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Abstract

We consider the problem of red teaming LLMs
on elementary calculations and algebraic tasks
to evaluate how various prompting techniques
affect the quality of outputs. We present a
framework to procedurally generate numeri-
cal questions and puzzles, and compare the
results with and without the application of sev-
eral red teaming techniques. Our findings sug-
gest that even though structured reasoning and
providing worked-out examples slow down the
deterioration of the quality of answers, the
gpt-3.5-turbo and gpt-4models are not
well suited for elementary calculations and rea-
soning tasks, also when being red teamed.

1 Introduction

Our work focuses on red teaming, a practice in AI
safety that aims to systematically find backdoors
in Large Language Models (LLMs) to elicit irre-
sponsible responses (Microsoft, 2023). There exist
a variety of techniques that have been found to in-
crease the likelihood of malicious outputs (Perez
et al., 2022; Derczynski, 2023). Some of them in-
volve strategic prompting to persuade the model to
agree to a malicious request; others rely on query-
ing it to rephrase a sentence or construct synthetic
data. A method that is broadly used in our research
is “history management” where the model is either
asked to explain its understanding or is provided
with an explanation before the answer is elicited.

Evaluating red teaming at scale tends to be com-
plicated because in many contexts the model’s an-
swers require manual verification. For instance, if
the model is red teamed to assess its propensity
to help the users construct explosive devices, au-
tomatic assessment of the answer would be very
difficult. After extracting the instruction from the
answer, it would also need to be validated whether
these could lead to a functional explosive device.
Indeed, when Ganguli et al. (2022) conducted one
of the first attempts to red team AI systems at scale,

they needed to employ a large group of 324 crowd
workers who executed the attacks and annotated
approximately 40 000 red teaming instances for the
toxicity of the produced responses.

In this work, we consider whether the techniques
described previously in the literature can be used
to improve the quality of LLM answers. While
LLMs have a tendency to “hallucinate” in many
domains, we choose to evaluate the efficiency of
red teaming techniques in school-level calculations
and algebraic puzzles. Previous work, such as that
of Frieder et al. (2023), has shown that advanced
LLMs – specifically ChatGPT – tend to be highly
inconsistent on mathematics tasks. Similarly, Imani
et al. (2023) found that hallucinations tend to be
amplified when models attempt mathematical rea-
soning. We believe that equations and puzzles are
useful testing grounds because the quality of the
model’s answers can be objectively evaluated. Fur-
ther, we choose to tackle this challenge as mini-
mizing the impact of hallucinations may have posi-
tive consequences for various fields, for example,
computer-assisted education.

We focus on two research questions. First, we
ask whether established red teaming techniques can
reduce model hallucinations on mathematical tasks.
Second, we investigate if the performance of GPT
models on such problems improves when they are
given examples. To answer these, we contribute
a Python framework for automatic red teaming at
scale, which we make available to the research
community along with all used prompts and data**.

2 Related Work

2.1 Safety of LLMs
While companies responsible for top-performing
LLMs claim to put considerable amounts of ef-
fort into developing guardrails for their models

*Equal contribution
**https://github.com/RedTeamingforLLMs

/RedTeamingforLLMs

https://github.com/RedTeamingforLLMs/RedTeamingforLLMs
https://github.com/RedTeamingforLLMs/RedTeamingforLLMs
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and ensuring they do not spread false information
(OpenAI, 2023), such models are far from safe
(Derczynski et al., 2023). For instance, Greshake
et al. (2023) note that given the scale of modern
LLMs, making them entirely foolproof might be an
unattainable goal. In the technical report of GPT-4
(OpenAI, 2023), the authors explicitly enumerate
the types of threats that the deployment of their
model may pose, including its propensity to halluci-
nate content. Indeed, dealing with hallucinations is
among the most frequently highlighted challenges
for LLMs (Alkaissi and McFarlane, 2023; Maynez
et al., 2020). Another influential paper in the field is
that of Wang et al. (2023) who focus on the vulner-
abilities of text-davinci-003 and examine
its responses to adversarial and out-of-distribution
(OOD) inputs. The researchers concluded that
the model’s absolute performance leaves ample
room for improvement and that malicious and un-
expected outputs pose a significant threat.

