model
with the best performance on the validation set.
The scores are depicted in Table 4. This model
boosted our scores significantly on both datasets. It
also scored higher on the test set with an F1 score
of 0.805.

Dataset Class Precision Recall F1 Support

Abortion

Support 1.00 0.63 0.77 19
Oppose 0.92 1.00 0.96 81
Macro Avg 0.96 0.82 0.87 100
Weighted Avg 0.94 0.93 0.92 100

Gun Control

Support 0.96 0.88 0.92 52
Oppose 0.88 0.95 0.91 44
Macro Avg 0.92 0.92 0.92 96
Weighted Avg 0.92 0.92 0.92 96

Table 4: XLM-Roberta model fine-tuned on ImageArg
validation sets (Subtask A).

After training and evaluating our baseline mod-
els, we explored using other features which could
capture possible helpful information in the data.
We hypothesized that if a picture accompanies
text in a tweet, it should have high similar-
ity with some aspects of the topic. We gath-
ered text-image similarity scores with VLP (Vi-
sion and Language Pre-training) models such as

CLIP(Contrastive Language-Image Pre-Training
(Radford et al., 2021)). Clip is a neural model de-
veloped by OpenAI and its innovation lies in its
ability to learn meaningful associations between
pairs of image and their corresponding textual de-
scription through a contrastive learning approach.
However, combining these scores with the logits
from our text-only transformer models did not seem
to improve the results in neither topics. Our best re-
sults were obtained from a random forest classifier
trained on the data using ViLT (Vision and Lan-
guage Transformer) classification logits (Kim et al.,
2021), CLIP similarity scores, and text similarity
scores between tweet text and image text. The re-
sults are depicted in table 5. ViLT has a simple
architecture for joining vision-language learning
and has an efficient runtime due to its lightweight
and convolution-free processing of pixel-level em-
beddings. Figure 1 shows how a Vilt model differs
from other popular multi-modal models.

Dataset Class Precision Recall F1 Support

Abortion

Support 0.44 0.95 0.60 19
Oppose 0.98 0.72 0.83 81
Macro Avg 0.71 0.83 0.71 100
Weighted Avg 0.88 0.76 0.79 100

Gun Control

Support 0.79 0.85 0.81 52
Oppose 0.80 0.73 0.76 44
Macro Avg 0.79 0.79 0.79 96
Weighted Avg 0.79 0.79 0.79 96

Table 5: Best Random Forest model on trained with
ViLT logits, CLIP scores, and text similarity scores
(Subtask A).

4.2 Sub-task B
The goal of Subtask B is to predict whether an im-
age makes the tweet text more persuasive or not.
For instance, an image that is not related to the
topic will not improve the persuasiveness of the
tweet. In our initial analysis of the data, we ob-
served that many pictures have some text written
in them. Therefore, for our baseline submission to
Subtask B, we began by using Python’s EasyOCR1

framework with the default recognition models to
extract the texts in the images. We hypothesized
that if the image contributed to the persuasiveness
of the post, the image text should have high similar-
ity scores to the tweet text. We then concatenated
the image text with the tweet text, using a <SEP>
token to separate them for the model input.

We trained a ViLT(Vision and Language Trans-
former) model on our data. We trained the model

1https://github.com/JaidedAI/EasyOCR.git
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separately for the two topics to maximize perfor-
mance per topic. We experimented with training
the Vilt on each dataset for 8 epochs and validating
on the validation set. We used an Adam optimizer
with a learning rate of 5e − 5. The results of our
best model on the datasets are depicted in Table
6. It is clear from the results in the table that the
model tends to learn better when an image does not
make the tweet more persuasive. This is possibly
due to the fact that it is the dominant class in the
training set (Table 2).

Dataset Class Precision Recall F1 Support

Abortion

No 0.79 0.89 0.84 74
Yes 0.50 0.31 0.38 26
Macro Avg 0.64 0.60 0.61 100
Weighted Avg 0.71 0.74 0.72 100

Gun Control

No 0.88 0.68 0.77 65
Yes 0.54 0.81 0.65 31
Macro Avg 0.71 0.74 0.71 96
Weighted Avg 0.77 0.72 0.73 96

Table 6: Trained ViLT model performance on validation
sets.

We also trained additional models with other
features. For example, we ran a CLIP model on
our data. The CLIP model only expects 77 tokens
as text, which is the default value of the model
and larger values are not supported by the model.
Therefore, we passed the first 77 tokens of the text
into the model and retrieved the similarity scores
between the image and the tweet text. We then con-
catenated the image-text similarity scores with our
previously extracted tweet text-image text similar-
ity scores and passed them to a one-layered neural
network along with the last hidden states of the
ViLT model. We aimed to capture all the similar-
ities among the text pairs and image-text pairs in
the data. However, this model did not perform as
well as our baseline on the validation set, so we did
not submit it for the final evaluation.

We also trained another variation of the CLIP
model on the data but passed only the context ("gun
control" or "abortion") instead of the first 77 tokens
of the tweet. We tested training another one-layered
neural network with only the CLIP similarity scores
and also merged it with the tweet text-image text
similarity scores. Neither experiment outperformed
our baseline scores on validation and test set. Our
results on the test sets are shown in Table 7.

5 Conclusions

In this paper, we presented a strong model for
multi-modal stance detection towards a given topic.

Topic Precision Recall F1

Abortion 0.33 0.27 0.29
Gun Control 0.46 0.49 0.47

Table 7: Topic-wise results of our model on the test set.

Figure 1: A ViLT model is shown on the right side, high-
lighting that it has fewer computations for extracting
visual embeddings. It is compared with most vision lan-
guage learning models that usually have an architecture
more similar to the graph on the left. Figure taken from
(Kim et al., 2021)

Our text-only fine-tuned models outperformed half
of the participant teams, suggesting that that fine-
tuning a transformer-based model only on tweet
text could be a strong baseline for learning stance
in multi-modal posts. To examine how an image
contributes to persuasiveness of a tweet, we exper-
imented with image-text similarity scores from a
CLIP model, along with the similarity between any
text in the image and the tweet text. We also ex-
tracted similarity scores between the image and the
topic as another feature. Although this set of fea-
tures did not produce the best results, future work
could further explore these features and different
ways of modeling them for improved performance.

Limitations

A limitation of our work, particularly for Subtask
A, is that we did not fully explore multi-modal fea-
tures. Because our text-only results outperformed
our other experiments with image embeddings, we
focused on those and did not explore further to
extract helpful information from the image-text in-
teraction. It is possible that a deeper exploration of
both image and text modalities would yield better
performance because it leverages the multimodal
nature of the dataset.
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Ethics Statement

This work has potential benefits that come along
with potential risks. Social media platforms could
benefit from a system that could perfectly detect
the stance of posts towards sensitive topics that
may affect the community’s safety and well be-
ing, and possibly warn users or take action aligned
with the guidelines of the platform. However, a
system’s failure to accurately identify stances or
persuasive intent could inadvertently suppress gen-
uine discourse by flagging legitimate viewpoints as
misleading or manipulative, thus undermining free-
dom of expression. It is important for such models
and systems to be interpretable and explainable so
that decisions are not made based on black box
systems.
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Abstract

To advance argumentative stance prediction as
a multimodal problem, the First Shared Task
in Multimodal Argument Mining hosted stance
prediction in crucial social topics of gun con-
trol and abortion. Our exploratory study at-
tempts to evaluate the necessity of images for
stance prediction in tweets and compare out-
of-the-box text-based large-language models
(LLM) in few-shot settings against fine-tuned
unimodal and multimodal models. Our work
suggests an ensemble of fine-tuned text-based
language models (0.817 F1-score) outperforms
both the multimodal (0.677 F1-score) and text-
based few-shot prediction using a recent state-
of-the-art LLM (0.550 F1-score). In addition
to the differences in performance, our findings
suggest that the multimodal models tend to per-
form better when image content is summarized
as natural language over their native pixel struc-
ture and, using in-context examples improves
few-shot performance of LLMs.

1 Introduction

Argumentative stance studies related to ideolog-
ical topics offer valuable insights into complex
dynamics of opinion, belief and discourse in var-
ious domains. These insights have far-reaching
implications, extending their influence over areas
including public opinion, social dynamics, and pol-
icy efficacy. By predicting the stance in real-time,
policymakers and stakeholders can get immediate
feedback on public reaction to new proposals or
laws, allowing them to make timely and informed
decisions.

Argumentative stance prediction is becoming a
major endeavor in multiple research fields as the re-
liance on sentiment detection may be sub-optimal
(Reveilhac and Schneider, 2023). While the stance
prediction task appears similar to sentiment analy-
sis, it has many theoretical differences. Sentimental

∗Equal contribution

analysis primarily focuses on emotions, whereas
the stance prediction need not necessarily coin-
cide with the sentiment directed towards the target.
Stance prediction for sensitive and polarizing top-
ics can be more challenging, particularly within the
brief context of informal social media text (Altur-
ayeif et al., 2023).

Previous studies have primarily concentrated on
examining stance prediction in textual modalities
(Alturayeif et al., 2023; Hosseinia et al., 2020).
However, an increasing number of recent works
are widening the focus to include other modali-
ties, such as images. Since multimodality helps us
understand language from the modalities of text,
vision and acoustic, (Zadeh et al., 2018), the ap-
plication of multimodal inputs in argumentative
stance prediction seems promising.

Towards the perpetuation of multimodality in
argumentative stance prediction as a part of the Im-
gArg 2023 (Liu et al., 2023) challenge, we explore
the following questions using a dataset of tweets
on gun control and abortion topics:

1. How well does language as a stand-alone
modality perform at argumentative stance pre-
diction?

2. Does incorporating image information im-
prove prediction performance?

3. How do Large-Language Models (LLMs) in
few-shot setting compare against fine-tuned
unimodal and multimodal models?

Our work shows that an ensemble of fine-tuned
language models performs the best for argumenta-
tive stance prediction from tweets. Incorporating
image information into text using state-of-the-art
multimodal models does not outperform the en-
semble model. LLMs (particularly, LLaMA-2) in
few-shot setting exhibit high recall but suffer from
low precision. Though using in-context examples
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in few-shot setting improves performance, they un-
derperform the ensemble model.

2 Related Work

Existing work has explored the interplay between
stance and sentiment to enhance stance detection.
(Sobhani, 2017) investigated the relationship be-
tween stance and sentiment, utilizing SVM with N-
gram, word embedding, and sentiment lexicon fea-
tures. They concluded that while sentiment features
offer utility, they are insufficient on their own for
effective stance detection. Meanwhile, (Hosseinia
et al., 2020) showcased the prowess of bidirectional
transformers in achieving competitive performance
without fine-tuning, harnessing sentiment and emo-
tion lexicons. Their findings show the efficacy of
sentiment information, as opposed to emotion, in
discerning the stance.

(Alturayeif et al., 2023) conducted an extensive
analysis of 96 primary studies spanning eight ma-
chine learning techniques for stance detection and
its applications. The analysis suggests that deep
learning models with self-attention mechanisms
were found to be frequently outperforming the tra-
ditional machine learning models such as SVM,
and emerging techniques like few-shot learning
and multitask learning were increasingly applied
for stance detection.

Multimodal stance detection is being increas-
ingly used for social applications such as rumor
verification (Zhang et al., 2021) and identifying
public attitudes towards climate change on Twitter
(Upadhyaya et al., 2023). Despite recent advance-
ments in multimodal language models (Wang et al.,
2023), the use of image modality for stance de-
tection remains an underexplored area. Our work
conducts an exploratory study to investigate the ne-
cessity of multimodal models for stance detection
and compares different ways to incorporate image
information into text modality.

3 Dataset and Task

The ImgArg dataset (Liu et al., 2022) is a part of
the Multimodal Argument Mining (Liu et al., 2023)
competition. Curated with the goal of expanding
argumentation mining into multimodal realm, the
dataset consists of Twitter texts along with their
images from two topics–gun control and abortion.
Each text-image pair corresponding to a tweet are
annotated with a stance (support or oppose) along
with its persuasiveness (no persuasiveness to ex-

tremely persuasive). In this paper, we focus on
the stance prediction task. Briefly, the task can be
described as given an image-text pair correspond-
ing to a tweet, predict if it supports or opposes the
topic.

It is important to note that while the gun control
dataset is balanced, the abortion dataset is imbal-
anced by a 1:3 support:oppose stance ratio. The
gun control and abortion training sets are 9201

and 891 tweets respectively. Both datasets have
an equal number of tweets in the validation (100
tweets) and test (150 tweets) sets.

4 Approach

To predict argumentative stance over multimodal
tweets from gun control and abortion topics, we
leverage three different ideas. We explore an en-
semble of LLMs against its constituent models,
incorporate image information through multimodal
models as well as evaluate out-of-the-box LLMs
in few-shot setting. This section describes the ex-
perimental approaches used in the process. Further
details can be found in the appendix.

4.1 Ensemble Stance Prediction

Individual language models have demonstrated
their superior performance across a variety of tasks.
However, ensemble methods tend to perform better
(Jiang et al., 2023) than their constituent models.
To explore this idea, we evaluated text-based lan-
guage models such as XLNet (Yang et al., 2019),
XLM-RoBERTa (Conneau et al., 2019), Trans-
former XL (Dai et al., 2019), DeBERTa-v2 (He
et al., 2020), BLOOM-560M (Scao et al., 2022).
Since the dataset is a collection of tweets, conven-
tional problems such as very long sequence length
were non-existent.

Ensemble decisions were based on the weighted
sum of constituent model predictions. Each model
prediction was weighted by its F1-score on the val-
idation set in order to assign a higher weight to the
model that performed better on the validation set.
This weighted sum is then thresholded by the F1-
score averaged across models for final prediction.
In our study, XLNet and BLOOM-560M received
the predominant weights for attaining the highest
F1 score on abortion and gun-control datasets re-
spectively.

1The organizers reported 923 tweets, however, three tweets
were dropped because of download issues.
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4.2 Multimodal Stance Prediction
To evaluate the utility of image augmentation to
text and the possible ways to achieve this, we stud-
ied models from different frameworks. The ViLT
(Kim et al., 2021) is a popular vision-language
transformer model with reduced computational
overhead because of its convolution-free architec-
ture. FLAVA (Singh et al., 2022), a multimodal
model built to generalize to both vision tasks and
language tasks. Both models were fine-tuned over
the gun control and abortion datasets for the sup-
port stance prediction task.

Recent vision-language pre-trained models such
as instructBLIP (Dai et al., 2023) have demon-
strated solving image-centric tasks through natu-
ral language. We leverage this instruction-based
summarization of image content with instructBLIP.
Specifically, we summarize each image using the
briefly describe the content of the image instruc-
tion. The resulting textual descriptions of images
along with their corresponding tweets were used
for stance prediction by fine-tuning a RoBERTa
(Liu et al., 2019) classifier followed by early fu-
sion. We refer to this configuration (Figure 1) as
the multimodal RoBERTa.

Figure 1: Multimodal RoBERTa configuration. The fig-
ure shows the input image summarized as text through
instructBLIP and then used to fine-tune the RoBERTa
model together with the tweet-text. Shared color be-
tween RoBERTa models indicates tied weights.

4.3 Few-Shot Stance Prediction using LLMs
Few-shot prediction typically involves using rele-
vant examples during training to learn a new con-
cept that was not included in pretraining. It has
been a success not just in conventional language-
based tasks but also in multimodal tasks (Luo et al.,
2020). The large and diverse pre-training corpora
used in training the foundation models is attributed
as one of the reasons for their success in learning

with a limited resources paradigm. Using LLaMA-
2 (Touvron et al., 2023), we performed stance pre-
diction in few-shot setting. LLaMA-2 was chosen
because of its open-source implementation that out-
performs commercial large-scale GPT-3 (Brown
et al., 2020) with fast inference.

Choice of few-shot examples: Arguments can
be made from different viewpoints or themes. For
example, gun control can be referred to from or-
dinary themes such as the constitutionally granted
right to bear arms, governmental overreach to tar-
geted themes or experiences such as school shoot-
ings. We believe that the ImgArg dataset encom-
passes these diverse themes and wish to leverage
the in-context examples that correspond to the same
theme for few-shot experiments. We identify the
themes in the training set using k-means clustering
and pick examples from the same theme cluster
during inference. Performance on the validation
set was used as a benchmark to identify 12 clusters
for the gun control dataset and 13 clusters for the
abortion dataset. The manually identified cluster
themes are presented as Table 8 in the Appendix
A.

4.4 Experimental Setup

The imbalance in the abortion dataset is addressed
using a weighted cross-entropy loss. Increased
weightage was allocated to the minority category
loss. The models were trained using HuggingFace
(Wolf et al., 2020) on two A100 NVIDIA GPU en-
vironment2. Hyperparameters (learning rate, sched-
uler and weight decay) were optimized for the vali-
dation set and performance is reported as precision,
recall and F1-score for the support stance and op-
pose on the test set. More experimental details are
shown in Appendix A section.

5 Results

5.1 Support Stance

Table 1 compares the support class performance of
individual language models against their ensemble
model. The ensemble model used BLOOM-560M
as it performed better than its larger counterpart on
the validation set. The constituent models typically
have a better recall but low precision, the ensemble
model improves precision with a limited drop in
the recall. Best performance was observed with the

2The code is available at: https://github.com/arushi-
08/EMNLP-ImageArgTask-PittPixelPersuaders
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Model Precision Recall F1
XLNet 0.619 0.924 0.741

BLOOM-1B 0.760 0.660 0.710
BLOOM-560M 0.707 0.898 0.791
Transformer-XL 0.571 0.881 0.693

DeBERTa-v2 0.560 0.710 0.630
XLM-RoBERTa 0.650 0.880 0.750

Ensemble 0.743 0.906 0.817

Table 1: Support stance performance using text-based
transformer models.

ensemble of unimodal language models with 0.817
F1-score.

Model Precision Recall F1
ViLT 0.680 0.432 0.528

FLAVA 0.570 0.650 0.610
Multimodal RoBERTa 0.531 0.932 0.677

Table 2: Support stance performance using image-text
multimodal transformer models.

Multimodal RoBERTa and FLAVA sacrificed
precision for recall (shown in Table 2) upon fine-
tuning. Both multimodal RoBERTa and FLAVA
that leverage images in pixel-space achieve a recall
of 0.932 and 0.650 respectively. However, their
low precision (0.531 and 0.570 respectively) under-
performs the ViLT model. Summarizing images to
fine-tune smaller language models tends to result
in improved recall albeit at the cost of precision.
This approach achieves the highest among the mul-
timodal models with an F1-score of 0.677.

Model Precision Recall F1
Baseline (support only) 0.395 1.000 0.566

zero-shot 0.440 0.290 0.350
four-shot 0.420 0.640 0.500

four-shot w/ k-means 0.450 0.700 0.550

Table 3: Support stance performance using LLaMA-2
based few-shot experiments.

We compare our few-shot experiments with the
baseline support only stance predictions to observe
that both zero-shot and four-shot models underper-
form the baseline. The best performance is demon-
strated using the four-shot model with k-means
clustering. Clustering was found to improve the
recall by 6% while precision has improved by 3%.
F1-score has improved by 5% to 0.550. Few-shot
LLaMA-2 underperforms the ensemble model at
stance prediction.

Model Precision Recall F1
ViLT 0.701 0.867 0.775

FLAVA 0.750 0.690 0.720
Multimodal RoBERTa 0.913 0.464 0.615

Table 5: Oppose stance performance using image-text
multimodal transformer models.

5.2 Oppose Stance

Table 4 shows that the language models have higher
precision than recall for the oppose class as com-
pared to the support class (Table 1). Higher preci-
sion and lower recall shows us that the text-based
language models prioritize predicting the support
stance (minority class). Moreover, the ensemble
approach outperforms other language models even
on the oppose stance. For the multimodal models,
both the ViLT and FLAVA models demonstrated
superior performance for the oppose class (shown
in Table 5) compared to the support class (shown
in Table 2). However, the multimodal RoBERTa
model follows similar pattern as text-based lan-
guage models, in terms of scoring high on recall
for support class vs oppose class. For LLaMa-2
experiments, The F1 scores for the support class
(Table 3) across all methods are consistently higher
compared to the oppose class (Table 6). This sug-
gests that LLaMa-2 is more adept at discerning pat-
terns associated with the support class than those
of the oppose class.