2.2 Mathematical Reasoning in LLMs

Several authors have considered the mathemat-
ical and logical capabilities of LLMs. Frieder
et al. (2023) evaluated ChatGPT on a variety of
mathematics-based datasets. Rather than actual cal-
culations – “multiply A and B” as is the case in our
work – the authors focused on mathematical think-
ing, for instance in the form of proofs. Imani et al.
(2023) proposed the MathPrompter extension
to GPT-models where these are prompted to eval-
uate a set of arithmetic operations in a scattershot
manner. Then, by combining results from various
forms of prompting, the authors arrive at a confi-
dence estimate for the answer. Szomiu and Groza
(2021) contribute a dataset of puzzles designed as a
benchmark for Language Models. The correctness
of the puzzles and accompanying questions is ver-
ified with theorem provers. Differently from our
approach, they put primary emphasis on the connec-
tions between the puzzles and generated questions.
Instead, we make the AI independently solve puz-
zles which combines red teaming attempts with
procedural question generation.

3 Methods

In all experiments we make use of the gpt-4 and
gpt-3.5-turbomodels trained on data sourced
until September 2021. The models are accessed
through the OpenAI API using our framework.

3.1 Framework

We develop a Python framework to procedurally
generate questions, construct prompts around them,
and query the OpenAI API. The framework is
built around two abstract classes: Problem and
Context. The former automatically generates
tasks for the LLM, corresponding to the types of
experiments described in Section 3.3 below. The
latter refers to the type of a red teaming technique
used to frame a Problem. Within a single ex-
periment, we can generate a set of Problems
embedded in various Contexts and use them
as input for the runner Pipeline class. The
Pipeline also allows for the modification of
model hyper-parameters. We purposefully leave
the temperature at the default value of 1 and
set the top_p hyper-parameter to a relatively low
value of 0.2. The reasoning is simple: we aim for
the model to produce controlled, factual answers.

3.2 Contexts

Each of the Contexts exists in multiple varia-
tions. We design them to cover the range of red
teaming techniques described in the literature as
completely as possible; however, some techniques
cannot be readily adapted to the tasks at hand.
CodeContext requires the model to produce

code in 1 of 5 popular programming languages to
solve the problem at hand, and then simulate its
execution to provide the final answer.
ExplanationContext asks the model to

first explain its understanding of the problem or
rephrase it, and then provide the answer. This way
we encourage the model to attempt step-by-step
reasoning about the problem in natural language.
ImpersonationContext requests that the

model impersonates a celebrated mathematician to
provide the answer in their words. Each request
includes the name of 1 of 5 historical figures.
RestoryingContext asks the model to

solve the problem by putting it in 1 of 5 frames.
For example, the model may be asked to write a
manual, poem, or a theater play with two actors.
DefaultContext does not constitute a red

teaming attempt and instead is used as a baseline.
We simply provide the model with the problem.

3.3 Experiments

We conduct two experiments to assess calculative
and algebraic capabilities at the primary school
level. These are performed in multiple settings
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Technique Difficulty Red teaming Edit distance
(characters) ↓

Relative edit
distance (%) ↓

Relative
distance (%) ↓ Accuracy (%) ↑

Code
Easy ✓ 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 100.0

0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 100.0

Hard ✓ 1.490 (1.596) 19.1 (20.3) 0.0 (0.1) 49.5
1.350 (1.410) 17.6 (18.1) 0.0 (0.0) 46.0

Explanation
Easy ✓ 0.180 (0.740) 4.5 (18.5) 5.5 (22.0) 94.0

0.000 (0.000) 0.0 (0.0) 0.0 (0.0) 100.0

Hard ✓ 1.565 (2.047) 20.9 (26.8) 14.1 (33.5) 54.1
1.010 (1.300) 12.8 (16.4) 0.0 (0.0) 59.0

Impersonation
Easy ✓ 0.265 (0.903) 6.6 (22.6) 5.3 (21.3) 91.5

0.025 (0.211) 0.6 (5.3) 0.0 (0.0) 98.5

Hard ✓ 1.540 (1.928) 20.0 (24.6) 6.6 (22.9) 52.0
1.175 (1.387) 15.3 (17.9) 0.0 (0.1) 54.0