Model Precision Recall F1
XLNet 0.927 0.630 0.750

Bloom-1B 0.790 0.870 0.830
Bloom-560M 0.919 0.757 0.770

Transformer-XL 0.880 0.569 0.691
DeBERTa-v2 0.770 0.640 0.700

XLM-RoBERTa 0.691 0.899 0.781
Ensemble 0.929 0.796 0.857

Table 4: Oppose stance performance using text-based
transformer models.

Model Precision Recall F1
Baseline (Oppose only) 0.605 1.000 0.754

zero-shot 0.690 0.060 0.110
four-shot 0.770 0.300 0.430

four-shot w/ k-means 0.740 0.270 0.400

Table 6: Oppose stance performance using LLaMA-2
based few-shot experiments.
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6 Discussion

Popular pre-trained language models such as XL-
Net, BLOOM, Transformer-XL, DeBERTa-v2 and
XLM-RoBERTa were fine-tuned for stance predic-
tion on tweets about gun control and abortion. Re-
sults demonstrate that the ensemble of these models
performs better than any of the constituent models.
However, the disparity is limited. XLNet achieves
better recall than the ensemble model and simi-
larly, the BLOOM-560M underperforms the en-
semble by 0.026 (though precision of the ensemble
is higher by 0.036). This raises the trade-off ques-
tion between ensemble performance vs. the large
computational requirement justified for marginal
improvement in the performance.

The best performing multimodal model used the
image content summarized as text, unlike its coun-
terpart models that operate in pixel space. We be-
lieve the diversity of the images contributes to this
difference. In addition to typical images contain-
ing people and objects such as guns, trucks and
so on, the training set also contained propaganda-
related material such as posters with statements.
While vision-language models are increasingly get-
ting better at object-centric tasks, understanding
such material is closely related to problems such
as optical character recognition, which are not of-
ten explored in pretraining vision-language mod-
els. Our instruction-based image summarization
suggests that when explicitly prompted, vision-
language models excel not just at object-centric
descriptions of images but also at recognizing text
from images. Attempts were made to incorporate
demographic factors such as number of people in
the image, their skin color and gender. However,
manual inspection revealed that the resultant in-
structBLIP predictions were not reliable. Despite
augmenting language modality with images in dif-
ferent ways, text-based models outperformed the
multimodal models.

Out-of-the-box LLaMA-2 underperforms the
baseline support only prediction model. However,
prompting through four-shot examples greatly im-
proves the performance. This is further enhanced
by using in-context examples. This demonstrates
that in-context examples that potentially share sim-
ilar theme (not necessarily the stance) tend to cap-
ture the stance better than arbitrary examples from
the dataset. The themes were found to include dis-
cussions along mental health, effects on children,
racism, illegal acquisition, etc. for the gun con-

trol dataset; Supreme Court, birth control, religion,
reproductive rights, etc. for the abortion dataset.

7 Conclusions and Future Work

Our investigation questions the necessity of images
to predict stance in multimodal tweets through dif-
ferent ways of using image-based information in
conjunction with text-based language models and
investigating the inherent capabilities of LLMs for
stance prediction. Results suggest that the best
performance can be achieved using an ensemble
of language models. Our experiments with multi-
modal models do not completely refute the util-
ity of images for stance prediction, rather they
merely evaluate the current state-of-the-art mul-
timodal models. Incorporating domain knowledge
(Lewis et al., 2021), and alternative prompting
methods like Question Decomposition (Radhakr-
ishnan et al., 2023) and Tree-of-Thought (Yao et al.,
2023) which provide the rationale for the prediction
in addition to the stance provide a future direction
to address the limited performance with LLaMA-2.
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A Appendix

This appendix provides details such as the num-
ber of parameters in the final classification, hy-
perparameters and finetuning approach for various
models3 in this work. All models used the Adam
(Loshchilov and Hutter, 2017) optimizer.

Model Size of classification head
XLNet 1024
Bloom-1B 64
Bloom-560M 64
Transformer-XL 1024
DeBERTa-v2 1536
XLM-RoBERTa 768
Multimodal RoBERTa (MLP) 1536
FLAVA 768
ViLT 768

Table 7: Table showing the size of the final classification
layer for various models used in this work.

A.1 Ensemble Stance Prediction Model

We employed various pretrained language
models, specifically XLNet4, BLOOM-560M5,
Transformer-XL6, DeBERTa-v27, and XLM-
RoBeRTa8. Each model was augmented with a

3code used in this work would be made available after the
review process to preserve the anonymity of the authors

4https://huggingface.co/xlnet-base-cased
5https://huggingface.co/bigscience/bloom-560m
6https://huggingface.co/transfo-xl-wt103
7https://huggingface.co/microsoft/

deberta-v2-xlarge
8https://huggingface.co/facebook/

xlm-roberta-xl

classification head for binary sequence classi-
fication tasks. The summary of the size of the
classification head for each model is provided
in Table 7. We utilized Adam optimizer with a
learning rate of 1e-3. A learning rate scheduler
was also incorporated into the training regimen
with a patience of 3. To mitigate the risk of model
overfitting, a weight decay parameter was set at
0.01. All models were trained for 10 epochs.

A.2 Multimodal Stance Prediction Model

For the multimodal RoBERTa 9, the learning rate
was configured at 5e-2, and the weight decay pa-
rameter was set at 0.01 during the fine-tuning pro-
cess. The training continued until the validation
loss ceased to decrease for five consecutive epochs.
Figure 1 presented the visualization of the Mul-
timodal RoBERTa. For the ViLT10 model, a low
learning of 2.25e-6 was found to be optimal. The
model underwent training for a total of 10 epochs.
In the case of the FLAVA11 model, an early stop-
ping mechanism was implemented, resulting model
was trained for six epochs prior to any increase in
validation loss. The learning rate for this model
was set at 5e-5.

A.3 Few-shot Stance Prediction Model

In this study, we employed the Hugging Face’s
LLaMa-2 13B12 model for inference, leveraging
the capabilities of Hugging Face Accelerate (Syl-
vain Gugger, 2022). The experimental design uti-
lized Langchain13 to formulate a tripartite template
for prompt engineering. The template is segmented
into three distinct components: The system prompt,
which serves as a generic instructional scaffold for
the language model, a set of few-shot examples
to guide the model’s responses, and the test set
tweet that the model is tasked to analyze. While
the standard convention of using no examples for
zero-shot and sampling four arbitrary examples for
four-shot prediction was used, in the four-shot with
k-means, the training set is initially partitioned into
clusters using the k-means algorithm (12 clusters
for gun control and 13 for abortion). For each test
example, its corresponding cluster is predicted, and
four examples are randomly sampled from the clus-

9https://huggingface.co/roberta-base
10https://huggingface.co/docs/transformers/modeldoc/vilt
11https://huggingface.co/facebook/flava-full
12https://huggingface.co/meta-llama/

Llama-2-13b-hf
13https://github.com/langchain-ai/langchain
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Gun control Abortion
Gun violence as a mental health problem Natural Law Right to Life

Effects of gun violence on children Abortion is evil
Pro-gun control politicians Supreme Court and abortion

Racism and gun control Abortion is murder
Trump and guns Birth control pills

Illegal acquisition of guns Pro-life
Supreme Court and gun control Religion and motherhood

Second amendment right Reproductive rights of women
#savethebabyhumans hashtag

Roe v. Wade abortion case

Table 8: Themes identified using k-means clustering for few-shot examples in gun control and abortion datasets.Same
theme(s) captured by multiple clusters resulted in fewer themes than reported clusters.

ter as few-shot examples. The optimal number of
clusters was ascertained using the Elbow Method
(Thorndike, 1953). Table 8 presents some promi-
nent themes found using k-means clustering in gun
control and abortion datasets. For LLM output
generation, the temperature parameter was set to
zero, and the ’top_k’ parameter was configured at
30. We employed a Multinomial sampling strategy,
setting the do_sample = True and num_beams pa-
rameter to 1. An exemplar of the prompt template
employed is depicted in Figure 2.

Figure 2: The provided illustration depicts a k-means
few-shot prompt template employed in our experimental
investigations conducted on the gun control dataset. A
comparable configuration was also applied when exam-
ining the abortion dataset. For conciseness, we have
omitted the inclusion of all four examples in this presen-
tation.
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Abstract

Persuasiveness is a prominent personality trait
that measures the extent to which a speaker can
impact the beliefs, attitudes, intentions, moti-
vations, and actions of their audience. The Im-
ageArg task is a featured challenge at the 10th
ArgMining Workshop during EMNLP 2023,
focusing on harnessing the potential of the Im-
ageArg dataset to advance techniques in mul-
timodal persuasion. In this study, we investi-
gate the utilization of dual-modality datasets
and evaluate three distinct multi-modality mod-
els. By enhancing multi-modality datasets,
we demonstrate both the advantages and con-
straints of cutting-edge models.

1 Introduction

Persuasion encompasses the art of one party en-
deavoring to influence another’s thoughts, beliefs,
or actions, and it stands as a fundamental and ver-
satile human capability. Its significance goes far
beyond the realms of business and politics, perme-
ating numerous facets of our everyday existence.
In the fast-changing realm of natural language pro-
cessing (NLP) and artificial intelligence (AI), there
has been a notable increase in enthusiasm for cre-
ating techniques and datasets to enhance and as-
sess persuasiveness in natural language applica-
tions (Hunter et al., 2019; Chatterjee and Agrawal,
2006; Liu et al., 2022). The capacity to convince,
sway, and captivate using language has long been
a fundamental element of human communication,
and with the emergence of advanced language tech-
nologies, the pursuit of leveraging persuasive capa-
bilities in digital interactions has gained remarkable
momentum. In today’s digital age, the prolifera-
tion of social media platforms has ushered in a
new frontier for the practice of persuasion. These
platforms serve as fertile ground, affording both
organizations and individuals the opportunity to
engage in activities that extend beyond mere per-
suasion and can include disinformation campaigns.

Figure 1: The abortion tweet picture (left) and its tweets
(right) from Liu et al. (2023).

The pervasive reach and influence of social media
amplify the potential impact of persuasive efforts,
making it imperative for individuals and society as
a whole to exercise discernment and critical think-
ing in navigating this dynamic landscape.

Most of current works in argumentation min-
ing solely focus on textual format, such as the ar-
gumentation dialogues (Hunter et al., 2019), con-
textual advertising (Wen et al., 2022), and other
works (Lukin et al., 2017; Persing and Ng, 2017).
In their work, Nojavanasghari et al. (2016) intro-
duced a comprehensive deep multimodal fusion
approach to predict persuasiveness, incorporating
three modalities: Visual, Acoustic, and Text. Nev-
ertheless, in light of the current trend observed on
Twitter, as depicted in Figure 1, it becomes evident
that numerous images accompanied by text are sur-
facing. Mere application of computer vision (CV)
techniques for object recognition proves inadequate
for addressing this challenge. Liu et al. (2022) de-
signed two tasks based on the tweets, Stance detec-
tion and Persuasion prediction. Stance detection
(SD) involves the automated task of ascertaining,
based on textual content, whether the author ex-
presses a supportive, opposing, or neutral position
regarding a particular proposition or subject. This
subject can encompass individuals, organizations,
government policies, movements, products, and
more. As an illustration, considering the tweet
and accompanying image in Figure 1, it is evident
that the stance conveyed is one of support. Per-
suasion prediction (PP) determines the degree of
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Figure 2: The overview of SPLIT framework.

persuasiveness or the potential impact that a given
tweet may have on its readers or the broader au-
dience. Given the unique characteristics of the
existing Twitter data, this paper will design addi-
tional feature extraction methods, such as using Op-
tical Character Recognition (OCR) to extract text
from images, in order to enrich the feature space.
This will enable a more comprehensive analysis
of the stance and persuasion in the current tweets.
Our code is publicly available in GitHub (https:
//github.com/JZCS2018/ACT-CS). In summary,
our contributions are as follows:

• We combine current state-of-the-art (SOTA)
CV and NLP models as SPLIT, to utilize the
image and textual information for the SD and
PP tasks.

• We align the individual tweet’s text, image,
and its textual information (texts in image and
generated image caption), and utilize different
fusion methods to show the detailed analysis.

2 Related Works

Persuasiveness Prediction Persuasiveness
prediction is an under-explored topic but has
attracted growing interests(Chatterjee et al., 2014;
Park et al., 2016; Lukin et al., 2017; Carlile
et al., 2018; Chakrabarty et al., 2020). As the
majority of works (Higgins and Walker, 2012;
Lukin et al., 2017; Persing and Ng, 2017; Carlile
et al., 2018) utilized textual inputs - such as
audience variable, report, and student essays - to
analyze persuasion strategies, (Joo et al., 2014;
Huang and Kovashka, 2016) pioneered the study
of in persuasion in social media with visual
information, including facial expression, body
gesture and human portrait. Finally, Hussain et al.
(2017); Guo et al. (2021) investigated sentiment,
intent reasoning and persuasive strategies in
advertisement context in multi-modal learning.
However, a persuasive-targeted and multi-modal

framework is still missing in the current NLP
literatures.

Multi-modal learning Thanks to the progress in
language models and alignment techniques, multi-
modal learning with text and image have recently
received significant attention in the CV and NLP
communities. As the majority of SOTA works are
built upon transformersand and its variants, differ-
ent alignment strategies have been proposed and
applied to fuse representations from each modal-
ity. On the one hand, many works (Radford et al.,
2021; Neelakantan et al., 2022) employ modality-
specific encoders and apply contrastive loss to align
representations. The encoders (Dosovitskiy et al.,
2020; Devlin et al., 2018) are usually pretrained
to learn visual and textual representations indepen-
dently and kept frozen during alignment. On the
other hand, many recent works (Bao et al., 2022;
Li et al., 2023a; Zhang et al., 2023; Sun et al.,
2023; Koh et al., 2023) have tokenized visual rep-
resentations and grounded them to unifed language
model for multimodal tasks. Specifically, the visual
and textual tokens are concatenated as input to the
pre-trained language model, and then are aligned
through various tasks such as next token predic-
tion. However, multi-modal learning on stance
and persuassive prediction are under-explored, par-
tially due to a lack of multi-modal corpora and
persuasive-specific modeling framework.

3 Approach

Let D be a tweet dataset, where each tweet di is
represented as a tuple (Ii, Ti). Ii represents the im-
age associated with the tweet and Ti represents the
textual content of the tweet. A model f that maps
the input tuples (Ii, Ti) to a predicted stance score
or persuasiveness score ŷi, where ŷi ∈ [0, 1]. In ad-
dition, we will also extract the text in the image Iti,
and generate its caption Ci as an optional feature.
Then the representation of the tweet can be shown
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as the new tuple (Ii, Ti, Iti/Ci). The framework is
illustrated in Figure 2.

3.1 OCR & image captioning
Due to the limited amount of training data avail-
able, we believe that incorporating other pretrained
models will significantly enhance the performance
of our model. Therefore, we have incorporated two
types of pretrained models in our approach: BLIP-
large (Li et al., 2022), an image captioning model
for generating textual descriptions, and Microsoft’s
TrOCR(Li et al., 2023b), an optical character recog-
nition (OCR) model for extracting text from images.
BLIP-large has been pre-trained on a vast dataset
and is capable of generating textual descriptions for
images. By utilizing this model, we aim to improve
the understanding and contextual description of the
images in our dataset. Additionally, some images
contain text that is crucial to comprehend the image
but the text cannot be effectively represented solely
through captions especially for longer texts. To
address this, we employ the OCR model to extract
text from these images.

For each image Ii, we use BLIP-large model to
generate the caption Ci and use TrOCR to extract
the text Iti. These two features are then directly
fed into our backbone model.

3.2 Backbone Models
As the fields of CV and natural NLP continue to
advance, we aim to integrate SOTA models from
both domains for our tasks.

The Vision Transformer (ViT) (Dosovitskiy
et al., 2020) is designed for CV tasks, and it offers
several compelling benefits for the image process-
ing. Its ability to extract intricate visual patterns
and characteristics from images has demonstrated
remarkable effectiveness. It can seamlessly inte-
grate with other models, especially the BERT (De-
vlin et al., 2018) for text, enabling the creation of
powerful multi-modal models.

BERT is pre-trained on vast amounts of text data
and has a deep understanding of contextual lan-
guage usage. This makes it highly effective in
capturing nuanced language patterns and context
within tweets, which is crucial for analyzing per-
suasiveness.

The self-attention mechanisms in ViT and BERT
models could provide insights into which parts of
the image/text the model focuses on when mak-
ing predictions. This interpretability can be valu-
able for understanding how the model assesses the

stance and persuasiveness.

3.3 Fusion Methods

Multimodal fusion methods are techniques used to
combine and integrate information from multiple
modalities (e.g., text, images, audio) into a uni-
fied representation for analysis or decision-making
(Gao et al., 2020). It can be categorised into early
fusion, late fusion and intermediate fusion. Early
fusion, also known as feature-level fusion, involves
combining features from different modalities at the
input level. For example, in text-image fusion, the
features extracted from text and images are con-
catenated or merged before being fed into a model.
This approach creates a single feature vector that
represents both modalities. Late fusion, involves
processing each modality separately and then com-
bining their results at a later stage. Cross-attention
was introduced in Transformers model (Vaswani
et al., 2017). It often employs attention mecha-
nisms to enable a model to selectively attend to
relevant parts of one modality based on the infor-
mation from another modality. This paper will
apply the three methods to our experiments.

4 Experiments

We designed the experiments to answer two key
questions: (1) How accurate is SPLIT in automat-
ing the entity matching? (2) How important are the
different components of SPLIT?

4.1 Datasets

The benchmark dataset used in this study is
sourced from the ImageArg-Shared-Task-2023, as
described in Liu et al. (2023). This dataset encom-
passes two specific topics: abortion and gun control.
In the abortion dataset, there are 891 training sam-
ples, 100 validation samples, and 150 test samples.
Similarly, the gun control dataset comprises 923
training samples, 100 validation samples, and 150
test samples. For each topic, we will experiment
on stance and persuasiveness prediction tasks.

4.2 Baseline models

We utilize the pretained ViT and BERT-based-
uncased models for our experiments. To ensure a
fair comparison, we standardize the dimensionality
of both image and text embeddings to 1024 before
inputting them into the classification layers. We
evaluate task performance across three modalities:
Image Modality (I-ViT), Text Modality (T-BERT),
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Datasets Tasks I-ViT T-BERT SPLIT-IT-E SPLIT-IT-L SPLIT-IT SPLIT-IET SPLIT-IECT

Total Stance 0.4279 0.4738 0.5863 0.6098 0.6116 0.6178 0.6325

Persuasiveness 0.3968 0.3906 0.5000 0.4076 0.3125 0.4348 0.4432

Abortion Stance 0.3609 0.3975 0.4337 0.4429 0.4595 0.4494 0.4638

Persuasiveness 0.5438 0.4751 0.605 0.5982 0.3333 0.4950 0.4510

Gun control Stance 0.4782 0.5315 0.6627 0.6689 0.6786 0.7059 0.7030

Persuasiveness 0.2192 0.2908 0.3529 0.3017 0.2895 0.3614 0.4337

Table 1: Comparison of F1 performance for different models. The best performance is bolded.

and Multi-modality combining both text and image
information. For last part, we try different con-
figurations, such as Image + Text + Early fusion
(SPLIT-IT-E), Image + Text + Late fusion (SPLIT-
IT-L), Image + Text + Cross-attention (SPLIT-IT)
Image + Text-extraction + Text + Cross-attention
(SPLIT-IET), and Image + Text-extraction + Image-
caption + Text + Cross-attention (SPLIT-IECT).

We train all models on a single NVIDIA Tesla
V100 GPU with 16GB VRAM. We fix the batch
size at 32 and use the Adam optimizer to train the
models for 20 epochs using a linearly decaying
learning rate with one epoch warmup. A learning
rate sweep is done over the range [1e-5, 3e-5, 5e-
5, 8e-5. 1e-4]. We also apply the early stopping
strategy for the efficiency.

5 Results

5.1 Predictive Performance on Different Tasks

The Table 1 shows the results from different models
on different datasets and tasks. The total datasets
means we only consider the tasks instead of topics
for the evaluation. For the "Stance" task in the "To-
tal" dataset, "SPLIT-IECT" achieves the highest
F1 score of 0.6325, making it the best-performing
model. Among single-modality models, T-BERT
outperforms I-ViT, indicating that text holds a more
significant role in this Stance task. When consid-
ering the outcomes of multi-modal models, it be-
comes evident that incorporating text information
extracted from images has a positive impact on
model performance. In the context of the "Persua-
siveness" task, "SPLIT-IT-E" emerges as the top-
performing model, achieving an F1 score of 0.5000.
Despite observing improved performance with the
incorporation of additional features, it appears that
the inclusion of textual information does not signifi-
cantly contribute to enhancing the decision-making
process. This also can be observed in the compari-
son between I-ViT and T-BERT.

5.2 Predictive Performance on Different
Topics

In the "Abortion" topic, "SPLIT-IECT" again per-
forms the best for the "Stance" task with an F1
score of 0.4638. However, for the "Persuasive-
ness" task, "SPLIT-IT-E" has the highest F1 score
of 0.605. The textual content within the images
is evidently more pivotal in aiding the decision-
making process. Furthermore, the outcomes in the
Persuasiveness task align consistently with those
observed in the overall dataset for the same task.

In the context of the "Gun control" topic, "SPLIT-
IECT" takes the lead in the "Stance" task, achieving
an F1 score of 0.7030. Similarly, in the "Persuasive-
ness" task within the same topic, "SPLIT-IECT"
maintains its superior performance with an F1 score
of 0.4337. Notably, the results in this particular
topic differ from those observed in other topics.
It appears that the images within the Gun control
dataset contain more valuable textual information
compared to those in the Abortion dataset."

Finally, when examining fusion techniques, it be-
comes evident that cross-attention mechanisms can
offer more potent insights for predicting outcomes.

6 Conclusion

In light of the recent advancements in persuasive-
ness and stance prediction research, this study com-
bines state-of-the-art computer vision (CV) and
natural language processing (NLP) models under
the name SPLIT, and explores various fusion ap-
proaches. The findings indicate that the cross-
attention mechanism outperforms other methods.
In the future, we will focus on how to visualize and
interpret the predictions from the model, which
could provide more comprehensive analysis to the
researchers.
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Abstract

In this paper, we describe our system for
ImageArg-2023 Shared Task that aims to iden-
tify an image’s stance towards a tweet and de-
termine its persuasiveness score concerning a
specific topic. In particular, the Shared Task
proposes two subtasks viz. subtask (A) Mul-
timodal Argument Stance (AS) Classification,
and subtask (B) Multimodal Image Persuasive-
ness (IP) Classification, using a dataset com-
posed of tweets (images and text) from contro-
versial topics, namely gun control and abortion.
For subtask A, we employ multiple transformer
models using a text based approach to classify
the argumentative stance of the tweet. For sub
task B we adopted text based as well as multi-
modal learning methods to classify image per-
suasiveness of the tweet. Surprisingly, the text-
based approach of the tweet overall performed
better than the multimodal approaches consid-
ered. In summary, our best system achieved
a F1 score of 0.85 for sub task (A) and 0.50
for subtask (B), and ranked 2nd in subtask (A)
and 4th in subtask (B), among all teams sub-
missions.

1 Introduction

Persuasiveness mining is an important task within
Argument Mining(Green, 2014; Stede et al., 2019),
that is aimed at detecting and analyzing the ability
to influence one’s beliefs, attitude, intentions, moti-
vation, and behavior (Lawrence and Reed, 2019).
It has gained increased attention recently (Carlile
et al., 2018; Chakrabarty et al., 2020) though most
of the research focused on texts.

Persuasion, however, may depend not only on
natural language but on other modalities (eg. vi-
sual means) as well. ImageArg is an initiative that
attempts to capture this opportunity and expand
persuasiveness mining into a multi-modal realm
(Liu et al., 2022, 2023). It presents a multi-modal
dataset consisting of annotations on tweets along
with associated images, that supports benchmark-

ing of state-of-the-art models on multiple argu-
mentative classification tasks. ImageArg Shared
Task 2023 proposes two subtasks viz. subtask (A)
Multimodal Argument Stance (AS) Classification:
Given a tweet composed of a text and image, pre-
dict whether the given tweet supports or opposes
the topic, and subtask (B) Multimodal Image Per-
suasiveness (IP) Classification: given a tweet com-
posed of text and image, predict whether the image
makes the tweet more persuasive or not. In this
paper, we report our systems for addressing both
the subtasks.

Transformer based Multimodal text-embedded
classification has been a promising approach re-
cently (Sun et al., 2021; Liang et al., 2022b; Li
et al., 2019; Radford et al., 2021; Li et al., 2019;
Jia et al., 2021; Dosovitskiy et al., 2020). Taking
inspiration from this, we explore multiple trans-
former models using text as well as multimodal
learning methods, for both subtasks (A) and (B).
Surprisingly, the text-based approach of the tweet
performed better than the multimodal approaches
considered. In particular, our best text based model
achieved a F1 score of 0.85 for sub task (A) and
0.50 for subtask (B), and ranked 2nd in subtask
(A) and 4th in subtask (B), among all teams sub-
missions. Also, our benchmark results highlight
the challenge of these tasks and indicate there is
ample of room for model improvement. We demon-
strate the limitation of these general multi-modal
methods and discuss possible future work.

2 Related works

2.1 Stance Classification:

Stance Detection has been extensively studied in
the literature ranging from detecting the stance
of authors towards a single topic or different as-
pects of heterogeneous topics/entities (Küçük and
Can, 2020). Some of the earlier contributions (Au-
genstein et al., 2016; Riedel et al., 2017; Thorne

181



et al., 2017) to stance detection involved the us-
age of basic ML algorithms, bag-of-words(BOW)
as features, TF-IDF feature based dense MLPs, se-
quence models such as LSTM by processing tempo-
ral and linguistic sequence information. Recently,
several approaches have emerged adopting trans-
former based architectures. While stance detection
is being actively pursued (Liang et al., 2022a), chal-
lenges such as the following remain: i) Learning
with less data ii) Learning contrastive representa-
tions robust enough for complex stance features
jointly by reusing the encoder representations to
directly classify the stance based on extracted fea-
tures as opposed to using a dedicated classifier,
iii) Identifying right modality combination for the
anchor, reference subspaces.

2.2 Persuasiveness Classification:

Past works have addressed several persuasiveness
related tasks (Carlile et al., 2018; Chakrabarty et al.,
2020), and in particular, ranking debate arguments
(Wei et al., 2016), how audience variables (e.g.,
personality) influence persuasiveness through dif-
ferent argument styles (Lukin et al., 2017; Persing
and Ng, 2017), but mainly focused on texts. (No-
javanasghari et al., 2016) explored coarse-grained
fusion ideas such as concatenation for persuasive-
ness mining. In the area of vision-language, tasks
are mainly designed for evaluating models’ ability
to understand visual information as well as express-
ing the reasoning in language (Antol et al., 2015;
Goyal et al., 2017; Hudson and Manning, 2019).
In addition to the main stream, a few works study
the relationship between image and text: (Alikhani
et al., 2019) annotates the discourse relations be-
tween text and accompanying imagery in recipe
instructions; and (Kruk et al., 2019) investigates
the multi-modal document intent in instagram posts.
However, multimodal learning for AM has been
under-explored due to a lack of multi-modal cor-
pora.

3 Task and Dataset Description

ImageArg dataset is composed of tweets (images
and text) from controversial topics, namely gun
control and abortion. ImageArg shared task is di-
vided into two subtasks.

Subtask A: Argumentative Stance (AS) Clas-
sification Given a tweet composed of a text and
image, predict whether the given tweet Supports or
Opposes the given topic, which is a binary classifi-

cation task.
Subtask B: Image Persuasiveness (IP) Classifi-

cation Given a tweet composed of text and image,
predict whether the image makes the tweet text
more Persuasive or Not, which is also a binary
classification task.

For convenience, below we refer to the subtasks
(A) and (B) simply as Tasks A and B.

4 Our approach

4.1 Task A - Stance Classification:

For Task A, as the training data is not large, we
ventured to explore a predominantly text-based
approach, with tweet text and tweet image con-
tents extracted from OCR fed as the inputs to the
system. Our idea was to build a model capable
of learning their corresponding unified representa-
tions which could be sufficiently discriminative in
the stance detection classifier space. We consid-
ered multiple candidate models that satisfy this cri-
teria and evaluated them on the ImageArg dataset.
For all our approaches, we randomly split the in-
stances into 80/20 percent and performed 5-fold
cross-validation on the validation(dev) set to select
the best model.

Approach 1: (T5 NLI) We used pretrained
T5(Text-to-Text Transformer) to fine tune the
model for the given dataset and also adjusted the
hyper-parameters based on the best performance.
During T5 training, we set the number of beams as
50 and the number of returned sequences as 5.

Approach 2: (BERTweet-based model) Sen-
timent based classifier using BERTweet(Nguyen
et al., 2020), a large-scale language model pre-
trained for English Tweets using RoBERTa model
and cross-entropy loss with custom linear layers.
The positive and negative labels of the classifier
corresponds to support and oppose labels of stance
classification task. We have used the pretrained
BERTweet model and fine-tuned the model for its
best performance.

Approach 3: (Contrastive BERT model) : We
adopt a multi-task contrastive learning framework
with a two step representation learning paradigm,
similar to (Chen et al., 2022). Firstly, stance label
prefixed textual sequences were fed as inputs to a
transformer encoder as the target Input anchor. Sec-
ond, the corresponding positive and negative refer-
ence input samples were fed as inputs to a shared
BERT encoder in the parameter space. Then, the fi-
nal hidden state classifier token [CLS] is used as the
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Figure 1: Illustration of Our Approach - Ensemble model of multiple classifiers such as T5 NLI, BERTWeet model,
Contrastive BERT

standalone output label representation of the input
sequence and the remaining hidden layer outputs
served as sequence representation with labels en-
coded. Among the different variants of contrastive
learning available, we used dual stance aware su-
pervised contrastive learning technique with lin-
ear classifier. We also evaluate several candidate
groups to serve as the anchor, positive, negative ref-
erence triplets in the proposed Dual Stance Aware
Supervised Contrastive Learning space and found
the more straightforward tweet text to act as effi-
cient anchors in this space.

Approach 4: (Ensemble model) : We also
considered a final model that uses an ensemble ap-
proach. In this model, we classify new data points
by first applying the above 3 models, and then tak-
ing a majority vote of the predictions. In other
words, the final prediction is determined by the
class predicted by at least two models.

We have experimented a few other approaches,
but as we observed on validation set, Contrastive
BERT performed the best, followed by T5 and
BERTweet based model. The ensemble model was
marginally better in comparison. Thus we consid-
ered only these four models.

4.2 Task B - Image Persuasiveness:

For Task B, given the previously studied limitations
in literature of projecting the claim and the evi-

dence separately, it becomes imperative to utilize
both the tweet text and the tweet image to assess the
persuasiveness of the input sample. Hence, we pro-
pose separate models for Task B which can jointly
deal with both the input modalities or the corre-
sponding input sequences and understand their rep-
resentations. Thus, as in Task A, we explored mul-
tiple candidate models and evaluated them on the
ImageArg dataset.

Approach 1: (T5 NLI model) We adopted a sen-
tence pair classification approach with T5 model.
The tweet text and tweet image (OCR to Text) were
passed as the two sentences, and fine tuned the
model for the image persuasiveness dataset. We
adjusted the hyper-parameters based on the best
performance, as in the case of Task A.

Approach 2: (Stancy BERT) We use a BERT-
base model which is fine-tuned with the standard
Cross-Entropy Loss and the proposed consistency
loss based on sequence similarity based on the
tweet text evidence and supporting tweet image
based texts/captions/expressions. This joint loss
helps the model to acquire classifying features in
addition to features central to stance similarity be-
tween two sequences.

Approach 3:(Multimodal ALBEF model) In
addition to the text only model, we also experi-
mented with multimodal fusion techniques using
pretrained models of image encoder ResNet50 (He
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et al., 2016), VGG and ViT, ALBEF model (align-
ing the image and text representations before fus-
ing them through cross-modal attention with con-
trastive loss) and fine-tune them with linear classi-
fiers. During validation, multimodal learning for
Image Persuasiveness for Task B (Image and Text
only) using ALBEF model performs better than the
other variants of image encoders.

Approach 4: (Ensemble model) As in Task A,
we considered an ensemble model that adopts a
majority vote of the predictions by the 3 models
above.

5 Experiments & Results:

For both Task A and Task B, we used tweet text,
tweet image-text (OCR to text, using EasyOCR
tool1) and custom pre-processing techniques to re-
fine and clean up the textual sequences. For the lat-
ter, we used the BERTweet preprocessing scripts2.
All the images are resized to (224*224) dimen-
sion and minor data augmentation(i.e., horizontal-
flipped, rotation) was performed during train-
ing.Subsequently, we trained and performed ex-
periments as outlined in Section 4.

To measure performance, we employ Precision,
Recall and F1-score as metrics. In addition, we
also consider class-weighted F1-score to account
for class imbalance.

The experiments were executed on NVIDIA-
GeForce Tesla V100 series SXM2-32GB with 5
cores of GPU machines. Models were trained for
10 epochs, and the pretrained weights for the trans-
formers prior to fine-tuning were downloaded from
the HuggingFace Library.

5.1 Task A - Stance Classification:

For stance classification, we adopted the four ap-
proaches described in Section 4.1. We used hy-
perparameters which were previously found to be
optimum for Textual Entailment tasks including a
Contrastive System Loss, AdamW optimizer, learn-
ing rate of 2e-5/5e-5.

The results of Task A on test set are shown in
Tables 1 and 2.

Expectedly, the ensemble model achieved the
best performance on the test also, but the ranking
of the other models was slightly different. We argue
that this could be because of the variance and the
size of the dataset being on the smaller side.

1https://github.com/JaidedAI/EasyOCR
2https://github.com/VinAIResearch/BERTweet

Table 4 shows two examples where most of the
models misclassified. In the first example, the sum-
mary text is inclusive but unfortunately requires the
full text from the URL to classify correctly. The
second example is expressed in a supportive tone,
but the facepalm expression presumably misleads
model to classify this as a sarcastic/opposing tweet.

5.2 Task B - Image Persuasiveness:

The Task B results on test are presented in Tables
1 and 3. We observe that, on test set, T5 NLI per-
formed the best, followed by the ensemble model.
The multimodal approach (ALBEF) had a surpris-
ingly poor score, which could mean that larger
datasets are required to deal with multimodal clas-
sification. Also, the results imply that Image Per-
suasiveness classification is a far more challenging
problem and there is significant room for improve-
ment.

6 Conclusion

This paper described our system for ImageArg-
2023 Shared Task consisting of two subtasks viz.
Subtask (A) Multimodal Argument Stance (AS)
Classification, and Subtask (B) Multimodal Image
Persuasiveness (IP) Classifi- cation. The tasks used
a dataset composed of tweets (images and text)
from controversial topics, namely gun control and
abortion.

For subtask (A), we employ multiple transformer
models using a text based approach to classify the
argumentative stance of the tweet. For sub task
(B) we adopted text based as well as multimodal
learning methods to classify image persuasiveness
of the tweet. Surprisingly, the text-based approach
of the tweet overall performed better than the mul-
timodal approaches considered. In summary, our
best system achieved a F1 score of 0.85 for sub
task (A) and 0.50 for subtask (B), and ranked 2nd
in subtask (A) and 4th in subtask (B), among all
teams submissions.

The results imply that image persuasiveness clas-
sification is a far more challenging problem and
there is a significant room for improvement. How-
ever, it might require larger datasets to deal with
the multimodal classification challenges.
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Abstract

Peer review is the key quality control mecha-
nism in science. The core component of peer
review are the review reports – argumentative
texts where the reviewers evaluate the work and
make suggestions to the authors. Reviewing is
a demanding expert task prone to bias. An ac-
tive line of research in NLP aims to support
peer review via automatic analysis of review re-
ports. This research meets two key challenges.
First, NLP to date has focused on peer reviews
from machine learning conferences. Yet, NLP
models are prone to domain shift and might
underperform when applied to reviews from a
new research community. Second, while some
venues make their reviewing processes public,
peer reviewing data is generally hard to obtain
and expensive to label. Approaches to low-
data NLP processing for peer review remain
under-investigated. Enabled by the recent re-
lease of open multi-domain corpora of peer re-
views, the PragTag-2023 Shared Task explored
the ways to increase domain robustness and
address data scarcity in pragmatic tagging – a
sentence tagging task where review statements
are classified by their argumentative function.
This paper describes the shared task, outlines
the participating systems, and summarizes the
results.

1 Introduction

Scholarly communication lies at the heart of scien-
tific discovery (Johnson et al., 2018) and is argu-
mentative by nature. Scientific publications present
results, interpret them, justify the experimental
setup, and substantiate the claim for new knowl-
edge (Teufel et al., 2009). Peer review reports, in
turn, assess the validity, novelty and impact of the
underlying publication and argue for or against its
acceptance. Peer review is a key component of
scientific quality assurance. It is a complex process
prone to heuristic behavior (Rogers and Augen-
stein, 2020) and bias (e.g. Stelmakh et al., 2020;
Wang and Shah, 2018). A growing area of NLP
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Figure 1: PragTag-2023 Overview. Given a mixed-
domain corpus of peer reviews annotated with pragmatic
tags, the participants submit systems trained with vary-
ing amounts of training data (1-3) with optional use of
unlabeled auxiliary data (4). The systems are evaluated
in each of the five domains (Section 3.1), as well as on
a previously unseen secret domain (5).

for peer review analysis aims to investigate those
issues by analyzing argumentation in peer review
reports (e.g. Kang et al., 2018; Cheng et al., 2020;
Hua et al., 2019; Kuznetsov et al., 2022; Dycke
et al., 2023). The resulting systems have numer-
ous potential applications, incl. facilitating meta-
scientific analysis of reviewing practices, helping
authors and program chairs aggregate information
from multiple reviews, and supporting junior re-
viewers in giving thorough, objective and helpful
feedback.

Standards and practices of scholarly communi-
cation vary across research communities. Yet, to
date, NLP for peer review has focused on data
from machine learning conferences (Kang et al.,
2018; Hua et al., 2019; Cheng et al., 2020; Kennard
et al., 2022), and the applications outside of this
domain remain under-investigated. This over-focus
on one domain can be attributed to data scarcity
– while some communities make their reviewing
public, peer reviews are generally hard to obtain
and legally clear for research use (Dycke et al.,
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The authors address the issue of...

This idea reminded me of the work by...
Please compare your method to...

The discussion is superficial.
The paper is original and sound.

Minor complaints:

Recap

Other
Todo

Weakness
Strength

Structure

Figure 2: Pragmatic tags. Recap neutrally summarizes
the paper; Weakness and Strength outline the nega-
tive and positive aspects of the work; Todo covers ex-
plicit requests to the paper authors; Other marks non-
argumentative statements; Structure denotes struc-
tural elements of the review text.

2022). In addition, due to the technical nature of
peer review texts, they are expensive to annotate.
Measuring the effects and mitigating the impact
of domain shift and data scarcity are important
and under-researched questions in NLP for peer
reviews.

The introduction of open multi-domain corpora
of peer reviews (Dycke et al., 2023) and domain-
neutral review analysis tasks (Kuznetsov et al.,
2022) makes it possible to investigate these ques-
tions empirically. The PragTag-2023 Shared Task1

collaboratively explored multi-domain NLP for
peer reviews under data scarcity. As an exemplary
task we took pragmatic tagging – a sentence-level
argumentation labeling task that classifies peer re-
view statements by their communicative purpose
(Section 2). PragTag-2023 has received five di-
verse submissions that provide new insights into
multi-domain low-data pragmatic tagging, and pro-
pose a wide spectrum of methods to increase model
robustness under four increasingly challenging con-
ditions. This paper describes the shared task setup,
summarizes the submissions, and aggregates the
main insights from the competition. To support fur-
ther investigation of multi-domain low-data NLP
for peer review, we archive the code and data of the
shared task and make them publicly available2.

2 Pragmatic tagging

Task. Pragmatic tagging is a sentence classifi-
cation problem where given the sequence of sen-
tences sr1, ..., s

r
n from a review report r, a model

should predict the pragmatic label for each sen-
tence lr1, ..., l

r
n from the label set L. We adopt the

1https://codalab.lisn.upsaclay.fr/
competitions/13334

2https://github.com/UKPLab/pragtag2023
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Figure 3: Number of sentences by domain (left) and
label (right) in the F1000RD core data (train and test).

label set proposed by Kuznetsov et al. (2022), illus-
trated in Figure 2. The label set was evaluated in an
annotation study and shown to be well-applicable
across different research fields and communities
while yielding good inter-annotator agreement of
approx. 0.7 Krippendorff’s α. The core sources
of disagreement are the coarse granularity of the
schema (necessary for generalization), sentence-
level analysis (necessary to avoid discrepancies
due to differences in sub-sentence splitting), and
the natural ambiguity of the classes (e.g. Weakness
vs Todo).