Re-storying
Easy ✓ 0.926 (1.382) 28.4 (41.2) 23.8 (53.1) 65.0

0.000 (0.000) 0.0 (0.0) 0.0 (0.0) 100.0

Hard ✓ 3.827 (2.539) 56.1 (35.3) 55.0 (85.0) 18.8
1.410 (1.429) 17.9 (18.1) 0.0 (0.0) 46.0

Table 1: Elementary mathematics experiment on gpt-turbo-3.5 at top_p=0.2. SD is given in parentheses.

which differ in the applied red teaming technique or
the presence of an explanation. For each setting, we
query the model with 200 independent questions
and present the averaged results. We provide a
representative sample of prompts and responses for
both experiments in the Appendix A.

Experiment 1: Elementary Mathematics
We generate addition and multiplication problems
at two levels of difficulty: easier with numbers in
the range 1 to 100, and harder with numbers in the
range 1 000 to 10 000. While it is relatively likely
that the model has seen the easier calculations dur-
ing training, the answers to harder calculations may
be at the order of tens of millions, reducing the
likelihood that the model has seen the exact calcu-
lation before. We pose the questions in different
but equivalent ways to minimize the impact of the
formulation of a question on the model’s response.

Experiment 2: Algebraic Reasoning
We generate puzzles describing systems of equa-
tions with three variables and a unique solution. By
modifying the subjects, objects, hints, and values
we can generate billions of valid puzzles, making
them effectively unique. The values in this task are
in the same order of magnitude as easy calculations
in Experiment 1. We provide the LLMs with two
prompts: one is preceded by an example with a so-
lution and an explanation of how it can be solved;
the other does not include an example. This way
we measure whether the model is able to make use
of the provided knowledge to solve the task.

3.4 Evaluation

The answers produced by the model sometimes
include chains of thought (CoT). While it may be
interesting to evaluate them, for example, to ver-
ify that a correct final answer does not arise from
a combination of mistakes in the intermediate an-
swers, we rather focus on the final answers. As
we find, even in this highly optimistic setting the
models’ performance is far from satisfying.

We evaluate the answers on three metrics. We
deem accuracy – the fraction of correctly answered
queries – to be the most important: in real-world
applications, users will tend to prefer the correct
answer, rather than an answer that is arbitrarily
close to the ground truth. Given that LLMs ul-
timately operate on strings, we also consider the
edit (Levenshtein) distance allowing for insertions,
deletions, and substitutions. This comes from the
insight that the most and the least significant dig-
its may be inferred from training data, but models
may hallucinate the middle digits. We also calcu-
late the relative edit distance, dividing its value by
the length of the ground truth answer. Finally, we
look at the relative numerical distance between the
model’s answer and the ground truth result.

4 Results

To ensure a credible comparison between the an-
swers with and without red teaming, we employ
identical unique sets of questions for each experi-
mental setup. In this section we present the results
on gpt-3.5-turbo, corresponding results for
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Technique Example Edit distance
(characters) ↓

Relative edit
distance (%) ↓

Relative
distance (%) ↓ Accuracy (%) ↑

Default ✓ 1.530 (1.367) 78.9 (72.7) 381.5 (1423.8) 38.3
1.758 (1.130) 95.2 (71.5) 386.8 (1261.1) 22.2

Code ✓ 1.815 (1.325) 97.9 (57.4) 182.5 (858.2) 6.6
1.848 (0.704) 99.3 (43.6) 205.4 (1445.1) 3.8

Explanation ✓ 1.726 (1.443) 99.2 (92.3) 2073.6 (14097.8) 32.0
1.710 (1.291) 95.5 (79.1) 426.9 (1249.7) 27.4

Impersonation ✓ 1.619 (1.188) 94.1 (78.8) 576.1 (1712.0) 27.1
2.131 (0.718) 120.3 (58.0) 717.7 (2183.3) 3.0

Re-storying ✓ 2.171 (0.990) 119.1 (67.5) 739.1 (1830.0) 10.9
2.215 (0.928) 119.2 (58.4) 672.1 (2031.4) 7.9

Table 2: Algebraic reasoning experiment on gpt-turbo-3.5 at top_p=0.2. SD is given in parentheses.

gpt-4 are available in the Appendix B.
The results of Experiment 1 are presented in Ta-

ble 1. As expected, Easy calculations are generally
completed with accuracy close to 100%, while the
performance on Hard problems is roughly half of
that. The Code context preserves perfect perfor-
mance on Easy problems and leads to an increase
of 3.5 pp. in accuracy on Hard problems. Other
red teaming techniques degrade the performance
across the board. While Explanation and Imperson-
ation have relatively small effects, Re-storying has
a large negative impact – the accuracy decreases
by 35 pp. and 27.2 pp. on Easy and Hard problems
respectively. Upon inspection, we find that it leads
to long responses where the model often focuses on
developing a story, instead of providing the answer.