Evaluation. Kuznetsov et al. (2022) provide
the data, but do not specify metrics for evaluating
NLP systems for pragmatic tagging. In PragTag-
2023, we evaluate system performance via the F1
score. Since the label distribution is skewed, we
opt for the macro-averaged F1 within each domain
for evaluation. We then compute scores for each
domain individually and use the mean across all
domains as the final leaderboard score (Section 4).

Baselines. To contextualize the submission
scores, we implemented two baselines. The su-
pervised RoBERTa baseline is a roberta-base
model (Liu et al., 2019) fine-tuned for 20 epochs
on the training data available for a given experimen-
tal condition (Section 4.2). The majority baseline
directly assigns the most frequent pragmatic tag
from the training data to the input sentence.

3 Data

The participants of the shared task were given two
types of data (Figure 4). The smaller-scale core
data contains peer review texts labeled with prag-
matic tags on the sentence level. Core data is
used for training and evaluating the systems. The
large-scale auxiliary data consists of two unlabeled
text collections. It can be used to enhance the
systems’ robustness to low-data conditions in the
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Figure 4: PragTag-2023 data overview. In addition
to labeled core data from F1000RD and COLING-20,
the parcitipants are provided with two unlabeled collec-
tions: a large multi-domain corpus of unstructured peer
reviews (F1000Raw), and smaller collection of semi-
structured peer reviews in the NLP domain (ARR-22).

multi-domain setting.

3.1 Core Data

The core data originates from the F1000RD corpus
(Kuznetsov et al., 2022), and contains review re-
ports with manually annotated pragmatic tag labels
for each sentence. Each review report belongs to
one of the five domains:

• Disease outbreaks (diso)
• Computational biology (iscb)
• Medical case studies (case)
• R Packages (rpkg)
• Scientific policy research (scip).
The core data from F1000RD covers 4911 sen-

tences from 224 peer review reports. Figure 3
shows the label and domain distribution in the
F1000RD data. The instances are unequally dis-
tributed both across domains (slightly) and across
pragmatic tags (substantially). The skewed prag-
matic tag distribution reflects a natural distribution
in peer review texts, with most sentences dedicated
to critically assessing the work and suggesting im-
provements. The differences in the number of in-
stances across domains stem from the per-review
data sampling procedure in the F1000RD corpus
and the review length variation across domains. To
account for the uneven distribution, PragTag-2023
employed macro-averaging by label and by domain
during evaluation (Section 2).

We split the core data into training set (2326
sentences) and test set (2585 sentences), at ran-
dom, on review basis, per domain. We did not
provide a fixed development set – instead, the par-

ticipants were free to derive it from the training set
by themselves. We note that the training data is a
mixed collection with instances from all domains;
per-instance domain identifier is provided. The
test data, on the other hand, is split by domain, and
evaluation is performed on each of the domains sep-
arately. The rather uncommon 50/50 training-test
split is thus necessary to ensure sufficient amount
of test data in each domain.

In addition to the five F1000RD domains listed
above, the final phase of the competition evaluated
the systems on a previously unpublished secret test
set. This collection includes 255 sentences from
10 peer reviews in computational linguistics taken
from the COLING-20 portion of the NLPeer corpus
and annotated with pragmatic tags following the
F1000RD tagset. Labeling was performed by two
annotators proficient in the NLP domain, reaching
an agreement of 0.65 Krippendorff’s α – slightly
lower than in the original study. The labels were
adjudicated by an expert annotator closely familiar
with the F1000RD labeling schema. The domain
and composition of this new data were unknown to
the participants until the start of the final evaluation.

3.2 Auxiliary data

Using unlabeled or partially-labeled auxiliary data
is a common way to mitigate domain shift and to ad-
dress the lack of labeled data. To enable application
of such techniques, the shared task provided the
participants with two additional auxiliary datasets.

F1000Raw is a large multi-domain collec-
tion of papers and peer reviews from a wide
range of domains. The data originates from the
F1000Research platform – same source as the non-
secret core data. F1000Raw corresponds to the
F1000-22 subsection of the NLPeer corpus (Dycke
et al., 2023), excluding the instances that appear
in the core shared task data, and covers approx.
10k reviews for 4.8k papers, 3.8M review words
in total (Dycke et al., 2023). Like the core data,
F1000Raw contains full-text, unstructured peer re-
views. Unlike the core data, F1000Raw does not
contain explicit domain identifiers or pragmatic tag
labels.

ARR-22 is a corpus of papers and peer reviews
in the NLP domain from the data collection cam-
paigns at ACL Rolling Review (Dycke et al., 2022).
It covers 684 reviews for 476 papers, approx. 266k
review words in total (Dycke et al., 2023). The
reviews are semi-structured, and each review is
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Figure 5: Difference between sentence-level unstruc-
tured core data and section-level semi-structured ARR-
22 data from peer reviews that use review forms. Colors
correspond to different pragmatic tags (see Figure 2).

split into free-text fields: "Summary", "Strengths",
"Weaknesses", "Suggestions" and "Ethical con-
cerns". The similarity between the review form
fields and the pragmatic tags is not coincidental:
both reflect review pragmatics, implicitly (prag-
matic tags) or explicitly (form fields). Yet, unlike
the core data, ARR-22 does not contain sentence-
level pragmatic tags, and not every sentence in a
review section corresponds to its overall pragmat-
ics (Figure 5). Finding a solution to bridge this gap
is left to the participants.

We envisioned F1000Raw as a valuable source
of data for increasing cross-domain robustness of
the participating systems. We envisioned ARR-22
as a potential distant supervision source for low-
data scenarios explored in PragTag-2023.

4 Setup

4.1 Implementation

The shared task was run via CodaLab (Pavao et al.,
2023). The competition website provided neces-
sary information about the task, the core and aux-
iliary data, as well as a starting kit including an
evaluation script and a baseline implementation.
The participants would apply their system to the
test set inputs and submit the predictions via Co-
daLab, where they would be compared to the gold
outputs. The score would be stored in the partic-
ipants’ dashboard and could be submitted to the
publicly available leaderboard.

4.2 Conditions and Rules

The participants submitted systems to one of
the following conditions, simulating different
training data availability scenarios:

• No-data: The system observed no instances
of the core data neither at training time nor at
inference time.

• Low-data: The system is trained on 20% of

the core training data (33 reviews, 739 sen-
tences). The exact 20% split is provided by the
shared task organizers and is identical among
all participants.

• Full-data: the system has access to 100%
of the core training data (117 reviews, 2326
sentences).

The test data was identical across these three
conditions. At the end of the competition, the par-
ticipants could submit any of their systems to a
special Final condition, which included the core
test data as well as the secret test data, as detailed
in Section 3.1.

To promote reproducibility of the results and fair
competition, we imposed a few restrictive rules
on the submissions. The teams were allowed to
use PragTag-2023 auxiliary data without restric-
tions. However, pre-training or fine-tuning the
submissions on any other data was not allowed.
We imposed no requirements upon the system ar-
chitecture. However, in case of large language
models, the participants were requested to only use
non-commercial models with publicly available
weights, e.g. Llama (Touvron et al., 2023). Sub-
missions built on top of commercial models like
ChatGPT and GPT-4 (OpenAI, 2023), etc. were not
considered for the evaluation. To prevent optimiza-
tion on the hidden test data, each team was allowed
up to five submissions to each of the conditions.
A special Sandbox condition with no submission
limit was provided for troubleshooting purposes.

5 Submissions

Out of over 20 teams that signed up for the compe-
tition, five teams have made it to the final submis-
sion. The submitted systems explore a wide range
of techniques and architectures for multi-domain
pragmatic tagging in low-resource scenarios. We
summarize the main ideas behind each submission
below and refer to the system papers for details.

CATALPA_EduNLP (Ding et al., 2023) investi-
gated a wide array of approaches. For the full- and
low-data setting, this includes supervised sentence
labeling via RoBERTa (Liu et al., 2019) augmented
with additional features (domain, position, con-
text, word normalization), as well as IOB-style se-
quence tagging using long-document Transformers
and nearest-neighbor-based labeling using SBERT
(Reimers and Gurevych, 2019). In the zero-shot
setting, the team experimented with labeling test
instances based on their similarity to class defini-
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mean case diso iscb rpkg scip secret

DeepBlueAI 84.1 82.9 84.1 82.8 86.0 89.0 80.1
NUS-IDS 83.2 83.8 85.4 83.3 84.8 87.8 74.1

MILAB 82.4 84.0 83.7 80.1 85.4 86.5 74.9
SuryaKiran 82.3 82.0 82.8 81.8 82.8 86.5 77.9
CATALPA 81.3 80.8 82.0 81.1 82.5 82.5 78.8

Ensemble 84.4 84.0 85.2 83.3 87.3 88.7 78.0

RoBERTa 80.3 80.3 80.8 79.9 83.1 83.8 73.7
Majority 8.0 9.3 7.3 7.5 8.6 7.9 7.3

Table 1: Final evaluation leaderboard, mean F1-macro score across domains and scores per domain, converted to
percentage points for readability. Top: submissions, Middle: majority-vote ensemble of system predictions (Section
7), Bottom: baselines. Bold: best score per column (w/o ensembling).

tions from the shared task description, as well as
with prompting via GPT3.5. The participants used
the ARR-22 auxiliary data, addressing the gap in
label distribution between ARR and the core data
via subsampling, and explored data augmentation
based on F1000raw auxiliary data. By ensembling
best per-domain configurations selected on the val-
idation set, they found that a BERT-based model
with additional features outperforms sequence tag-
ging and nearest-neighbor labeling on the full data,
while a BERT-based model augmented with addi-
tional data performs best in the low-data setting.
Prompting GPT3.5 in the zero-shot setting was
shown vastly superior to SBERT-based classifica-
tion based on task definitions – yet, following the
PragTag rules, GPT3.5 result was not used for the
leaderboard submission.

DeepBlueAI (Luo et al., 2023) focused their ap-
proach on increasing the robustness of pre-trained
models in the sentence labeling setting. The ex-
periments were conducted using three models –
RoBERTa, DeBERTa (He et al., 2023) and XLM-
RoBERTa (Conneau et al., 2020). The participants
augmented the model via max pooling and atten-
tion pooling, introduced adversarial training via
fast gradient method, and reported comparative
performance of the models trained under different
settings via cross-fold validation, showing that the
modifications lead to variable performance gains.
The authors report that the DeBERTa model consis-
tently outperforms the other two models on the task.
To tackle the secret test set in the final phase of the
competition, the authors used a voting approach
combining a range of models trained in different
configurations and selecting the label with the max-
imum vote, stressing the benefits of fusing different

types of models for prediction.
NUS-IDS (Gollapalli et al., 2023) explored mul-

tiple approaches to the task for each experimental
condition. In the zero-shot no-data condition, the
participants proposed two methods: a question-
answering model that selects passages from the
peer review based on a set of questions derived
from peer reviewing guidelines of NLP confer-
ences, and a prompting-based approach based on
the Flan-T5 (Chung et al., 2022) model. For the
low- and full-data setting, the participants experi-
mented with fine-tuning pre-trained language mod-
els, additionally exploring ensembling and data
augmentation techniques by tentatively labeling
the auxiliary shared task data. The results indicate
that prompting via Flan-T5 outperforms question-
answering based approach in the no-data setting;
in low- and full-data data, fine-tuning a T5 model
(Raffel et al., 2019) on tentatively labeled auxiliary
data followed by fine-tuning on the core task data
performs best.

MILAB (Lee et al., 2023) approached the prob-
lem of data scarcity and domain shift via data
augmentation. In particular, to compensate for
the lack of data, the team applied an ensemble of
RoBERTa-based classifiers to label auxiliary data
from F1000raw and ARR-22. Apart from majority
labeling, the authors explored a novel recall label-
ing technique: the models assign tentative labels to
the unlabeled instances in the decreasing order of
recall on a validation set, while labeling the resid-
ual instances as Other. Additionally, the authors
experimented with diversifying the data by apply-
ing off-the-shelf synonym generation followed by
BERTScore filtering (Zhang et al., 2020). The re-
sults indicate that the proposed data augmentation
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techniques combined with ensembling improve the
model performance on the task, especially in the
no-data condition.

SuryaKiran (Suri et al., 2023) explored the use
of unsupervised pre-training on F1000raw auxil-
iary data to increase domain robustness of the prag-
matic tag classifier. In particular, the participants
pre-trained the DeBERTa model on F1000raw us-
ing masked language modeling objective (Devlin
et al., 2019), and later used an ensemble of five
models further fine-tuned on different training data
splits to make the test set prediction. Their results
demonstrate that pre-training via masked language
modeling leads to improved performance only in
some cases; the authors attribute this to the vocabu-
lary discrepancies between the domains. The team
submitted their system only to the final evaluation.

6 Main results

The final leaderboard of PragTag-2023 is shown in
Table 1. The participants were invited to submit
their best system trained under any condition to
the leaderboard – expectedly, the best-performing
systems trained on full data were submitted. As
we can see, on average, all systems outperform
the RoBERTa baseline fine-tuned on full training
data, and the majority baseline scores poorly due
to the macro-averaging of F1 across labels. The
submission by DeepBlueAI achieves the highest
F1-score both on average, and on the secret test
domain. However, this superior performance is not
absolute, and on per-domain basis we observe vari-
ation in the system rankings: the CATALPA system
performs second-best on the secret test set, NUS-
IDS achieves best performance in the diso and
iscb domains, and the best score in the case do-
main is taken by MILAB. We note consistent and
substantial performance degradation on the secret
domain across all submissions and baselines. We
attribute this to domain shift: while the systems
could observe some data from each of the other
domains during training, the secret data is truly
out-of-distribution, originating from an entirely dif-
ferent research community and reviewing platform.
This gap in performance highlights the importance
of cross-domain study of NLP for peer reviews.

Turning to the data scarcity, Table 2 summarizes
mean submission scores for various data condi-
tions, from no-data zero-shot learning to full-data
fine-tuning. Here, too, all submissions have outper-
formed the RoBERTa baselines, albeit by a smaller

no-data low-data full-data

MILAB 51.6 77.1 83.9
NUS-IDS 40.2 81.3 85.0

CATALPA 22.2 74.5 81.8
DeepBlueAI - 80.8 85.0

RoBERTa - 74.4 80.3

Table 2: Mean F1-macro score across domains for dif-
ferent data scarcity conditions, without secret domain.

margin in the low-data setting. The no-data and
low-data results show great variation both in terms
of absolute scores and in terms of leaderboard rank-
ings. Especially in the no-data setting, the highest-
and lowest-scoring submission differ by almost 30
percent F1-measure, compared to the 3 percent gap
on full data. The submission by MILAB scores
best in the no-data scenario, while the system by
NUS-IDF performed best on low data. Secret test
set not taken into account, DeepBlueAI and NUS-
IDS share the first place in the full-data condition.
These observations demonstrate the value of evalu-
ating NLP systems for pragmatic tagging in varying
data availability conditions.

7 Analysis

Access to all the participating system’s predictions
at once allows additional insights into the task.
Given the broad range of approaches proposed by
the PragTag-2023 participants, a natural question
arises if these approaches are complementary. We
investigate this by combining the predictions of
the best-performing submissions via majority vote.
The results show that a majority ensemble indeed
outperforms every individual system on average
(Table 1, middle). Considering per-domain results
reveals more nuance: the ensemble maintains the
best systems’ performance for the domains case
and iscb, slightly lagging behind on diso and
scip, substantially improving the best result in
rpkg, and showing average performance on the
secret test set. This variation demonstrates the
importance of fine-graned evaluation of pragmatic
tagging in multi-domain setting, and we deem the
use of alternative, e.g. weighted, ensembling meth-
ods for the task promising.

Analysis of the confusion matrix between the
true labels and the majority ensemble predictions
allows us to see which labels are particularly hard
for the systems to handle. Figure 6 presents the

192



Strength Weakn. Todo Recap Other Struct.

Strength

Weakn.

Todo

Recap

Other

Struct.

190 2 2 13 10 5

5 400 19 10 33 0

1 4 855 10 33 2

14 26 2 373 46 1

12 35 46 35 314 15

2 1 1 1 8 314

Figure 6: Confusion matrix of PragTag-2023 submis-
sion majority ensemble on the final test data: true label
(rows) vs predicted label (columns).

results. We observe that, in aggregate, the sys-
tems are successfully able to distinguish between
Strengths, Weaknesses, Todo and Structure, while
the Recap and especially the open Other class con-
stitute frequent sources of confusion, in line with
the annotation study observations by Kuznetsov
et al. (2022). This result suggests that future label-
ing schemata for pragmatic tagging might consider
refining the Recap and Other class definitions, or,
alternatively, merging these classes into a general
Other class, eliminating the hard distinction and
resulting in more robust systems, at the loss of
granularity. We leave this exploration to the future.

8 Discussion

A high-level picture of the submissions to the Prag-
Tag competition reveals several trends. Despite
the advances in LLM development, fine-tuning
of BERT-family LMs was still used by most par-
ticipants, although some have experimented with
prompting. While our rules prohibited the use of
commercial LLMs, new open LLMs like Llama
(Touvron et al., 2023) have been released. Inves-
tigating the performance of these models for our
task is a promising avenue for future studies.

While some submissions focused on modifying
the model architecture and pre-training regime, oth-
ers explored data augmentation and creative adap-
tations of the task, e.g. by casting it as a question-
answering task or labeling the instances based on
the similarity to guideline class definitions. Most
participants used auxiliary data as an unlabeled
substrate for pseudo-labeling or language model
pre-training. We note the wide use of model ensem-
bling across the submissions, and believe that such
techniques will remain relevant in the age of LLMs.
PragTag-2023 was designed to accommodate var-

ious approaches to the task: pragmatic tagging
can be cast as sentence labeling and as sequence
labeling, and can can be approached via prompt-
ing. While the participants have experimented with
many of these options, in-context learning (Dong
et al., 2023) remained under-explored. We deem
such exploration promising.

The ongoing adaptation of the field to the last-
generation LLMs presents new challenges to the
benchmarking and shared task methodology. The
technical requirements of pre-training and fine-
tuning LLMs put the teams without access to mas-
sive data and compute at disadvantage. The opaque-
ness of the LLM pre-training for commercial mod-
els introduces the risk of model exposure to the test
data or related datasets. PragTag-2023 attempted to
mitigate these issues by explicitly limiting the com-
petition to the models for which open weights are
available and pre-training procedure is known, and
by prohibiting the use of any additional pre-training
sources apart from the core and auxiliary data pro-
vided with the task. An alternative solution could
be to limit the competition to several open LLM in-
stances, inference-only. This, however, would limit
the scope of methods the participants can explore to
prompting-based approaches. We leave the search
for flexible, fair and reproducible benchmarking
methodology in the age of LLMs to future work.

9 Conclusion

This paper has introduced PragTag-2023: the
shared task in low-resource multi-domain prag-
matic tagging of peer reviews. We have described
the rationale behind the task, introduced the data
and outlined a range of experimental conditions un-
der which the competition took place. The shared
task participants proposed a wide range of tech-
niques for increasing the robustness of pragmatic
tagging across domains and data availability sce-
narios. The results of the competition underline the
importance of evaluating pragmatic tagging sys-
tems across different domains and in different data
availability conditions. The arguably most impor-
tant gain from an organized competition is not find-
ing the best-performing system for the task, but the
accompanying exploration of approaches to solv-
ing the problem at hand. To this end, we hope that
the ideas and observations from the PragTag-2023
submissions foster future progress in pragmatic tag-
ging, and in cross-domain and low-data processing
of peer reviews in general.
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Limitations

Few limitations of our setup can be addressed by fu-
ture work. As common in scholarly NLP, our study
is limited to English. Once available, the future
multilingual datasets of research papers and peer
reviews would enable the study of NLP for peer
review across languages and domains. A coarse-
grained pragmatic tagging schema could eliminate
the hard Recap vs Other distinction (Section 7) and
increase the robustness of the evaluation. Obtain-
ing more labeled data per domain would enable the
study of data scarcity on per-domain basis as well
as across individual training-test domain pairs, e.g.
training on case and evaluating on rpkg. Alter-
natively, shifting the focus to zero-shot learning
with instruction-following LLMs would allow us-
ing all available data for evaluation – yet it would
be methodologically limiting (Section 8). Incor-
porating other peer review analysis tasks into the
setup would provide additional insights into the
low-data and cross-domain NLP for peer reviews.

Ethics Statement

Increasing the domain robustness and sample effi-
ciency of NLP systems are key steps towards sus-
tainabile and widely applicable NLP. Pragmatic
tagging is a basic argumentation analysis task with
many potential applications that would increase the
transparency, fairness and efficiency of scholarly
peer review. We believe that the potential for mis-
use of this technology is low. The data used in the
shared task was obtained according to strict licens-
ing and data management procedures, and is open
and freely available for research use.
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Abstract
This paper describes our contribution to the
PragTag-2023 Shared Task. We describe and
compare different approaches based on sen-
tence classification, sentence similarity, and se-
quence tagging. We find that a BERT-based sen-
tence labeling approach integrating positional
information outperforms both sequence tagging
and SBERT-based sentence classification. We
further provide analyses highlighting the poten-
tial of combining different approaches.

1 Introduction

This paper describes the CATALPA_EduNLP entry
to the First Shared Task on Pragmatic Tagging of
Peer Reviews (Dycke et al., 2023). In this task,
sentences within peer-reviews for academic arti-
cles from various domains are assigned a label ex-
pressing the pragmatic function of that sentence,
namely Recap, Strength, Weakness, Todo, Structure
or Other (Kuznetsov et al., 2022).

We experiment with various approaches pre-
sented in Section 3 and 4. As there is no clear win-
ner among them (see results in Section 5), we fur-
ther focus on comparing them to see under which
conditions each setting works best (Section 6).

2 Datasets

We participated in all three evaluation setups of the
Shared Task, which provided different amounts of
training data. In the full-data setting, 117 reviews
with 2326 sentences are provided, from which we
split ten reviews to serve as our internal validation
data. In the low-data setting, 33 reviews with 739
sentences are used (we take five of these reviews
as our internal testing data or perform four-fold
cross-validation). In the no-data setting, we use
our internal test data from the full-data setting for
evaluation.

The Shared Task provides two additional data
sets: F1000raw contains unlabeled data (7423 re-
views from the same domains as the training data.

To use this data, we first extract the domain for
each article via a lookup of the respective gateway
on https://f1000research.com. Since a large
number of articles cannot be assigned any domain,
we only use articles for which we can assign a do-
main, yielding 269 additional iscb, 144 rpkg, 445
diso, 525 case and 227 scip reviews. The ARR-
22 dataset consists of 684 labeled reviews coming
from a different domain and using a different an-
notation scheme (Dycke et al., 2022). While some
of the mappings are straightforward (paper sum-
mary to Recap, summary of strengths to Strength,
summary of weaknesses to Weakness), we mapped
comments, suggestions and typos to Todo and found
no correspondences for Structure and Other.

3 Approaches with Training Data

We explore three complementary approaches, fol-
lowing similar tasks of identifying sections in sci-
entific articles or abstracts that cast the problem as
one of sentence classification (Mullen et al., 2005;
Teufel and Kan, 2009) or sequence labeling (Hiro-
hata et al., 2008): A BERT-based sentence classi-
fication model (Liu et al., 2019), a Longformer-
based sequence tagging model (Beltagy et al.,
2020), and a SBERT-based model (Reimers and
Gurevych, 2019) to compute semantic similarity
between sentences. The total training and inference
time was about 22 hours on a single GPU.

3.1 BERT-Based Sentence Classification

This set of approaches are extensions of the
Roberta-based baseline released with the Shared
Task training data. In the full-data setting, apart
from experimenting with a different variant of pre-
trained models (roberta-large) (Liu et al., 2019),
we also included positional information (+ Pos.),
by providing either the absolute position of the
respective sentence within a review and the rel-
ative position by normalizing the former by the
number of sentences in that review. Besides, the
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one-hot-encoded review domain is also used as an
additional feature (+ Domain). These additional
features are concatenated to the sentence embed-
ding as an array. The combined representation was
used to train the classification layer. To provide
contextual information, we append the full review
text after the sentence to be classified after a special
separator token in the + Context setting.

Reviews often contain domain-specific words
occurring mainly in one domain, but not the others
such as “malaria" in the “diso" domain or “cyto-
browser" in “iscb". To improve the cross-domain
generalizability of the model, we compute for each
word (in its original form) a metric inspired by
tf-idf where we set the frequency in the domain
(using the F1000raw dataset to have a broader data
basis) in relation to its general frequency provided
by the wordfreq Python package1 in its default
setting. We replaced words exceeding a certain
threshold (Equation 1) with a special <term> to-
ken. In addition, tokens containing the string “http"
were replaced by a special <link> token and tokens
without any letters by a <non_letter> token. We
named this approach as + Word Normalization.

domain frequency

general frequency + 0.5
> 1 (1)

Combining the approaches above, we made a
domain-specific model selection where sentences
from a certain domain are scored by the model that
performed best on this domain during validation.
The result is reported as Best.

Using the Additional ARR-22 data We exper-
imented with the ARR-22 dataset as additional
training data (+ ARR), but found the label distri-
bution to be very different from the main training
data. (The majority class in ARR-22 is “weak-
ness", while “Todo" is the dominant class in the
full data.) Therefore, we sampled the mapped el-
ements in ARR-22 dataset according to the class
distribution in the full-data. No further filtering or
normalization was applied to this dataset.

3.2 Longformer-based Sequence Tagging
This approach follows Ding et al. (2022) to inher-
ently integrate a sentence’s context into the pre-
diction. We applied it on the full data setting.
Since it shows no advantage compared to the other
sentence classification approaches, we didn’t ap-
ply it to other settings. It utilizes tokens with

1https://pypi.org/project/wordfreq/

gold-standard annotation represented by Inside-
Outside-Beginning (IOB) tags. For example, the
gold-standard annotation Recap: “The paper pro-
poses ..." will be represented as B-Recap: The,
I-Recap: paper, I-Recap: proposes, ... These la-
beled tokens are input into a pretrained Longformer
language model (longformer-large-4096) for token
classification. We trained for 10 epochs and then
used the model with the best performance on the
validation data to predict a label for each token
in the test data. Each sentence got the most fre-
quent token label assigned. We also tested the +
Word Normalization approach from the sentence
classification in this setting.

3.3 SBERT-Based Sentence Classification

In this approach, we follow the similarity-based
content scoring methodology described in Bexte
et al. (2022) and Bexte et al. (2023), making predic-
tions based on the most similar reference examples
and fine-tuning an SBERT model (Reimers and
Gurevych, 2019) for 10 epochs with a batch size of
8, otherwise sticking to default values.

In the full-data setting, we train eight separate
models and take their majority vote to obtain pre-
dictions on the test data. Five of these models are
experts for one of the five domains in the dataset.
These are therefore trained on the respective subset
of the training data (fine-tuning the All-MiniLM-
L6-v2 base model). The remaining three models
are trained across all domains: An overall model
builds training pairs across all training instances,
while the training instances of two within-domain
models (one based on All-Mini-LM-L6-v2, the other
on All-MiniLM-L12-v2) are restricted to pairs of
sentences from the same domain.

We pursue the same similarity-based approach in
the low-data setting: First, we train a single model
on our internal split of the limited training data.
We then further pursue a 4-fold cross-validation.
We found it beneficial to augment the training data
using the auxiliary data from F1000Research. For
each of our models from the cross-validation, we
select additional reference sentences in the follow-
ing way: For each target label, we include the 15
nearest neighbors, i.e., those we find the highest
similarity to an existing reference answer to. This
is done for three rounds, after which the result-
ing extended set of reference data is used to make
predictions on the test data by taking the label of
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the most similar reference element2 To prepare our
submission to the challenge, we again perform a
majority voting, taking the four votes of the aug-
mented models from our cross-validation and that
of the model trained on our internal train-test split.

4 Zero-Shot Approaches

This section describes our no-data approaches.

4.1 Clustering

Using a pretrained SBERT model (All-MiniLM-
L12-v2), we encode representations of the target
labels to serve as the centroids of clusters. These
representations are derived from the label descrip-
tions the challenge organizers gave and a set of at
most three keywords per label (see Appendix A.1).
Each answer from the testing data is then assigned
to the label representation with the highest cosine
similarity, thus predicting the respective label for
this test instance.

4.2 GPT

We also explore using large commercial language
models in a zero-shot setting. We prompt the
GPT3.5 through the openai API by providing label
definitions in the Shared Task description. As a
post-processing step, we replace labels not corre-
sponding to one of the six categories provided with
Other.

5 Results

Following the evaluation scheme in the Shared
Task, we report macro-averaged F1-scores per do-
main for our own data split and only an overall
F1-score for the challenge test set.

Table 1 shows the results of our internal splits of
the data. For the full-data setup, we see that adding
additional information like position, domain, or
context to the BERT-based model does only im-
prove the results for individual domains but leads to
performance drops on others, so there is no substan-
tial improvement overall (column mean). However,
if we select per domain the setup performing best
on the training data, we see an overall improvement
on the test data (.88 vs .82 for the baseline model.)
Adding the ARR data as additional training data
led to decreased performance, although sampling
the ARR data to a similar distribution to the main

2We also experimented with additional fine-tuning using
this augmented training set but found this not helpful.

Domain
case diso iscb rpkg scip mean

Full-data

BERT-based
Roberta-large .80 .87 .88 .75 .77 .82
+ Word Normalization .87 .88 .94 .68 .56 .79
+ Pos. .76 .85 .92 .74 .77 .81
+ Domain .89 .79 .82 .69 .81 .80
+ Context .87 .83 .83 .75 .76 .81
+ Pos., Context .87 .82 .94 .83 .70 .83
+ Pos., Context, Domain .83 .81 .88 .72 .85 .82
Best .89 .88 .94 .83 .85 .88

+ ARR .60 .72 .78 .61 .67 .68
+ ARR Sampled .68 .66 .78 .60 .78 .70

Sequence Tagging .67 .65 .72 .56 .51 .62
+ Word Normalization .59 .65 .77 .56 .53 .62

SBERT-based
ALL .82 .78 .83 .64 .85 .78
ALL_large .71 .74 .86 .67 .70 .74
ALL_cross .84 .74 .77 .67 .77 .76
Domains .75 .76 .66 .74 .80 .74
Voting .88 .81 .84 .67 .77 .79

Low-data

BERT-based
Roberta-large .10 .17 .19 .11 .24 .16

SBERT-based
Train-test split .52 1.0 .70 .91 .68 .76
4-fold CV .71 .71 .77 .66 .69 .71
4-fold CV + aux .74 .72 .80 .65 .74 .73

No-data

SBERT-based .19 .33 .17 .22 .15 .21
GPT .53 .54 .46 .24 .42 .44

Table 1: F1 results on our internal validation split.

Setting Submission mean

Final Roberta large + Pos., Text .81
Full-data Roberta large + Pos., Text .82
Low-data SBERT 4-fold voting .75
No-data SBERT clustering .22

Table 2: F1 results on challenge test data.

training data helped somewhat. Both the SBERT-
based model and the sequence tagging approach
did not reach the performance of the BERT-based
model in the full-data setup (.62 and .79 vs .88 in
the best configuration).

However, the situation changes drastically when
the amount of available training data is reduced
(low-data). In this scenario, the BERT-based
model could hardly learn anything while the
SBERT-based model reached a performance close
to the full-data setup. Note that the results
are not directly comparable across the different
dataset variants, as the test data is not identical.
Performance in the no-data setting is unsurpris-
ingly again reduced, with GPT outperforming our
SBERT-based clustering method.

Table 2 shows the methods that led to the best
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Figure 1: Per-label precision and recall of our different methods on our internal test data of the full-data setting.
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Figure 2: Venn diagram of how many sentences are
classified correctly by which methods.

performance on the challenge test data in the differ-
ent settings. Unfortunately, our Best approach on
the validation set did not beat the +Pos., Context
approach on the test data in the full-data setting.
Therefore, we only submit the +Pos., Context ap-
proach in the final round.

The test data in the final setting contains unseen
data from a "secret" domain, which might explain
the slight performance drop (.82 vs. .81). But
our approach reaches the second-best performance
on the data from the "secret" domain with an F1-
score of 0.79 on the leaderboard, indicating its good
generalization ability.

In the low-data setting, our SBERT-based
method performs better than the BERT-based meth-
ods, which consists of the results observed on
the validation set. The no-data performance of
our SBERT-based method is slightly better on the
test set than the average on our validation splits.
(Following the competition rules regarding repro-
ducibility, we did not submit our GPT results since
the model requires a paid API.)

6 Analysis

The different approaches produce results in the
same ballpark so that one may wonder if they can
be used interchangeably. To investigate this we
compare the results by checking four conditions:

The percentage of sentences that all four models
judge correctly, the percentage that none of the
models classified correctly, which proportion is
classified correctly in a majority setting and the
percentage of correctly classified sentences that
could be reached in an oracle condition if we knew
to which model a sentence should be passed, i.e.
the percentage of sentences judged correctly by at
least one model.

For this analysis, we use the respective best-
performing model variant on our internal split of
the data provided for the full data setting. We an-
alyze all four approaches we took: Sentence clas-
sification using Roberta, similarity-based classifi-
cation with SBERT, sequence tagging using the
longformer architecture, and zero-shot application
of GPT. Figure 2 gives an overview of how many
sentences are correctly classified by which method.
The oracle condition sums up to 94% of test in-
stances being assigned the correct label, meaning
that the remaining six percent are classified cor-
rectly by none of the methods. About a third (36%)
of the data is correctly solved by all four models,
and a majority voting over their predictions comes
up to 83% accuracy, which is 1% lower than what
Roberta achieves on its own.

Overall, GPT seems the most distinct from the
other methods: It has the highest number of 11
sentences that none of the other methods can clas-
sify correctly. Such sentences often have the la-
bel Other, for example “Dear Authors". However,
there are 66 sentences for which all other methods
except GPT predict the correct label. GPT rarely la-
beled instances of “Recap" correctly and often mis-
labeled “Structure" as “Other", such as “Reviewer
response for version 1". Figure 1 breaks down
performance for the individual labels, revealing
GPT to be much worse in both precision and recall
when it comes to Structure, and showing especially
low recall for Recap. All methods have the most
difficulty with sentences labeled Other, with our se-
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quence tagging approach having both precision and
recall of zero. The overall best-performing Roberta
method especially shows superiority in terms of
high and balanced precision and recall values for
the labels Strength, Todo, and Weakness.

7 Conclusion

We have presented experiments using a variety of
very different approaches. The comparison shows
that they behave quite differently and that a sensible
combination of approaches yields further improve-
ments. Future work therefore has to determine
which approach is most suitable for a given item to
be classified.

Acknowledgements

This work was partially conducted at “CATALPA
- Center of Advanced Technology for Assisted
Learning and Predictive Analytics” of the FernUni-
versität in Hagen, Germany.

References
Iz Beltagy, Matthew E Peters, and Arman Cohan. 2020.

Longformer: The long-document transformer. arXiv
preprint arXiv:2004.05150.

Marie Bexte, Andrea Horbach, and Torsten Zesch. 2022.
Similarity-based content scoring - How to make S-
BERT keep up with BERT. In Proceedings of the
17th Workshop on Innovative Use of NLP for Building
Educational Applications (BEA 2022), pages 118–
123.

Marie Bexte, Andrea Horbach, and Torsten Zesch. 2023.
Similarity-based content scoring-a more classroom-
suitable alternative to instance-based scoring? In
Findings of the Association for Computational Lin-
guistics: ACL 2023, pages 1892–1903.

Yuning Ding, Marie Bexte, and Andrea Horbach. 2022.
Don’t drop the topic - the role of the prompt in ar-
gument identification in student writing. In Proceed-
ings of the 17th Workshop on Innovative Use of NLP
for Building Educational Applications (BEA 2022),
pages 124–133, Seattle, Washington. Association for
Computational Linguistics.

Nils Dycke, Ilia Kuznetsov, and Iryna Gurevych.
2022. NLPEER: A unified resource for the com-
putational study of peer review. arXiv preprint
arXiv:2211.06651.

Nils Dycke, Ilia Kuznetsov, and Iryna Gurevych. 2023.
Overview of PragTag-2023: Low-resource multi-
domain pragmatic tagging of peer reviews. In Pro-
ceedings of the 10th Workshop on Argument Mining,
Singapore. Association for Computational Linguis-
tics.

Kenji Hirohata, Naoaki Okazaki, Sophia Ananiadou,
and Mitsuru Ishizuka. 2008. Identifying sections in
scientific abstracts using conditional random fields.
In Proceedings of the Third International Joint Con-
ference on Natural Language Processing: Volume-I.

Ilia Kuznetsov, Jan Buchmann, Max Eichler, and Iryna
Gurevych. 2022. Revise and resubmit: An intertex-
tual model of text-based collaboration in peer review.
Computational Linguistics, 48(4):949–986.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A robustly optimized BERT pretraining
approach. arXiv preprint arXiv:1907.11692.

Tony Mullen, Yoko Mizuta, and Nigel Collier. 2005.
A baseline feature set for learning rhetorical zones
using full articles in the biomedical domain. ACM
SIGKDD Explorations Newsletter, 7(1):52–58.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP). Association
for Computational Linguistics.

Simone Teufel and Min-Yen Kan. 2009. Robust argu-
mentative zoning for sensemaking in scholarly docu-
ments. In Natural Language Processing for Digital
Libraries Workshop, pages 154–170. Springer.

A Appendix

A.1 Keywords for Zero-Shot Clustering Label
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’Todo’: [’should’, ’could’, ’need’], ’Strength’:
[’good’, ’strength’, ’clear’], ’Weakness’: [’weak-
ness’, ’shortcoming’, ’flaw’], ’Structure’: [’re-
viewer’], ’Recap’: [’authors’, ’describe’, ’article’],
’Other’: [’other’]
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Abstract

Due to the scarcity of review data and the high
annotation cost, in this paper, we primarily
delve into the fine-tuning of pretrained mod-
els using limited data. To enhance the robust-
ness of the model, we employ adversarial train-
ing techniques. By introducing subtle pertur-
bations, we compel the model to better cope
with adversarial attacks, thereby increasing the
stability of the model in input data. We uti-
lize pooling techniques to aid the model in ex-
tracting critical information, reducing compu-
tational complexity, and improving the model’s
generalization capability. Experimental results
demonstrate the effectiveness of our proposed
approach on a review paper dataset with limited
data volume.

1 Introduction

Peer review stands as a fundamental pillar of the
scientific process, yet it presents formidable chal-
lenges that could greatly benefit from automation
and support. At the heart of peer review are re-
view reports – concise, argumentative documents
in which reviewers assess research papers and offer
recommendations for improvement. Automating
the analysis of argumentation within peer reviews
(Dycke et al., 2023) holds vast potential, ranging
from facilitating meta-scientific investigations into
review practices to consolidating insights from mul-
tiple reviews and aiding less experienced reviewers.

Text classification is a significant and challeng-
ing task. However, when relying on relatively small
datasets, traditional machine learning methods may
encounter issues such as overfitting and poor gen-
eralization performance. In such cases, pre-trained
models serve as powerful tools that offer robust
solutions for addressing data scarcity. Pre-trained
models, particularly those based on the deep learn-
ing Transformer (Vaswani et al., 2017) architecture,
have demonstrated significant success in natural
language processing tasks.

RoBERTa (A Robustly Optimized BERT Pre-
training Approach) (Liu et al., 2019), XLM-
RoBERTa (Conneau et al., 2019) and DeBERTa
(Deep BERT with Disentangled Attention) (He
et al., 2023) are pre-trained models based on
the Transformer architecture that have garnered
widespread attention in the field of NLP. Through
fine-tuning these pre-trained models, exceptional
performance can be achieved on smaller datasets,
mitigating overfitting issues and improving gener-
alization performance.

This paper focuses on the application of
RoBERTa, XLM-RoBERTa and DeBERTa to ad-
dress text classification problems within a peer re-
view dataset.

2 Related work

Pragmatic tagging of peer reviews is, in fact, a clas-
sification task, and in common classification tasks.
In the field of text classification, models like Re-
current Neural Networks (RNN) (Jordan, 1997),
and Long Short-Term Memory networks (LSTM)
(Hochreiter and Schmidhuber, 1997) introduced
more nonlinear factors, enabling them to automat-
ically learn feature representations from data and
achieving remarkable results.