Experiment 2 (presented in Table 2) suggests
that applying red teaming techniques and providing
examples may be at odds. While in all cases exam-
ples lead to an increase in performance on almost
all metrics, some techniques benefit more than oth-
ers. Notably, for Impersonation the improvement
is 9-fold (from 3% to 27.1%). Without examples,
the Explanation Context yields the best accuracy
(27.4%), beating the baseline by 5.2 pp. Altogether
the best performance of 38.3% is achieved by the
baseline when examples are provided.

We observe similar trends with gpt-4 although
its accuracy is higher, especially in Experiment 2.
There, examples improve performance only for Re-
storying. In Experiment 1 red teaming techniques
have an overall smaller impact on the performance.

5 Discussion

Our results show that gpt-3.5-turbo and
gpt-4 are generally not suited for mathematics
tasks, achieving the accuracy of only ≈50-60% on
harder calculations (succeeding at additions but not

multiplications) and puzzles. At best, red teaming
techniques slightly improve the performance, and
at worst (Re-storying) degrade it. Prompts with
red teaming tend to be much longer, which likely
detracts from the problem at hand. Code and Expla-
nation – where we see some positive results – force
the model to solve the task in a structured manner,
which works well in the domain of interest. The
results of Experiment 1 further suggest that the nu-
merical abilities of the models stem mostly from
memorization, rather than their ability to follow
simple algorithms as the accuracy on Hard prob-
lems is roughly half of that on the Easy ones. In
Experiment 2 we find that examples improve per-
formance on the less advanced gpt-turbo-3.5
but tend to degrade it on the state-of-the-art gpt-4.
For the latter, examples likely introduce noise or
are not tailored well enough: the models receive
only an explanation of the approach to the problem.

6 Conclusions and Limitations

We develop a Python framework for automatic red
teaming of LLMs at scale that can be applied in red
teaming domains with ground truth answers, and
use it to evaluate two GPT models at school-level
calculations and puzzles. While most techniques
under consideration impact performance negatively,
those that prompt the models to structure their re-
sponses can produce somewhat favorable outcomes.
We also find that providing examples improves per-
formance, which suggests that GPT models have
some capacity to transfer knowledge between prob-
lems. Our work has limitations to be addressed in
the future. First, we evaluate only one type of LLM.
Second, many of our hypotheses cannot be proven
as the training data is not publicly available. Finally,
we do not consider cases where the model provides
no answer when uncertain (Lammerts et al., 2023).
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A Examples of prompts and responses

In this Appendix, we provide a selection of rep-
resentative prompts and corresponding responses
for each Context as they have been applied in
Experiment 1 (A.1) and Experiment 2 (A.2). Al-
though the examples are sometimes re-formatted
for readability, they are otherwise quoted verba-
tim. Our framework automatically generates sim-
ilar prompts for future reproductions and further
experiments, and can be readily adapted to new red
teaming techniques and domains.

A.1 Experiment 1: Elementary Mathematics
DefaultContext:
Prompt: What is the product of 9163 and 3584?
Model Response: [FINAL ANSWER] 32843072
Prediction: 32843072
Ground Truth: 32840192

ExplanationContext:
Prompt: Explain how you understand the follow-
ing problem: Provide the product of 4263 and 3224.
Then provide an answer to this problem.
Model Response: This problem is asking for the
result of multiplying 4263 by 3224. To solve this,
you simply need to multiply these two numbers
together. [FINAL ANSWER] 13744232
Prediction: 13744232
Ground Truth: 13743912
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http://arxiv.org/abs/2202.03286
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http://arxiv.org/abs/2302.12095


6

ImpersontationContext:
Prompt: Imagine you are the mathematician Bern-
hard Riemann. As Bernhard Riemann answer the
following problem: What is the product of numbers
3499 and 4691?
Model Response: [FINAL ANSWER] The prod-
uct of numbers 3499 and 4691 is 16411309.
Prediction: 16411309
Ground Truth: 16413809

RestoryingContext:
Prompt: Write a manual describing how to solve
the following problem: What is the sum of 2739
and 1180?