However, deep learning methods may face over-
fitting issues on small datasets and require a sub-
stantial amount of labeled data for training. To ad-
dress these issues, the development of pre-trained
models has become a groundbreaking direction.
Pre-trained models are trained on large-scale unla-
beled corpora, learning rich language representa-
tions that enable them to better capture semantic
relationships between words, as seen in models like
BERT (Devlin et al., 2018). Subsequently, these
pre-trained models can be fine-tuned for specific
tasks to exhibit exceptional performance.

Among these models, RoBERTa (Liu et al.,
2019) and DeBERTa (He et al., 2023) are represen-
tatives of pre-trained models based on the Trans-
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Recap Strength Weakness Todo Other Structure
Count 87 62 130 245 106 109
Percentage(%) 11.77 8.39 17.59 33.15 14.34 14.75

Table 1: Number and percentage of each category in low_data

former architecture. RoBERTa achieved signifi-
cant performance improvement across various NLP
tasks by adjusting pre-training strategies and hyper-
parameters. On the other hand, DeBERTa enhanced
the model’s generalization capability and perfor-
mance on different tasks by introducing disentan-
gled attention mechanisms. In small dataset text
classification tasks, models like RoBERTa and De-
BERTa demonstrate remarkable capabilities. Their
learned rich semantic representations from exten-
sive corpora enable them to effectively extract fea-
tures and capture relationships between sentences
even in data-limited scenarios.

In the application of pre-trained models, re-
searchers have introduced various techniques to
further optimize model performance. Techniques
such as k-fold cross-validation better evaluate the
model’s stability and generalization ability. Adver-
sarial training methods like Fast Gradient Method
(FGM)(Miyato et al., 2016) enhance the model’s
robustness, preventing it from being disrupted by
adversarial attacks. Pooling techniques such as
max pooling, min pooling and attention pooling
allow models to understand text information at dif-
ferent levels. Additionally, model ensemble tech-
niques combine predictions from multiple models,
improving overall classification performance.

3 Task description

The goal of this task is to perform automatic anal-
ysis of argumentation in peer review. Our input
data consists of each sentence in the argumenta-
tion, and the output results are the corresponding
label categories for each sentence. The competi-
tion is divided into multiple stages, each providing
two datasets(Kuznetsov et al., 2022)(Dycke et al.,
2022): "low_data" and "full_data".

The training set provided in the "low_data" com-
prises a total of 34 review articles, 793 sentences
in total. The objective is to classify each sentence
into one of the six categories. We have conducted a
statistical analysis for each category in the dataset,
and the results are presented in Table 1.

The training set provided in the "full_data" con-
sists of a total of 118 review articles, 2324 sen-

tences in total. The objective remains the classifica-
tion of each sentence into one of the six categories.
Similar to the previous dataset, we conducted a
statistical analysis for each category in the dataset,
and the results are presented in Table 2.

4 Methodology

4.1 Model architecture

In this task, we primarily utilized three architecture-
based pre-trained models: DeBERTa-v3-large,
RoBERTa-large and XLM-RoBERTa-large, as our
benchmark models. We incorporated a pooling
layer to project features into lower dimensions, ef-
fectively reducing the number of parameters and
computational load in the network while preserv-
ing essential information. Moreover, specific linear
layers were added based on the number of task
categories, yielding probabilities for each category.
Ultimately, the highest predicted probability was
selected to determine the final classification out-
come of the model.

4.2 Pooling

In this section, we mainly used 2 types of pooling,
attention pooling and maximum pooling, and en-
sembled the two different pooling models obtained
when calculating the final result.
Attention Pooling:Attention pooling is a technique
that enhances critical information while capturing
local features in text. We calculate the weight for
each token and effectively model relationships be-
tween different words. Specifically, the input word
embedding sequence is weightedly aggregated and
normalized, yielding a weight vector. This weight
vector indicates the higher significance of specific
words within the text. By element-wise multiplica-
tion of this weight vector with the word embedding
sequence, we obtain the text representation after
attention pooling.
Max Pooling:Max pooling is a common pooling
technique employed to extract crucial features from
local regions. In our approach, we apply max pool-
ing to text representations to emphasize significant
information within the text. Specifically, we per-
form max pooling operations on each window, se-
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Recap Strength Weakness Todo Other Structure
Count 346 220 377 681 401 301
Percentage(%) 14.875 9.458 16.208 29.278 17.240 12.941

Table 2: Number and percentage of each category in full_data

lecting the maximum value within the window as
the representation for that window. This technique
aids in capturing key features in the text.

4.3 Adversarial Training

To enhance the model’s robustness, we introduced
adversarial training, specifically utilizing the Fast
Gradient Method (FGM). FGM is an adversarial
attack technique that we applied during the training
process by injecting slight perturbations into the
embedding layer. This compels the model to better
handle adversarial attacks. Adversarial training
in our approach involves computing the gradient
of the loss function with respect to the input at
each training iteration and slightly updating the
input. By incorporating adversarial training, our
approach elevates the model’s robustness, enabling
it to better handle interference within input data.

K-fold bs = 2 bs = 4 bs = 4
P0(%) 83.538 82.384 80.533
P1(%) 80.711 82.431 82.29
P2(%) 78.298 83.859 91.789
P3(%) 88.55 90.106 73.363
P4(%) 85.141 81.899 79.638
P5(%) - - 87.8
P6(%) - - 84.755
P7(%) - - 79.021
P8(%) - - 82.161
Avg(%) 83.2476 84.1358 82.372

Table 3: Multifold cross-validation results for different
models on low_data

4.4 K-Fold Cross Validation:

Model ensemble is a widely employed technique in
machine learning competitions, while k-fold cross-
validation serves as a common method to assess
and enhance model performance during the train-
ing process. In k-fold cross-validation, the dataset
is partitioned into k mutually exclusive subsets.
Among these, k-1 subsets are utilized as training
data, and the remaining subset serves as validation
data. We iterate through k-fold cross-validation
multiple times, each time selecting a different sub-

set as the validation data. This ensures that each
sample gets an opportunity to be used for valida-
tion. This way, we obtain k performance evaluation
metrics, enabling a comprehensive understanding
of the model’s performance.

5 Experiments

5.1 Setting

On the "low_data" dataset, we fine-tuned various
parameter values and selected the parameter com-
bination that yielded the best experimental results.
Specifically, the batch size was set to different
values, namely 2 and 4, while the initial learn-
ing rate was set to 1 × 10−4. Other configura-
tions remained consistent with those used on the
"full_data" dataset. For the "full_data" dataset,
during the training process of all models, we set
the batch size to 8 and the initial learning rate to
1× 5−4. Subsequently, a learning rate decay was
applied, with a decay rate of 0.5 and a minimum of
1× 10−7. The models were trained for 10 epochs,
with the early stopping strategy in place. Training
would be stopped if the performance did not im-
prove after 3 consecutive epochs. All training was
conducted on V100-32G GPUs.

5.2 Training results on low_data

We recorded the results of k-fold cross-validation
during the training process of the single DeBERTa-
v3-large model on the "low_data" dataset. The
batch size for the first experimental group was set
to 2, while the subsequent two groups used a batch
size of 4. For the first two groups of experiments,
the dataset was divided into 5 subsets for training.
In the third group, the dataset was split into 9 sub-
sets for training. The interim results of training, as
well as the average across folds, are presented in
Table 3. Since the same model was employed, the
first row of the table distinguishes solely based on
the batch size used.

5.3 Training results on full_data

As depicted in Table 4, we have documented the
k-fold cross-validation outcomes of model train-
ing on the "full_data" dataset. The models em-
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K-fold RoBERTa RoBERTa(MaxPooling) DeBERTa DeBERTa XLM-R XLM-R(FGM)
P0(%) 86.116 86.452 86.846 87.037 86.920 84.518
P1(%) 83.246 85.259 86.379 85.024 80.433 86.149
P2(%) 87.273 90.455 90.991 91.699 90.519 89.422
P3(%) 81.627 84.676 84.919 82.878 81.76 81.183
P4(%) 83.13 84.020 85.513 83.994 81.852 83.624
P5(%) 81.005 85.078 87.435 87.106 84.208 81.121
P6(%) 85.932 85.915 88.821 86.818 85.833 86.397
P7(%) 83.861 85.112 84.617 82.779 84.290 85.753
P8(%) 82.959 82.026 84.044 82.713 82.863 80.679
P9(%) 81.775 83.326 82.336 - 82.722 84.827
Avg(%) 83.6924 85.232 86.190 85.561 84.14 84.3673

Table 4: Presentation of results at various stages

ployed in this study are RoBERTa-large, XLM-
RoBERTa-large and DeBERT-v3-large. For the
fine-tuning of RoBERTa-large, we adopted the max
pooling approach, after applying the max pool-
ing technique during fine-tuning, the avg_f1_mean
score increased from 83.6924 to 85.2319. When
fine-tuning with XLM-RoBERTa-large, we experi-
mented with the inclusion of FGM. Compared to
not using FGM, the avg_f1_mean score improved
from 84.14 to 84.3673. When fine-tuning DeBERT-
v3-large, we conducted two sets of experiments,
both utilizing attention pooling techniques. The
primary distinction between the first and second
experiments lay in the use of 10-fold and 9-fold
cross-validation, respectively. Across multiple tri-
als, the experimental outcomes of the DeBERTa
model consistently surpassed those of RoBERTa,
underscoring the robust performance of the De-
BERTa model.

In the final stage of the competition, a secret test
dataset was introduced to assess the models’ gener-
alization performance. The experimental outcomes
are presented in Table 5. We used a total of 19 mod-
els for voting, including 9-fold DeBERTa and 10-
fold DeBERTa models, and selected the class with
the highest frequency as the final result. The final
F1_mean score was 0.8383. Using a combination
of 9-fold DeBERTa, 10-fold DeBERTa, and 10-fold
RoBERTa models, we used a total of 29 models for

voting, and the final F1_mean was 0.8413. By fur-
ther incorporating 10-fold XLM-RoBERTa models
alongside the previous ones, totaling 39 models for
voting, the final F1_mean was 0.8411. It can be
observed that the fusion of different types of mod-
els is beneficial to the results. Although there was
a slight decrease on the XLM-RoBERTa model,
the diverse feature extraction capabilities among
multiple models contribute significantly to the im-
provement of results.

6 Conclusion

In this paper, we have presented a comprehen-
sive approach for text classification tasks on small-
scale peer review datasets. By combining atten-
tion pooling, max pooling, and adversarial training
(FGM), we achieved significant performance im-
provements. Through experimental validation, we
have demonstrated the superiority of our method
on small datasets. In the evolving era of deep learn-
ing, our approach amalgamates various techniques,
providing an effective solution for text classifica-
tion on small datasets. It overcomes the challenges
posed by data scarcity, enhancing both model per-
formance and robustness, offering novel insights
and methodologies for addressing text classifica-
tion challenges on small datasets.

f1_mean f1_case f1_diso f1_iscb f1_rpkg f1_scip f1_secret
submission1 0.8383 0.829 0.842 0.836 0.854 0.889 0.779
submission2 0.8413 0.829 0.841 0.828 0.860 0.890 0.801
submission3 0.8411 0.831 0.847 0.828 0.860 0.882 0.798

Table 5: Final leaderboard scores for our submission
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Abstract

This paper describes our submission to the
PragTag task, which aims to categorize each
sentence from peer reviews into one of the six
distinct pragmatic tags. The task consists of
three conditions: full, low, and zero, each
distinguished by the number of training data
and further categorized into five distinct do-
mains. The main challenge of this task is the
domain shift, which is exacerbated by non-
uniform distribution and the limited availability
of data across the six pragmatic tags and their
respective domains. To address this issue, we
predominantly employ two data augmentation
techniques designed to mitigate data imbalance
and scarcity: pseudo-labeling and synonym
generation. We experimentally demonstrate
the effectiveness of our approaches, achieving
the first rank under the zero condition and
the third in the full and low conditions.1

1 Introduction

Peer review is a fundamental procedure for assess-
ing the quality of academic manuscripts (Ware and
Mabe, 2015). Most reviews are characterized by
concise argumentative feedback, wherein review-
ers highlight both strengths and weaknesses while
offering suggestions for revision. This observation
has led researchers to frame the structures of peer
reviews as a subset of argument mining (Lawrence
and Reed, 2020; Lauscher et al., 2018; Hua et al.,
2019). Parallel to these insights, efforts have been
made to automate the peer review process (Yuan
et al., 2022; Wang et al., 2020). The automation
of this process yields two primary advantages: it
facilitates authors by distilling the main feedback
from reviews and helps reviewers by aggregating
information from multiple reviews.

∗ Equal contribution.
† Corresponding authors.

1The codes are available at https://github.com/
lilys012/pragtag

Recently, Dycke et al. (2023) introduced a novel
task, pragmatic tagging for peer review, wherein
each sentence of a scientific review is classified
into one of six predefined pragmatic categories.
The proposed task is tailored for a multi-domain
scientific corpus, where certain domains might em-
ploy specific terminologies that are not prevalent
in others or require a unique evaluative perspective
during the review process (Rogers and Augenstein,
2020). Furthermore, the nature of scientific re-
view necessitates profound domain knowledge and
careful examination by the reviewer, thereby pos-
ing challenges in large-scale data collection. Such
challenges, referred to as cross-domain generaliza-
tion (Caciularu et al., 2021; Du et al., 2020), have
been the subject of intensive investigation within
natural language processing.

To address these challenges, we propose two ap-
proaches to enhancing the generalization of the
model over multiple domains: pseudo-labeling
and synonym generation. Under full and low
conditions, we finetune BERT (Devlin et al.,
2018) based classifiers using the training data and
pseudo-label auxiliary data through an ensemble
approach to ensure label quality. In the zero
condition, we exploit the existing sections of the
ARR dataset and inject intrinsic characteristics of
pragmatic tags without utilizing any large language
models. Our method accomplished the highest per-
formance in the zero condition as well as the
third in the full and low conditions.

2 Related Works

Multi-class Classification The task of catego-
rizing input sentences into multiple labels has
seen extensive development across various do-
mains (Soleimani and Miller, 2016; Dang et al.,
2020). Among the readily available models for text
classification, RoBERTa (Liu et al., 2019) stands
out, characterized by its incorporation of a classifi-
cation layer with a transformer encoder. Notably,

207



Training Data

Phase 2: Synonym Generation
on Training Data

Unlabeled
Auxiliary Data

TEP

TEP Pseudo-labeled 
Auxiliary Data 1

Pseudo-labeled 
Auxiliary Data 2

Phase 3: Recall Labeling 
on Auxiliary Data

TEP

Phase 1: Majority Labeling 
on Auxiliary Data

Test Data
Sentence Label

?
?
?

Test Data
Sentence Label

Strength

Recap
Other

Inference: Majority vote on Test Data

TEP
Unlabeled 

Data A

Unlabeled 
Data B

Pseudo-labeled 
Data A

=
Unlabeled 

Data A

Models
Trained on B

Pseudo-labeled  
Data A

Ensemble

Figure 1: Overview of our proposed approach to pragmatic tagging in the full condition. Phase 1: pseudo-labeler
models are trained using provided training data and subsequently utilized to label unlabeled auxiliary data. Phase
2: Training data are augmented by a synonym generator. Phase 3: Augmented data from Phase 1 and 2 are used
to finetune the labeler. Models reapply tagging to the auxiliary data with increased certainty. Phase 4: Classifier
trained with the labeled data from Phase 3 are ensembled to predict the labels of the test data.

this model is acclaimed for its capability to general-
ize across diverse domains. However, for datasets
tailored to specific domains, models such as SciB-
ERT (Beltagy et al., 2019) and BioBERT (Lee et al.,
2020) have been proposed. Additionally, existing
research illustrates that the performance of these
models can be further enhanced through the em-
ployment of ensemble techniques (Saha and Srihari,
2023).

Data augmentation Data augmentation is
widely exploited to enrich and generalize datasets
(Chen et al., 2023). A sentence can be expanded
through the utilization of rule-based techniques
and interpolation (Feng et al., 2021). Furthermore,
in the case of unlabeled datasets, a trained model
can assign pseudo-labels to the unlabeled data,
thereby facilitating supplementary training (Lee
et al., 2013).

3 Dataset

Task Data The data for the task is sourced from
F1000RD (Kuznetsov et al., 2022), which is a
comprehensive multi-domain collection of both re-
views and their pragmatic labels. Under the low
condition, only 20% of the full task dataset is
employed. Detailed statistics of the six tags across
five distinct domains are described in Table 1.

Auxiliary Data The auxiliary data is comprised
of two datasets: F1000raw and ARR-22 (Dycke
et al., 2022). The former, F1000raw, is an extensive,
unlabeled corpus originating from the same source
as F1000RD. Conversely, ARR-22 represents a col-

Full
Domain Strg. Weak. Strc. Rec. Td. Oth. Total

scip 46 73 70 52 115 105 461
iscb 30 93 53 77 173 70 496
rpkg 67 85 64 69 132 89 506
diso 43 81 61 76 135 79 475
case 34 45 53 72 126 58 388
Total 220 377 301 346 681 401 2326

Table 1: Task data statistics based on full conditions
and five domains: science policy research (scip), bioin-
formatics (iscb), R package (rpkg), disease outbreak
(diso), and medical case reports (case). Within each
domain, the count of sentences is categorized by six
labels: Strength (Strg.), Weakness (Weak.), Structure
(Strc.), Recap (Rec.), Todo (Td.), and Other (Oth.).

lection of peer reviews from the ACL community.
Each review within ARR-22 is segmented into sec-
tions designated as Paper Summary, Comments /
Suggestions / Typos, Summary of Strengths, and
Summary of Weaknesses. It is important to note
that the utilization of any external datasets beyond
these is strictly prohibited for our task.

4 Methodology

The efficacy of an individual model can be influ-
enced by various hyperparameters throughout the
training process, which could potentially lead to
inaccurate predictions. Therefore, we opt for an
ensemble approach for our task, as depicted in
Figure 1. From the entire training data, we set
aside 18 reviews to constitute a validation subset.
This subset excludes reviews that belong to the low
condition dataset. The validation subset is consis-
tently applied across all scenarios for the selection
of hyperparameters and models.
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Majority Consensus
F1000raw 0.8454 0.8333
F1000raw+ARR 0.8263 0.8251

Table 2: F1-mean score for auxiliary data labeling. Mod-
els are trained using the F1000raw dataset or in conjunc-
tion with the ARR dataset. Validation data is labeled by
majority and consensus methods.

seed model learning rate score
42 RoBERTa-base 1e-5 0.7498
142 RoBERTa-base 2e-5 0.7667
242 SciBERT 3e-5 0.7260
342 BioBERT 1e-5 0.7534
442 RoBERTa-base 3e-5 0.7306

Table 3: Classifier performance under the low condition.
Bold score indicates the selection for majority labeling.

4.1 Pseudo-labeling

To overcome the scarcity of training data, we
devise a strategy involving pseudo-labeling (Lee
et al., 2013) for the auxiliary data. We train five
RoBERTa-base classifiers (Liu et al., 2019) with
the training data, each instantiated with varying
random seeds. Subsequently, the F1000raw and
ARR datasets (Dycke et al., 2022) are partitioned
2 and labeled via each of the aforementioned clas-
sifiers. We now introduce two distinct ensemble
methodologies as shown in Figure 1: 1) Majority
labeling for Phase 1 and Phase 4. 2) Recall labeling
for Phase 3.

Majority labeling Majority labeling selects the
tag that receives the majority vote among the clas-
sifiers. We also compare it with consensus label-
ing, which retains only the reviews labeled iden-
tically. Table 2 indicates that the combination of
majority labeling and only utilizing the F1000raw
dataset outperforms other combinations. In sce-
narios of low condition, different random seeds,
pretrained models, and learning rates are employed
for training initial classifiers. F1000raw dataset is
then majority labeled across four distinct models:
three distinguished by their performance on the
validation set (bold in Table 3), and an additional
model trained on synonym-augmented data.

Recall labeling We propose a novel approach
named Recall labeling to minimize the uncertainty
of each label. For each pragmatic tag, we select the
model with the highest recall. In descending order
of their recall scores in Table 4, models label the

2Using NLTK, https://www.nltk.org

Strength Weakness Structure
0.936 0.892 1.0
Recap Todo Other
0.928 0.990 0.685

Table 4: Recall scores of the best model selected for
each pragmatic tag.

sentences. Notably, Other tag consistently regis-
tered the lowest recall across all experiments. After
labeling the distinct tags, any residual sentences are
designated as "Other." To further avoid the noise
from arbitrary segmentation, we intentionally omit
the sentences consisting of a singular word.