Model Response:
Manual: How to Solve the Sum of 2739 and 1180
Step 1: Identify the Numbers
The first step in solving this problem is to identify
the numbers that you are adding together. In this
case, the numbers are 2739 and 1180.
Step 2: Align the Numbers
Next, you need to align the numbers vertically by
their place values. This means that the ones place
of each number should be lined up with the ones
place of the other number, the tens place with the
tens place, and so on. Here’s how the numbers
should be aligned:

2739
+ 1180
Step 3: Add the Ones Place
Start by adding the numbers in the ones place (the
rightmost column). In this case, you are adding 9
and 0. The sum of 9 and 0 is 9.
Step 4: Add the Tens Place
Next, move to the tens place (the second column
from the right). Add the numbers in this column.
In this case, you are adding 3 and 8. The sum of 3
and 8 is 11. Write down the 1 and carry the other 1
to the next column.
Step 5: Add the Hundreds Place
Now, add the numbers in the hundreds place (the
third column from the right), including any number
you carried from the tens place. In this case, you
are adding 7, 1 (carried from the tens place), and 1.
The sum of 7, 1, and 1 is 9.
Step 6: Add the Thousands Place
Finally, add the numbers in the thousands place
(the leftmost column). In this case, you are adding

2 and 1. The sum of 2 and 1 is 3.
Step 7: Write Down the Final Answer
Write down the final answer by combining the num-
bers you got from each column. From right to left,
the numbers are 9, 1, 9, and 3. So, the final answer
is 3919.
[FINAL ANSWER] The sum of 2739 and 1180 is
3919.
Prediction: 3919
Ground Truth: 3919

CodeContext:

Prompt: Write code in Python to solve the
following problem: Add 5002 and 6231. Then
simulate the execution of this code to provide an
answer to this problem.

Model Response:
Here is the Python code to solve the problem:

# Python code t o add 5002 and 6231
def add_numbers ( num1 , num2 ) :

re turn num1 + num2

r e s u l t = add_numbers ( 5 0 0 2 , 6231)
p r i n t ( r e s u l t )

Simulating the execution of this code:

# Python code t o add 5002 and 6231
def add_numbers ( num1 , num2 ) :

re turn num1 + num2

r e s u l t = add_numbers ( 5 0 0 2 , 6231)
p r i n t ( r e s u l t )

This will output: 11233 [FINAL ANSWER] The
sum of 5002 and 6231 is 11233.
Prediction: 11233
Ground Truth: 11233
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A.2 Experiment 2: Algebraic Reasoning
Here we provide sample prompts in the regime
with examples, which are italicized below. The
only difference in baseline prompts (without
examples) is that the part in italics is not included.

DefaultContext:
Prompt: You will now receive an example puzzle
with an explanation how to solve it. Example
puzzle: There are three people named Daniel,
Anne and Elise. If Daniel had 3 times the pencils,
together they would all have 147 pencils. If Anne
had 3 times the pencils, together they would all
have 179 pencils. If Elise had double the pencils,
together with Daniel they would have 143 pencils.
How many pencils does Elise have? Explanation:
You can transform this puzzle into a system of
equations: 3a + b + c = 147; a + 3b + c = 179;
2c + a = 143; You can find the answer by solving
the equation for one variable in terms of the other
variables, then substituting found expression into
the other equations. Using this method you will
arrive at the answer 63. This was the end of the
example, use it to solve the following puzzle. There
are three people named Anne, Daniel and Charlie.
Anne and Daniel together have 72 dollars. Anne
and Charlie together have 114 dollars. If everyone
had three times the amount of dollars, together
they would have 381 dollars. How many dollars
does Anne have?