4.2 Synonym generation

The disparities in data quantities across domains
and classes are evident in Table 1. Such class im-
balances have been documented to foster biases
towards the majority class, subsequently leading to
diminished classification performance (Ali et al.,
2013; Johnson and Khoshgoftaar, 2019). To ad-
dress this prevalent issue of class imbalance, we
employ data augmentation techniques to harmonize
the distribution of labels in each domain. Specif-
ically, we utilize the NLPaug3 package to substi-
tute nouns in each sentence with their synonymous
counterparts. To ensure the quality of augmented
sentences, we compute BERTSCORE (Zhang
et al., 2019) between augmented and original sen-
tences, and only add top-k augmented sentences
into the training dataset.4

5 Results

Experiment results over different conditions and
domains are presented in Table 5.

5.1 Full-data

Test data is labeled in a majority-vote manner us-
ing the best-performing models from Phase 3. The
F1-score for each specific model is depicted in Fig-
ure 2. Through this methodology, the classifier
achieved an F1-score of 0.838. We trained an extra
model using the entire task data, including the vali-
dation set. The performance in Table 5 is derived
from the inclusion of this auxiliary model within
the majority labeling paradigm.

3https://github.com/makcedward/nlpaug
4The selection of k varied across domains.
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f1_mean f1_case f1_diso f1_iscb f1_rpkg f1_scip f1_secret
full 0.839 0.840 0.837 0.801 0.854 0.865 -
low 0.771 0.778 0.746 0.754 0.777 0.800 -
zero 0.516 0.502 0.518 0.551 0.492 0.516 -
final (full) 0.824 0.844 0.840 0.798 0.843 0.864 0.755
final (zero) 0.517 0.502 0.520 0.557 0.508 0.489 0.528

Table 5: Best model performances across the following conditions: full, low, zero, and final phases of both full and
zero settings. F1 scores are computed across six distinct domains in a macro average.

5.2 Low-data

As expounded in Section 4.1, a classifier is trained
utilizing the F1000raw dataset, subject to majority
labeling encompassing four distinct models. We
train over 25 epochs with a batch size of 8 and a
learning rate of 2e-5.

5.3 Zero-data

We segment the ARR dataset into sentences and
label them into 4 categories following Dycke et al.
(2022): Strength, Weakness, Recap, and Todo.
Structure tends to encompass short instructions that
end with ":", in following the examples such as
"Typos:" and "However a few queries:". Hence,
we label all sentences that end with ":", as well
as sentences of five or fewer words as Structrue.
Lastly, Weakness and Recap are commonly misla-
beled as Other, thus we randomly transform 15% of
them into Other. Surprisingly, synonym generation
seems to have introduced perturbations that have
led to a disruption in the intended context of the
original sentences, thereby slightly decreasing the
performance. This could potentially be attributed
to the notably lower volume of the ARR dataset
compared to F1000raw.

5.4 Secret-data

We further evaluate our best models in the secret
domain. In the full data setting, the exclusion
of the auxiliary model mentioned in section 5.1
results in a minor decrease of 0.0003 in the F1-
mean score, while the F1-secret score increases by
0.006. Notably, there exists a subtle variation in the
F1-scores within the same domain under the zero
condition, as detailed in Table 5. This variance
arises due to the random allocation of Other tag.

5.5 Discussion

Models tend to exhibit proficiency in classifying ex-
amples that are apparent, yet encounter challenges
when confronted with ambiguous reviews. Recall
labeling assists the classifier, as each model spe-
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Figure 2: F1-scores of models employed for majority
labeling under the full condition. Classifiers are trained
using the following methods in the order from left to
right: recall labeling over 30 and 50 epochs, majority la-
beling, synonym generation, and recall labeling among
models trained without synonym generation.

cializes in distinguishing different tags. The cu-
mulative effect of this approach is a reduction in
uncertainty during the pragmatic labeling process.

6 Conclusion

In this study, we have empirically demonstrated
the effectiveness of data augmentation methodolo-
gies, particularly in scenarios characterized by lim-
ited data availability. Our findings pinpoint that
strategies such as pseudo-labeling and synonym
generation are instrumental in leveraging unlabeled
auxiliary data, therefore amplifying the generaliza-
tion capacity of the classifier. Furthermore, our
exploration of an ensemble approach for pseudo-
labeling, aimed at maximizing certainty, suggests
promising avenues for enhancing the efficacy of
pragmatic tagging processes.
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Abstract

We describe our models for the Pragmatic Tag-
ging of Peer Reviews Shared Task at the 10th
Workshop on Argument Mining at EMNLP-
2023. We trained multiple sentence classifica-
tion models for the above competition task by
employing various state-of-the-art transformer
models that can be fine-tuned either in the tra-
ditional way or through instruction-based fine-
tuning. Multiple model predictions on unla-
beled data are combined to tentatively label
unlabeled instances and augment the dataset to
further improve performance on the prediction
task. In particular, on the F1000RD corpus, we
perform on-par with models trained on 100%
of the training data while using only 10% of
the data. Overall, on the competition datasets,
we rank among the top-2 performers for the
different data conditions.

1 Introduction

Peer Review is employed across various subject
domains to assess the quality of research docu-
ments such as grant proposals, journal manuscripts,
and conference proceedings. Peer reviews are per-
formed by independent researchers with expertise
on the relevant topic for purposes such as award-
ing grants or publishing latest research for the ad-
vancement of Science. Review text reports, the
result of these peer assessments, are brief sum-
maries describing the document’s main contribu-
tions, its strengths and weaknesses, along with
other revision related comments and constructive
feedback (Griessenauer and Roach, 2019).

Though standards and practices may vary across
different subject domains and even across venues
within the same domain, the main objective of the
peer review process is to ensure the advancement of
quality research (Glonti et al., 2019). To this end,
alleviating the reviewing burden and supporting

∗∗Work done during internship at the Institute of Data
Science, NUS, Singapore

the diverse nature of reviewer expertise becomes
vital (Huisman and Smits, 2017) and motivates the
on-going research on developing tools to assist and
improve the peer reviewing process (Walker and
Rocha da Silva, 2015; Checco et al., 2021; Yuan
et al., 2022; Schulz et al., 2022). In particular, a sig-
nificant direction towards developing AI-assisted
peer reviewing models involves the compilation
of relevant datasets to support the meta-analyses
of reviews (Kang et al., 2018; Ghosal et al., 2022;
Dycke et al., 2023a).

From the perspective of language and NLP re-
search, review reports provide a rich ground for
investigation for various argument mining prob-
lems (Hua et al., 2019) including classification
tasks such as paper acceptance prediction and sen-
tence labeling (Bao et al., 2021; Kuznetsov et al.,
2022). The PragTag Shared Task1 at the 10th Work-
shop on Argument Mining at EMNLP-2023 com-
prises one such sentence labeling task in which
every sentence from a review report is assigned
a label from one of the pragmatic categories: {
Recap, Strength, Weakness, Todo, Other,
Structure}. Due to space constraints, we refer
our readers to Kuznetsov, et al. (2022) and Dy-
cke, et al. (2023b) for the precise definitions of
the pragmatic categories and the F1000RD Corpus
which forms the basis for the datasets used in the
PragTag-2023 competition.

1.1 Task Description and Evaluation
In PragTag-2023, the pragmatic tagging task is pre-
sented in a cross-domain, low-resource setting us-
ing data from the F1000RD Corpus. The F1000RD
is a multi-domain collection of free-text peer re-
views annotated with pragmatic labels at the sen-
tence level. Each peer review is associated with a
domain (related to Medicine, Computer Science, or
Scientific Policy Research). Additionally, recently
released unlabeled review corpora from Dycke, et

1https://codalab.lisn.upsaclay.fr/competitions/13334

212



al. (2023a) were made available as auxiliary data
sources. The following three data conditions were
proposed for the competition:

1. No-data: where no labeled instances are avail-
able for the task–zero-shot setting (Radford
et al., 2019).

2. Low-data: where about 20% of the labeled
data for the task can be used for training
models–few-shot setting (Brown et al., 2020).

3. Full-data: which is the standard machine-
learning setting where the entire training split
of the labeled data can be used to train models.

For measuring model performance on this sentence
classification task, the average performance across
domains is used in each of the above conditions
where the performance in a domain is simply mea-
sured by the macro-F1 computed across all review
sentences of that domain. For the final evaluation,
the test data comes from a “secret” domain, differ-
ent from those covered in the training data, thus
measuring cross-domain model performance.

Consider the definitions of labels:
Recap: summarizes the manuscript, For e.g.
“The paper proposes a new method for...”;
. . . Question: Which of the above labels most
applies to the following sentence? Sentence: []

Table 1: Prompt for LLM Models

2 Proposed Methods

In this section, we briefly describe the various mod-
els we employed for the Pragmatic Tagging task
under the three data conditions.
No-data setting: We studied two approaches for
predicting pragmatic tags under the no-data condi-
tion. In the first “Semantic Search” approach, we
simply use a list of “questions” to find sentences
in the review texts that best answer the question.
This list was curated based on the typical questions
employed during the peer review process of NLP
conferences and augmented to cover labels such as
“Recap”.2 Example questions include “How orig-
inal are the results described in the paper?” and
“What is the main finding of this paper?”. We used
the state-of-the-art Sentence Transformer models

2Complete list shared as part of the code distribution

trained for Semantic Search for this method (Wang
et al., 2020; Nassiri and Akhloufi, 2023).3

Recent breakthrough research has shown that
large language models (LLMs) can be trained “to
act in accordance with the user’s intentions” and as
a consequence be “prompted” to perform a range
of NLP tasks (Radford et al., 2019; Brown et al.,
2020; Christiano et al., 2017). For our second
approach, in keeping with this recent direction, we
designed a multiple-choice question prompt along
with the task description provided in the compe-
tition for use in Instruction Fine-tuned Language
Models (Ouyang et al., 2022; Chung et al., 2022).
Our prompt is listed in Table 1 and we refer to the
use of this approach as “MC-Prompt” in Section 3.4

Low-data/Full-data setting: In current practice,
fine-tuning large pre-trained language models
(PLMs) for a new task has become the standard
approach for training models (Howard and Ruder,
2018). We therefore adopt the state-of-the-art
transformer-based models and directly train
supervised models on the available labeled data for
the low/full data conditions.

With the objective to utilize the unlabeled data
provided in the competition as means to overcome
the scarcity of labeled data in the low-data set-
tings, we employed traditional semi-supervised
approaches–self-training and voting, to combine
predictions from multiple learners5 and obtain ten-
tative labels for the unlabeled data (Li et al., 2019;
Sosea and Caragea, 2022). The “tentatively labeled”
unlabeled data is incorporated via two methods in
our models. In the pretraining approach (PT), we
simply pretrain our classifier on the tentatively-
labeled unlabeled data before fine-tuning on the
labeled data whereas in the Combined approach,
the augmented dataset is used to train a model.

3 Experiments

Datasets: We used the datasets from previous
works (Kuznetsov et al., 2022; Dycke et al., 2023a)
for showcasing our proposed methods on this task.

3https://huggingface.co/sentence-transformers/multi-qa-
mpnet-base-dot-v1

4We experimented with slight variations and paraphrases
of the label descriptions, prompts with and without examples,
as well as a yes/no prompt that uses a yes/no question with
each label. Our best prompt based on validation performance
is listed in Table 1.

5In addition to the provided RoBERTa-based competition
baseline, we also fine-tuned models based on T5 and FlanT5
models from Google. These details are provided in Section 3.
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Setting #Labeled Sentences Model Accuracy Macro-F1
No data 0 QA-MPNet (Semantic Search) 0.31 0.32

0 FlanT5-XL (MC-Prompt) 0.53 0.42
Low data (10%) 338 RoBERTa 0.75 0.71

338 FlanT5-large 0.70 0.68

338 T5-large 0.78 0.74
14673/338 T5-large (PT) 0.81 0.80
15011 T5-large (Combined) 0.77 0.76

Full-data 2691 Roberta 0.83 0.82
2691 FlanT5-large 0.82 0.80

2691 T5-large 0.84 0.82
15844/2691 T5-large (PT) 0.86 0.85
18535 T5-large (Combined) 0.85 0.83

Table 2: Performance of various models is shown on the test split of the F1000RD corpus. The best performance in
each setting is highlighted in bold. For the “X/Y” values shown in the #Labeled Sentences column of PT rows, X is
the number of tentatively-labeled unlabeled instances and Y, the number of labeled instances from the training data.

In particular, we used the F1000RD Corpus6 for
presenting our observations in this section. For the
competition, in accordance with the competition
rules, we only used the provided main and auxiliary
datasets (Dycke et al., 2023b).
Implementation Details: We fine-tuned the Text-
to-Text Transfer Transformer (T5) model for our
classification task. T5 incorporates various tasks
such as translation, question answering, and clas-
sification uniformly as text-to-text learning tasks,
thereby harnessing the power of transfer learning
across multiple tasks, and has been shown to ob-
tain state-of-the-art performance across a range of
tasks (Raffel et al., 2020). The T5 models were ex-
tended to incorporate instruction-based fine-tuning
into the FlanT5-family of models (Chung et al.,
2022). For T5 and FlanT5 experiments, we used
latest implementations available from Hugging-
Face (Wolf et al., 2019). In total, for the low/full
data conditions, three classifiers were trained using
T5, FlanT5, and the RoBERTa baseline provided
in the competition.

All experiments were performed on a single
GPU of an Nvidia Tesla cluster machine with
32GB RAM. On this machine, based on the size
of the datasets and the specific models, train-
ing time ranges between 0.5-24 hours. On our
available infrastructure, the biggest models we
were able to train were the “large” variants (T5-
large and FlanT5-large) from the T5 and FlanT5

6https://github.com/UKPLab/f1000rd

model families. The performance on the develop-
ment/validation split of the dataset was used to set
the number of epochs for the final models.7

3.1 Results and Observations

We illustrate the performance of our models under
the three data conditions on the F1000RD dataset.6

For the low-data condition shown in Table 2, we
used a randomly-selected 10% subset of the train-
ing data. In this table, we see that, not surprisingly,
the accuracy and macro-F1 scores of models in
the full-data condition are significantly higher than
those in the low-data condition. However, in ab-
solute terms, even with 10% of the labeled data
the performance is reasonably high on this dataset.
Moreover, using appropriate prompts in the FlanT5-
XL model, we are able to obtain almost half of
the Macro-F1 score obtained with full-data models
even in the no-data condition.

Based on the competitive validation performance
afforded by the T5-large models in both low-data
and full-data conditions, we selected this model for
exploring the improvements with unlabeled data.
For these two data conditions, we used the three
models (RoBERTa, FlanT5-large, T5-large) to ob-
tain predictions for the auxiliary (unlabeled) data
made available in the competition. We incorpo-
rate those examples for which there is agreement
between RoBERTa and FlanT5-large model pre-
dictions but no agreement with T5-large model

7https://github.com/NUS-IDS/PragTag2023

214



Setting Model F1-case F1-diso F1-rpkg F1-iscb F1-scip F1-mean
No-data QA-MPNet 0.352 0.310 0.354 0.326 0.291 0.326

FlanT5-large 0.420 0.396 0.413 0.424 0.357 0.402∗

Rank-1 Unknown 0.502 0.518 0.492 0.551 0.516 0.516
Low-data T5-large 0.764 0.792 0.789 0.796 0.827 0.794
(Rank-1=Us) FlanT5-large 0.804 0.835 0.803 0.803 0.820 0.813∗

Full-data T5-large 0.813 0.853 0.829 0.806 0.861 0.832
T5-large (PT) 0.843 0.834 0.827 0.821 0.854 0.836
T5-large (Combined) 0.838 0.854 0.848 0.833 0.878 0.850∗

Rank-1 Unknown 0.829 0.842 0.854 0.836 0.889 0.850

Table 3: Phase-1 Results from the competition. We indicate the performance of the best system in the Rank-1 row
and highlight our best F1-mean score with a ∗

Setting Model F1-secret F1-mean
No FlanT5-large 0.425 0.406
Low FlanT5-large 0.759 0.804
Full T5-large 0.741 0.832

(Combined)
Rank-1 Unknown 0.801 0.841

Table 4: Phase-2 Results. The Rank-1 row shows the
performance of the best model from the competition.

predictions as the subset of “weakly-labeled” data
for training new T5 models in PT and Combined
settings described in Section 2.

That is, during data augmentation, we add the
“hard” cases for which the T5-large model predic-
tions do not match the labels predicted by both
RoBERTa and Flan-T5. This step cuts down the
amount of unlabeled data added back to the dataset
by excluding “uninformative” samples for which
the original T5 model predictions already conform
to the other models. In our early experiments,
we observed that adding all examples for which
we have majority labels significantly increases the
training time with no significant improvements in
the validation performance.

As can be seen in Table 2, both PT and Com-
bined settings result in improved test performance
for low-data as well as the full-data conditions. In
particular, the improvement is significantly higher
in the macro F1 score in the low-data condition.
Indeed, with pretraining (PT), the test performance
in low-data conditions is comparable to those of
models trained on full data.

In Table 5, the per-class F1 scores on the test
split for the three models: T5-large, T5-large (PT),
T5-large (Combined) from Table 2 are shown. The
improved F1 scores across classes in both PT and
Combined settings are indicative of a significant
reduction in the number of erroneous predictions

Class Label Default PT Combined
Other 0.63 0.70 0.62
Recap 0.74 0.80 ∗0.77
Strength 0.83 0.87 ∗0.85
Structure 0.95 0.92 0.95
Todo 0.94 0.95 0.94
Weakness 0.84 0.85 ∗0.85
Macro Average 0.82 0.85 0.83

Table 5: Test F1 performance for each class label is
shown for the three T5-large models from Table 2. The
best performances are bolded. We also highlight the
cases where the Combined setting outperforms the de-
fault setting with a ∗.

over the baseline setting. As such, F1 improve-
ments are seen for five out of the six classes in the
PT setting, and three out of the six classes in the
Combined setting.

3.2 Competition Performance and Ranking

The results with our models in the competition are
showcased for the two phases in Tables 3 and 4.
Within the competition timeframe and limits on
number of submissions, we were unable to test all
our models on the final dataset. We highlight our
best-performing models among those we submitted
and also the overall best submission in the com-
petition (Rank 1) for each condition. During the
competition, for the PT and Combined runs, we
used all unlabeled examples with majority labels
(different from the settings used in Table 2).

Overall, we ranked among the top-2 performing
of the four-six submitted systems for the various
data conditions. Compared to the performances
highlighted in Tables 2 and 3, our models underper-
form on the data from the secret domain (Table 4)
indicating that they may not be generalizing well
for new/unseen domains.
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4 Related Work

Sentence classification tasks are well-studied in
NLP research with deep learning models compris-
ing the state-of-the-art (Cohan et al., 2019). Some
recent sentence-level classification tasks include
identification of complex linguistic phenomena in
texts such as emotions, empathy, humor, sarcasm,
and dialog acts (Song et al., 2022; He et al., 2021;
Wang et al., 2022; Bunescu and Uduehi, 2022).

Recently, efforts are underway for collecting rel-
evant datasets for designing assistive automation
aids for peer review (Yuan et al., 2022; Checco
et al., 2021; Kang et al., 2018; Ghosal et al., 2022;
Dycke et al., 2023a). In this context, Kuznetsov, et
al. (2022) introduced pragmatic tagging for label-
ing sentences of peer reviews using a schema that
applies across different research fields and commu-
nities. We borrow from the latest NLP advances
such as prompt-based models and combine them
with unlabeled data on precisely this task.