Model response:
You can transform this puzzle into a system of
equations:
a + d = 72; a + c = 114; 3a + 3d + 3c = 381;
From the first equation, we can express d in terms
of a: d = 72 - a.
Substitute d into the third equation: 3a + 3(72 - a)
+ 3c = 381;
Simplify the equation: 3a + 216 - 3a + 3c = 381;
Simplify further: 216 + 3c = 381;
Solve for c: c = (381 - 216) / 3 = 55.
Substitute c into the second equation: a + 55 = 114;
Solve for a: a = 114 - 55 = 59.
So, Anne has 59 dollars.
[FINAL ANSWER] Anne has 59 dollars.
Prediction: 59
Ground Truth: 59

ExplanationContext:
Prompt: You will now receive an example puzzle
with an explanation how to solve it. Example
puzzle: There are three people named Daniel, Bob
and Elise. If Bob had 3 times the dollars, together
they would all have 334 dollars. Daniel and Bob
together have 101 dollars. If Elise had double
the dollars, together with Daniel they would have
192 dollars. How many dollars does Daniel have?
Explanation: You can transform this puzzle into
a system of equations: a + 3b + c = 334; a + b
= 101; 2c + a = 192; You can find the answer
by adding or subtracting equations to eliminate
one variable and reduce the system to a smaller
one; repeating the process until you obtain a
system with only one variable. Using this method
you will arrive at the answer 26. This was the
end of the example, use it to solve the following
puzzle. Explain how you understand the following
problem: There are three people named Bob, Elise
and Charlie. If Charlie had double the apples,
together with Bob they would have 240 apples.
Bob has 5 less apples than Elise. Bob and Elise
together have 115 more apples than Charlie. How
many apples does Elise have? Then provide an
answer to this problem.

Model response:
Understanding: This problem can be solved by set-
ting up a system of equations based on the informa-
tion given. Let’s denote the number of apples Bob,
Elise, and Charlie have as B, E, and C respectively.

From the problem, we can derive the following
equations:
1. 2C + B = 240 (If Charlie had double the apples,
together with Bob they would have 240 apples)
2. B = E - 5 (Bob has 5 less apples than Elise)
3. B + E = C + 115 (Bob and Elise together have
115 more apples than Charlie)
We can solve this system of equations to find the
number of apples Elise has.
Solution: Substitute equation 2 into equation 1: 2C
+ E - 5 = 240, which simplifies to 2C + E = 245.
Substitute equation 2 into equation 3: E - 5 + E =
C + 115, which simplifies to 2E - 5 = C + 115.
Now we have a system of two equations with two
variables (E and C):
2C + E = 245
2E - 5 = C + 115
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Subtract the second equation from the first to elim-
inate C: 2C + E - (2E - 5) = 245 - 115, which
simplifies to 2C - C = 130 + 5, or C = 135.
Substitute C = 135 into equation 2: B = E - 5, which
simplifies to B = 135 - 5, or B = 130.
Substitute B = 130 into equation 3: 130 + E = 135
+ 115, which simplifies to E = 120.
So, Elise has 120 apples.
[FINAL ANSWER] Elise has 120 apples.
Prediction: 120
Ground Truth: 97

ImpersonationContext:
Prompt: You will now receive an example puzzle
with an explanation how to solve it. Example puz-
zle: There are three people named Elise, Bob and
Anne. Anne has 52 more pencils than Elise. If Elise
had 3 times the pencils, together they would all
have 178 pencils. If Anne had 3 times the pencils,
together they would all have 282 pencils. How
many pencils does Elise have? Explanation: You
can transform this puzzle into a system of equa-
tions: c - a = 52; 3a + b + c = 178; a + b + 3c =
282; You can find the answer by solving the equa-
tion for one variable in terms of the other variables,
then substituting found expression into the other
equations. Using this method you will arrive at the
answer 19. This was the end of the example, use it
to solve the following puzzle. Imagine you are the
mathematician Ada Lovelace. As Ada Lovelace
answer the following problem: There are three peo-
ple named Charlie, Daniel and Bob. If Daniel had
double the apples, together with Bob they would
have 52 apples. If Bob had 3 times the apples, to-
gether they would all have 71 apples. Daniel has
14 more apples than Bob. How many apples does
Daniel have?

Model response:
You can transform this puzzle into a system of equa-
tions: 2d + b = 52; d + 3b + c = 71; d - b = 14;
You can find the answer by solving the equation for
one variable in terms of the other variables.
From the third equation, we can express d in terms
of b: d = b + 14.
Substitute d into the first equation: 2(b + 14) + b =
52, which simplifies to 3b + 28 = 52. Solving for b,
we get b = 8.
Substitute b = 8 into the equation d = b + 14, we
get d = 8 + 14 = 22.

So, Daniel has 22 apples.
[FINAL ANSWER] Daniel has 22 apples.
Prediction: 22
Ground Truth: 22

RestoryingContext:

Prompt: You will now receive an example puzzle
with an explanation how to solve it. Example
puzzle: There are three people named Daniel, Bob
and Elise. Bob and Elise together have 140 more
crayons than Daniel. Daniel has 53 less crayons
than Bob. Daniel and Elise together have 92
crayons. How many crayons does Daniel have?
Explanation: You can transform this puzzle into
a system of equations: b + c - a = 140; a - b
= -53; a + c = 92; You can find the answer by
starting with an initial guess for the solution and
iteratively improving your guess until it converges
to the actual solution. Using this method you
will arrive at the answer 5.This was the end of
the example, use it to solve the following puzzle.
Write a children story describing how to solve the
following problem: There are three people named
Bob, Elise and Charlie. Together they have 83
apples. If Charlie had 3 times the apples, together
they would all have 129 apples. If Charlie had
double the apples, together with Bob they would
have 76 apples. How many apples does Elise have?

Model response: Once upon a time, in a small
town named Applewood, lived three best friends
named Bob, Elise, and Charlie. They loved apples
and would often collect them from the apple trees
in their backyard. One day, they decided to count
their apples and found out they had 83 in total.
Charlie, being the mischievous one, pondered,
"What if I had three times the apples I currently
have? How many would we all have then?" After
some calculations, they realized they would have
129 apples in that scenario.
Bob, always eager to challenge, speculated, "What
if Charlie had double the apples? What would our
total be then?" After more calculations, they found
out that, in that case, he and Charlie together would
have 76 apples.
Elise, with her sharp mind, started piecing the in-
formation together. Knowing the total apples was
83 and using the clues from Charlie and Bob, she
calculated that if Charlie had three times the ap-
ples, he would have an additional 46 apples, which
means his current count was 23. From Bob’s clue,
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she figured out that Bob had 30 apples. Thus, sub-
tracting Bob and Charlie’s apples from the total,
she deduced she had 30 apples.
She shared her findings with Bob and Charlie, who
were both impressed with her deduction skills. The
story ends with the trio celebrating their collective
wit by baking apple pies.
[FINAL ANSWER] Elise has 30 apples.
Prediction: 30
Ground Truth: 30

CodeContext:
Prompt: You will now receive an example puzzle
with an explanation how to solve it. Example puz-
zle: There are three people named Daniel, Bob
and Anne. Daniel and Anne together have 31 less
pencils than Bob. Bob and Anne together have
135 more pencils than Daniel. Daniel and Bob to-
gether have 59 more pencils than Anne. How many
pencils does Anne have? Explanation: You can
transform this puzzle into a system of equations:
a + c - b = -31; b + c - a = 135; a + b - c = 59;
You can find the answer by starting with an initial
guess for the solution and iteratively improving
your guess until it converges to the actual solution.
Using this method you will arrive at the answer 52.
This was the end of the example, use it to solve the
following puzzle. Write code in Java to solve the
following problem: There are three people named
Elise, Daniel and Charlie. If Daniel had 3 times
the books, together they would all have 137 books.
Charlie has 30 more books than Elise. Daniel and
Charlie together have 73 books. How many books
does Elise have? Then simulate the execution of
this code to provide an answer to this problem.