5 Conclusions and Future Work

We presented our approaches for the pragmatic tag
prediction task for peer reviews as part of the Prag-
Tag Shared Task @ ArgMining Workshop 2023. In
particular, we studied prompt-based fine-tuning as
a viable alternative to traditional learning methods
for this task and showcased how unlabeled data
may be utilized via multiple learners to improve
performance in the low-data settings. In future, we
would like to address the generalizability of our
proposed models across various subject domains as
well as extend our approaches to related tasks such
as paper acceptance prediction (Bao et al., 2021;
Yuan et al., 2022).
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Abstract

Most transformer models are trained on En-
glish language corpus that contain text from
forums like Wikipedia and Reddit. While these
models are being used in many specialized do-
mains such as scientific peer review, legal, and
healthcare, their performance is subpar because
they do not contain the information present in
data relevant to such specialized domains. To
help these models perform as well as possible
on specialized domains, one of the approaches
is to collect labeled data of that particular do-
main and fine-tune the transformer model of
choice on such data. While a good approach,
it suffers from the challenge of collecting a lot
of labeled data which requires significant man-
ual effort. Another way is to use unlabeled
domain-specific data to pre-train these trans-
former model and then fine-tune this model
on labeled data. We evaluate how transformer
models perform when fine-tuned on labeled
data after initial pre-training with unlabeled
data. We compare their performance with a
transformer model fine-tuned on labeled data
without initial pre-training with unlabeled data.
We perform this comparison on a dataset of Sci-
entific Peer Reviews provided by organizers of
PragTag-2023 Shared Task1 and observe that a
transformer model fine-tuned on labeled data
after initial pre-training on unlabeled data us-
ing Masked Language Modelling outperforms
a transformer model fine-tuned only on labeled
data without initial pre-training with unlabeled
data using Masked Language Modelling.

1 Introduction

Transformer based models like BERT Devlin et al.
(2019), RoBERTa Liu et al. (2019), and DeBERTa
He et al. (2020) have become de-facto models
for Natural Language Processing (NLP) tasks out-
performing all past techniques by significant mar-
gins. However, most of these models are originally

1https://www.aclweb.org/portal/content/pragtag-shared-
task-argmining-workshop-2023

trained on English corpus such as BookCorpus Yao
and Huang (2018), English Wikipedia, and Open-
WebText Liu et al. (2019). This becomes an issue
when dealing with data from specialized domains
such as medicine, healthcare, law, scientific peer
reviews, etc. because these models are not aware
of the specialized vocabulary in the domains due
to which their performance is is generally subpar.
This can be seen in Lee et al. (2019) where BERT
performs poorly as compare to a model initialized
with BERT weights and pre-trained on medical
data. Training Transformer based models on data
of specialized domain from the ground up poses sig-
nificant challenges due to the scarcity of extensive
datasets within these domains. So we resort to the
practice of refining models originally trained on the
English corpus by incorporating data sourced from
such domains. Traditionally, this refinement pro-
cess entails acquiring labeled data, structured ac-
cording to well-defined formats pertinent to a task
within the domain of interest. Subsequently, the
model undergoes fine-tuning using this collected
data. This approach is not efficient due to the labor-
intensive and expensive nature of gathering substan-
tial volume of labeled data. An alternative strategy
– when we have a lot of unlabeled data and only
a handful of labeled data - is domain adaptation
(DA). In this paper we benchmark Masked Lan-
guage Modelling (MLM) Devlin et al. (2019) as a
DA strategy and see how it performs on PragTag-
2023 Shared Task Dycke et al. (2023a). Although
it is one of the strategies used to pre-train BERT,
it has shown promise as a DA technique as can be
seen in Ladkat et al. (2022), Karouzos et al. (2021).

2 Related Work

According to V7 Labs 2, Domain Adaptation (DA)
is a technique to improve the performance of a
model on a target domain containing insufficient

2https://www.v7labs.com/blog/domain-adaptation-guide
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annotated data by using the knowledge learned by
the model from another related domain with ad-
equate labeled data. Source Domain is the data
distribution on which the model is trained using
labeled examples. Target domain is the data distri-
bution on which a model pre-trained on a different
domain is used to perform a similar task. In this pa-
per, Source Domain is the data distribution present
in english corpus such as BookCorpus, English
Wikipedia, and OpenWebText and Target Domain
is the data distribution present in the data of this
shared task.

There are primarily four types of DA techniques
- Supervised DA, Semi-Supervised DA, Weakly Su-
pervised DA, and Unsupervised DA. For this paper,
we will primarily focus on Supervised and Unsu-
pervised DA. In Supervised Domain Adaptation
(SDA), target domain data is completely labeled.
In Unsupervised Domain Adaptation (UDA), any
kind of labels for the target domain data are entirely
missing.

Lee et al. (2019) initialize BioBERT with
weights from BERT, which was pre-trained on gen-
eral domain corpora. Then, BioBERT is pre-trained
on biomedical domain corpora. To show the effec-
tiveness of our approach in biomedical text min-
ing, BioBERT is fine-tuned and evaluated on three
popular biomedical text mining tasks - NER, RE,
and QA. The authors show that pre-training BERT
on biomedical corpora largely improves its perfor-
mance on these three tasks.

Karouzos et al. (2021) start from a model that
is pretrained on general corpora, keep pretraining
it on target domain data using the MLM task. On
the final fine-tuning step, the update the model
weights using both a classification loss on the la-
beled source data and Masked Language Modeling
loss on the unlabeled target data.

Ladkat et al. (2022) use BERT-base model for
MLM and finetune it for text classification on the
target dataset. They freeze the encoder layer while
training only the embedding and final task-specific
dense layers. By doing so, they specialise the gen-
eral domain word representations according to the
target tasks and show that the performance of the re-
sultant model is better than only BERT-base model.

In this paper, we will focus on Masked Language
Modelling (MLM) which is a type of pre-training
method that was introduced in BERT.

3 Task Description

In this task, we are given two datasets extracted
from Kuznetsov et al. (2022). Both of these
datasets contain a multi-domain collection of free-
text peer reviews labeled with pragmatic labels on
the sentence level. In the first dataset, each peer
review can belong to medical articles, computer sci-
ence, and scientific policy research. It has two parts
parts - training dataset and test dataset. Training
dataset is used to train the model and test dataset
is used to evaluate the performance of the model
trained on the training dataset. Going forward, we
refer to these two datasets as Train Dataset and Full
Dataset respectively. The second dataset is a se-
cret test set Secret Dataset. Train, Full, and Secret
Dataset contain same domains with Secret Dataset
containing one additional domain not present in
Train or Full Datasets. Every sentence in these
datasets has one of the following pragmatic labels:
Recap, Strength, Weakness, Todo, Other, and Struc-
ture. Our goal in this task is to correctly classify
each peer review sentence into one of these cate-
gories.

In addition to these datasets, we use an auxil-
iary dataset, F1000raw, extracted from Dycke et al.
(2023b) which is used for pre-training. This is a
large unlabeled collection of peer reviews.

4 Methodology

For our experiments, we use DeBERTa-Base since
it has been shown to perform better than mod-
els like BERT and RoBERTa. We first pre-train
DeBERTa-Base on F1000raw using Masked Lan-
guage Model (MLM) as shown in Fig.1. We then
fine-tune this model using Train Dataset. We also
fine-tune a DeBERTa-Base model using only Train
Dataset without the pre-train step. We can see this
workflow in Fig.2. We then pass each review from
Full and Secret Datasets, take an average of the
logits for all the classes and output the class with
the highest logit score as shown in Fig.3. We then
compare the performance of these two models and
show that MLM helps improve the performance of
the model on this classification task.

5 Implementation Details

Our solution comprises of two steps -
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Pre-trained
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Figure 1: Pre-training on DeBERTa-base by using MLM
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For every Split

Multi-Class
Classification

Fine-Tuned
DeBERTa-base

Model for every split
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Figure 2: Finetuning DeBERTa-Base
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DeBERTa-base Model

Split 1

...

Split 5

Full / Secret Dataset

Average Logits for
every prediction of

every sentence

Predict the category
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average logit score as
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Figure 3: Inference on Fine-Tuned DeBERTA-base

5.1 Masked Language Modelling using
F1000raw

As part of this step, we use all reviews in F1000raw.
We combine these reviews and randomly split them
into train, validation, and test datasets with 50%,
25%, and 25% share of data. We tokenize each
of these datasets using a tokenizer created from
the DeBERTa-base model. After tokenization, we
concatenate all the sequences and split the concate-
nated sequences into shorter chunks of block_size
of 512. We used this block_size because it covers
all reviews and also it is short enough for T4 GPU.

5.2 Fine-tuning on Train Dataset
In this step, we use train a multi-class classification
model on the Train Dataset. Since our objective
is to compare performance of fine-tuning a multi-
class classification model on a domain adapated
model vs fine-tuning a multi-class classification
model on a base model without domain adapta-
tion, we perform the below steps twice - first for
the domain adapted DeBERTa-Base obtained from
above step and second for DeBERTa-Base without
domain adaptation.

We use GroupKFold Cross Validation Strategy
from scikit-learn Pedregosa et al. (2011) in order
to ensure that each domain belongs to either train
or validation or test split. We perform a 5 Group-
KFold to create 5 Train-Validation splits of the
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Domain Split 1 Split 2 Split 3 Split 4 Split 5

W WO W WO W WO W WO W WO
RPKG - - 84.75 80.79 73.89 66.76 76.33 74.13 79.90 70.06
CASE 69.17 76.13 87.66 82.57 82.07 81.27 90.55 88.27 68.58 63.96
SCIP 84.97 73.44 75.73 72.13 62.05 59.89 91.01 68.18 75. 61.32
ISCB 93.27 83.46 75.27 77.58 - - 84.04 81.48 79.84 78.91
DISO 68.35 80.98 38.18 50. 86.28 88.73 80.63 72.04 97.13 91.11
Mean 78.94 78.50 72.32 72.62 76.10 74.16 84.51 76.82 80.09 73.07

Table 1: Comparison of F1 Scores for With (W) and Without (WO) MLM for all 5 Splits

Domain With MLM Without MLM
RPKG 82.75% 84.06%
CASE 81.97% 82.94%
SCIP 86.45% 85.04%
ISCB 81.81% 80.75%
DISO 82.76% 81.42%
Mean 83.15% 82.84%

Table 2: F1 Score for Full Dataset

Domain With MLM Without MLM
RPKG 82.75% 84.06%
CASE 81.97% 82.94%
SCIP 86.45% 85.04%
ISCB 81.81% 80.75%
DISO 82.76% 81.42%
SECRET 77.93% 73.21%
Mean 82.28% 81.24%

Table 3: F1 Score for Secret Dataset

training data. Within every split, we perform an-
other GroupKFold split to divide the Validation
into Validation and Test datasets. This ensures that
we get Test score for every fold and use validation
set exclusively for getting the best model.

6 Results and Discussion

We evaluate results on three datasets - 1) Train
Dataset, 2) Full Dataset, and 3) Secret Dataset.
For evaluating performance using Train Dataset,
we use test dataset created in 5.2 of every split and
pass it through the model trained using training
data from that split. For evaluating performance
on Full and Secret Datasets, we pass each review
from these datasets through all five models, take an
average of the logits for all the classes and output
the class with the highest logit score.

Train Dataset gives us an idea about how both
of the models compare across different splits and
if one model is consistently better than the other
model. Full Dataset contains similar domains as
we have in Train Dataset but doesn’t contain target
variable. In Secret Dataset we have a new domain
in addition to domains present in Full Dataset. The

scores for every split of Train Dataset can be found
Table 1, scores for Full Dataset can be found in
Table 2, and the scores for Secret Dataset can be
found in Table 3.

One interesting observation from Table 1, 2, and
3 is that the domain adaptation seems to be work-
ing on only for some domains and not others. This
might be discouraging as it suggest that MLM only
works sporadically but it is actually not the case.
The reason why MLM works for some domains and
not for others is due to difference in word distribu-
tions in different domains. Interested readers can
refer to the analysis in the Supplementary Materials
Section for detailed analysis of word frequencies
of various domains in full and secret dataset and
different splits of training data. The analysis shows
us that domain adaptation is very effective in do-
mains where the distribution has more words about
Peer Reviews (which is the theme of this task) viz.
SCIP, ISCB as compared to splits which have more
health related terms viz. CASE and DISO.

7 Conclusion and future work

As we can see in the results, domain adapted
DeBERTa-base beat DeBERTa-base without do-
main adaptation. While this is an encouraging re-
sult, how is this performance difference impacted
by the scale of models and architecture of the model
remains to be studied. We also need to study this
problem on datasets from other niche domains as
well. In addition to this, we can also study how do-
main adaptation impacts LLMs which are orders of
magnitude larger than architectures such as BERT,
RoBERTa, and DeBERTa.

Limitations

One of the biggest limitations of this analysis
would be utilization of GPUs with more RAM as
the size of the models scale. For example - We
had to settle for DeBERTa-base because DeBERTa-
large wouldn’t fit in a GPU with 24 GB RAM. So,
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as we analyse models with more parameters, we
might have use GPUs with more RAM which might
be a financial constraint to some teams.

References
Jacob Devlin, Ming-Wei Chang, Kenton Lee, and

Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Nils Dycke, Ilia Kuznetsov, and Iryna Gurevych. 2023a.
Argmining 2023 shared task - pragtag: Low-resource
multi-domain pragmatic tagging of peer reviews. In
Proceedings of the 10th Workshop on Argument Min-
ing, Singapore. Association for Computational Lin-
guistics.

Nils Dycke, Ilia Kuznetsov, and Iryna Gurevych. 2023b.
NLPeer: A unified resource for the computational
study of peer review. In Proceedings of the 61st An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 5049–
5073, Toronto, Canada. Association for Computa-
tional Linguistics.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and
Weizhu Chen. 2020. Deberta: Decoding-
enhanced BERT with disentangled attention. CoRR,
abs/2006.03654.

Constantinos Karouzos, Georgios Paraskevopoulos, and
Alexandros Potamianos. 2021. UDALM: Unsuper-
vised domain adaptation through language modeling.
In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 2579–2590, Online. Association for Computa-
tional Linguistics.

Ilia Kuznetsov, Jan Buchmann, Max Eichler, and Iryna
Gurevych. 2022. Revise and Resubmit: An Inter-
textual Model of Text-based Collaboration in Peer
Review. Computational Linguistics, 48(4):949–986.

Arnav Ladkat, Aamir Miyajiwala, Samiksha Jagadale,
Rekha A. Kulkarni, and Raviraj Joshi. 2022. Towards
simple and efficient task-adaptive pre-training for text
classification. In Proceedings of the 2nd Conference
of the Asia-Pacific Chapter of the Association for
Computational Linguistics and the 12th International
Joint Conference on Natural Language Processing
(Volume 2: Short Papers), pages 320–325, Online
only. Association for Computational Linguistics.

Jinhyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon
Kim, Sunkyu Kim, Chan Ho So, and Jaewoo Kang.
2019. BioBERT: a pre-trained biomedical language

representation model for biomedical text mining.
Bioinformatics, 36(4):1234–1240.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. 2011. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research,
12:2825–2830.

Wenlin Yao and Ruihong Huang. 2018. Temporal event
knowledge acquisition via identifying narratives. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 537–547, Melbourne, Australia.
Association for Computational Linguistics.

222



Author Index

Ali, Basit, 52

Bexte, Marie, 197
Bilalpur, Maneesh, 167
Bondarenko, Alexander, 45

Cantador, Iván, 89
Chaitanya, Krishna, 157
Chan, Sophia, 64
Choi, Jungmin, 19
Chouli, Billal, 35
Cimiano, Philipp, 107

Ding, Yuning, 197
Dorgeloh, Heidrun, 11
Dycke, Nils, 187

Eetemadi, Sauleh, 133
Elaraby, Mohamed, 120

Fröbe, Maik, 45

Geng, Jia, 175
Gollapalli, Sujatha Das, 212
Gollub, Tim, 157
Guerraoui, Camelia, 19
Guilluy, Samuel, 35
Guo, Yihao, 202
Gupta, Abhibha, 167
Gurevych, Iryna, 187

Hagen, Matthias, 45
Hautli-Janisz, Annette, 100
Heinisch, Philipp, 107
Herbold, Steffen, 100
Ho, Joyce, 175
Horbach, Andrea, 197
Huang, Yixin, 212

Inoue, Naoya, 19
Inui, Kentaro, 19

Jung, Kyomin, 207

Kallmeyer, Laura, 11
Kashefi, Omid, 64

Katzer, Patrick, 100
Kawaletz, Lea, 11
Kiesel, Johannes, 157
Kikteva, Zlata, 100
Kim, Jung-Jae, 181
Knaebel, René, 76
Kuznetsov, Ilia, 187

Lawrence, John, 1
Lee, Dongryeol, 207
Lee, Yoonsang, 207
Levitan, Sarah Ita, 162
Li, Xuan, 175
Litman, Diane, 120
Liu, Zhexiong, 120
Luo, Zhipeng, 202

Mehats, Florian, 35
Mim, Farjana Sultana, 19
Mindlin, Dimitry, 107
Mishra, Prakhar, 218
Moosavi Monazzah, Erfan, 133

Naito, Shoichi, 19
Nanda, Albert, 218
Ng, See-Kiong, 212
Nobakhtian, Melika, 133

Oest, Mirko, 100

Palshikar, Girish, 52
Pawar, Sachin, 52

Rajamanickam, Saravanan, 181
Rajaraman, Kanagasabai, 181
Reimer, Jan Heinrich, 45
Reisert, Paul, 19
Robbani, Irfan, 19
Romberg, Julia, 148
Ruiz-Dolz, Ramon, 1
Ruth, Simon, 157

Salama, Mohamed, 157
Schaefer, Robin, 76
See, Simon, 139
Segura-Tinoco, Andrés, 89

223



Sharma, Arushi, 167
Sharma, Shashi, 157
Shi, Haochen, 139
Shokri, Mohammad, 162
Singh, Dhirendra, 52
Singh, Keshav, 19
Sinha Banerjee, Anindita, 52
Soltani, Mohammad, 148
Somasundaran, Swapna, 64
Song, Yangqiu, 139
Stede, Manfred, 76
Stein, Benno, 157
Stodden, Regina, 11
Suri, Kunal, 218

Torky, Islam, 157
Trautsch, Alexander, 100

Veeramani, Hariram, 181

Wang, Jiahui, 202
Wang, Weiqi, 139
Wang, Wenzhi, 19
Wang, Zhaowei, 139
Westerski, Adam Maciej, 181
Wong, Ginny, 139

Xu, Baixuan, 139

Yu, Shaojun, 175

Zamaninejad, Ghazal, 133
Zhang, Jing, 175
Zheng, Tianshi, 139
Zheng, Zhiyuan, 175
Zhong, Yang, 120
Zong, Qing, 139


	Program
	Detecting Argumentative Fallacies in the Wild: Problems and Limitations of Large Language Models
	Using Masked Language Model Probabilities of Connectives for Stance Detection in English Discourse
	Teach Me How to Argue: A Survey on NLP Feedback Systems in Argumentation
	Constituency Tree Representation for Argument Unit Recognition
	Stance-Aware Re-Ranking for Non-factual Comparative Queries
	Legal Argument Extraction from Court Judgements using Integer Linear Programming
	Argument Detection in Student Essays under Resource Constraints
	Towards Fine-Grained Argumentation Strategy Analysis in Persuasive Essays
	Dimensionality Reduction for Machine Learning-based Argument Mining
	On the Impact of Reconstruction and Context for Argument Prediction in Natural Debate
	Unsupervised argument reframing with a counterfactual-based approach
	Overview of ImageArg-2023: The First Shared Task in Multimodal Argument Mining
	IUST at ImageArg: The First Shared Task in Multimodal Argument Mining
	TILFA: A Unified Framework for Text, Image, and Layout Fusion in Argument Mining
	A General Framework for Multimodal Argument Persuasiveness Classification of Tweets
	Webis @ ImageArg 2023: Embedding-based Stance and Persuasiveness Classification
	GC-Hunter at ImageArg Shared Task: Multi-Modal Stance and Persuasiveness Learning
	Argumentative Stance Prediction: An Exploratory Study on Multimodality and Few-Shot Learning
	SPLIT: Stance and Persuasion Prediction with Multi-modal on Image and Textual Information
	Semantists at ImageArg-2023: Exploring Cross-modal Contrastive and Ensemble Models for Multimodal Stance and Persuasiveness Classification
	Overview of PragTag-2023: Low-Resource Multi-Domain Pragmatic Tagging of Peer Reviews
	CATALPA_EduNLP at PragTag-2023
	DeepBlueAI at PragTag-2023:Ensemble-based Text Classification Approaches under Limited Data Resources
	MILAB at PragTag-2023: Enhancing Cross-Domain Generalization through Data Augmentation with Reduced Uncertainty
	NUS-IDS at PragTag-2023: Improving Pragmatic Tagging of Peer Reviews through Unlabeled Data
	SuryaKiran at PragTag 2023 - Benchmarking Domain Adaptation using Masked Language Modeling in Natural Language Processing For Specialized Data