Model Response:
Here is the Java code to solve the problem:
p u b l i c c l a s s Main {

p u b l i c s t a t i c vo id main (
S t r i n g [ ] a r g s ) {

i n t t o t a l B o o k s = 137 ;
i n t c h a r l i e M o r e B o o k s = 3 0 ;
i n t d a n i e l C h a r l i e B o o k s = 7 3 ;

i n t e l i s e B o o k s = ( t o t a l B o o k s −
3 * d a n i e l C h a r l i e B o o k s
+ c h a r l i e M o r e B o o k s ) / 4 ;
System . o u t . p r i n t l n (
" [ FINAL ANSWER] E l i s e has "
+ e l i s e B o o k s
+ " books . " ) ;

}
}

Simulating the execution of this code:
1. The total number of books if Daniel had 3 times
the books is 137.
2. Charlie has 30 more books than Elise.
3. Daniel and Charlie together have 73 books.
The equation to solve this problem is:
’eliseBooks = (totalBooks - 3 * danielCharlieBooks
+ charlieMoreBooks) / 4;’
Substituting the given values into the equation:
’eliseBooks = (137 - 3 * 73 + 30) / 4;’
Solving the equation gives: ’eliseBooks = 8;’
So, [FINAL ANSWER] Elise has 8 books.
Prediction: 8
Ground Truth: 22

B Further results on gpt-4

For completeness, we present the results achieved
by the gpt-4 model in Experiment 1 (given in
Table 3) and in Experiment 2 (shown in Table 4).
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Technique Difficulty Red teaming Edit distance
(characters) ↓

Relative edit
distance (%) ↓

Relative
distance (%) ↓ Accuracy (%) ↑

Code
Easy ✓ 0.030 (0.263) 0.8 (6.6) 0.0 (0.0) 98.5

0.015 (0.157) 0.4 (3.9) 0.0 (0.0) 99.0

Hard ✓ 1.310 (1.541) 16.7 (19.5) 4.5 (63.5) 53.0
1.300 (1.520) 16.6 (19.4) 0.0 (0.0) 53.0

Explanation
Easy ✓ 0.005 (0.071) 0.1 (1.8) 0.0 (0.0) 99.5

0.005 (0.071) 0.1 (1.8) 0.0 (0.0) 99.5

Hard ✓ 1.060 (1.465) 13.5 (18.6) 0.0 (0.0) 62.5
1.135 (1.545) 14.4 (19.6) 4.5 (63.5) 61.5

Impersonation
Easy ✓ 0.005 (0.071) 0.1 (1.8) 0.0 (0.0) 99.5

0.005 (0.071) 0.1 (1.8) 0.0 (0.0) 99.5

Hard ✓ 1.345 (1.472) 17.1 (18.7) 0.0 (0.0) 50.0
1.360 (1.520) 17.3 (19.3) 4.5 (63.5) 50.5

Re-storying
Easy ✓ 0.121 (0.580) 3.2 (15.6) 2.5 (15.4) 95.1

0.000 (0.000) 0.0 (0.0) 0.0 (0.0) 100.0

Hard ✓ 2.165 (2.249) 30.0 (31.2) 76.4 (740.4) 42.8
1.265 (1.531) 16.1 (19.6) 0.0 (0.0) 55.0

Table 3: Elementary mathematics experiment on gpt-4 at top_p=0.2. SD is given in parentheses. Exact matches
for Easy problems in “Explanation” and “Impersonation” are caused by the model making identical mistakes.

Technique Example Edit distance
(characters) ↓

Relative edit
distance (%) ↓

Relative
distance (%) ↓ Accuracy (%) ↑

Default ✓ 0.960 (1.127) 50.2 (59.8) 70.7 (210.8) 51.0
0.897 (1.184) 49.8 (69.1) 128.0 (444.7) 59.3

Code ✓ 1.645 (0.744) 87.1 (45.3) 60.9 (112.4) 10.7
1.576 (0.776) 82.6 (44.4) 58.9 (116.8) 12.8

Explanation ✓ 0.851 (1.074) 44.6 (58.3) 93.2 (539.0) 55.9
0.901 (1.194) 46.9 (61.9) 92.4 (278.2) 58.2

Impersonation ✓ 1.056 (1.200) 57.6 (68.1) 148.3 (486.8) 51.7
1.108 (1.296) 58.6 (70.6) 191.7 (639.6) 51.8

Re-storying ✓ 1.331 (1.182) 75.7 (72.6) 261.9 (920.4) 37.5
1.773 (1.116) 98.2 (69.7) 418.8 (891.6) 21.7

Table 4: Algebraic reasoning experiment on gpt-4 at top_p=0.2. SD is given in parentheses.


